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The electron spin dynamics in cubic GaN is comprehensively investigated by time-resolved magneto-optical
Kerr-rotation spectroscopy over a wide range of temperatures, magnetic fields, and doping densities. The spin
dynamics is found to be governed by the interplay of spin relaxation of localized electrons and Dyakonov-Perel
relaxation of delocalized electrons. Localized electrons significantly contribute to spin relaxation up to room
temperature at moderate doping levels, while Dyakonov-Perel relaxation dominates for high temperatures or
degenerate doping levels. Quantitative agreement to Dyakonov-Perel theory requires a larger value of the spin-
splitting constant than theoretically predicted. Possible reasons for this discrepancy are discussed, including the
role of charged dislocations.
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I. INTRODUCTION

Spin relaxation of conduction band electrons is generally
governed by Dyakonov-Perel (DP) spin relaxation in the
majority of n-type III-V semiconductors [1,2]. DP relaxation
is based on an intrinsic spin splitting of the conduction band
caused by spin-orbit coupling (SOC) [3], whose strength
increases as a rule of thumb with the atomic number
of the constituent group-III and group-V elements [4,5].
Consequently, weaker SOC and hence weaker DP relax-
ation are expected for GaN in comparison to, e.g., GaAs.
GaN has therefore been considered as a promising material
system for spintronics, where long spin-relaxation times
are a prerequisite for possible applications [6–9]. SOC is,
however, also strongly dependent on the symmetry of the
semiconductor crystal lattice, and DP relaxation was shown
to be very efficient in the thermodynamically favored wurtzite
crystal phase of GaN (α-GaN) due to its lower symmetry
as compared to cubic semiconductors [10–15]. This intrinsic
limitation of spin coherence was predicted to be lifted in
the metastable zincblende phase of GaN (β-GaN) [16,17],
and long spin-relaxation times were indeed experimentally
demonstrated at high temperatures and high doping levels in
cubic GaN [18,19]. The experimentally found spin-relaxation
times were, however, still substantially shorter than predicted
by DP theory. The systematic investigation of electron spin
relaxation in cubic GaN is therefore of high interest not only for
possible applications in spintronics but also for fundamental
aspects of spin relaxation in semiconductors. The study of
spin relaxation in semiconductor systems with presumably
weak DP relaxation potentially allows the observation of
otherwise hidden spin-relaxation mechanisms, like in the case
of intersubband relaxation in GaAs(110) quantum wells [20].

Here, we systematically investigate electron spin relaxation
in cubic GaN by time-resolved Kerr-rotation (TRKR) spec-
troscopy over a wide range of temperatures, external magnetic
fields, and doping densities. We find a complex interplay of
spin relaxation of localized electrons and Dyakonov-Perel
relaxation of delocalized electrons, with localized electrons
governing the spin relaxation up to moderate temperature and
doping densities. Dyakonov-Perel spin relaxation dominates

in the regime of high temperatures and high doping densities.
Quantitative agreement to Dyakonov-Perel is obtained for
significantly larger values of the spin-splitting constant than
theoretically predicted.

The paper is organized as follows. In Sec. II, we first review
the theoretical basis of spin relaxation in semiconductors.
The experimental technique and the investigated samples are
presented in Sec. III, followed by the experimental results and
their discussion in Sec. IV.

II. THEORY

Electron spin relaxation in semiconductors is generally
driven by several physically distinct mechanisms. The strength
of these different mechanisms depends on numerous parame-
ters like the band structure of the semiconductor as an intrinsic
property, but also on extrinsic parameters like temperature
or magnetic field. In the following, we will briefly discuss
mechanisms that are important for electron spin relaxation in
cubic GaN. First, we address the theory of DP spin relaxation
for free, delocalized electrons, before we turn to the case of spin
relaxation of strongly localized electrons. Finally, we briefly
review spin relaxation due to the Elliott-Yafet mechanism and
the Bir-Aronov-Pikus mechanism, which are only of minor
importance for spin relaxation in β-GaN.

A. Dyakonov-Perel spin relaxation

Dyakonov-Perel spin relaxation of delocalized electrons is
driven by a spin splitting of the conduction band in com-
bination with momentum scattering. The SOC induced spin
splitting acts as a wave-vector-dependent effective magnetic
field �(k) on the electrons’ spins, which consequently precess
around the effective magnetic field axis. Momentum scattering
leads to random changes of the wave vector, resulting in a
fluctuating effective magnetic field, which finally causes spin
dephasing for an ensemble of electrons. The conduction band
spin splitting is given by the Hamiltonian

Hsoc = �

2
�(k) · σ (1)
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with σ as the vector of Pauli spin matrices. The formal corre-
spondence of Hsoc to the Zeeman Hamiltonian for electrons in
an external magnetic field readily illustrates the interpretation
of �(k) as an effective magnetic field. Generally, different
effects contribute to the conduction band spin splitting, leading
to a total effective magnetic field

�total(k) =
∑

i

�i(k) . (2)

An intrinsic contribution to the conduction band spin splitting
in bulk semiconductors with zinc-blende structure stems from
the Dresselhaus term [21]

�D(k) = 2γe

�

⎛
⎜⎝

kx

(
k2
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ky
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)
⎞
⎟⎠ (3)

with the material specific spin-splitting constant γe. Further
contributions to �total(k) can arise, e.g., from strain-induced
spin splittings [22,23].

In the most basic approach to DP theory, the individual
efficiencies and energy dependencies of different momentum
scattering mechanisms are neglected and the tensor γ

simp
s,ij of

the spin-relaxation rates is given by [24]

γ
simp
s,ij = 1

2 (δij 〈�2〉 − 〈�i�j 〉)τp, (4)

where . . . and 〈. . .〉 denote the average over the angular
momentum distribution and the energy distribution of the
electrons, respectively, and τp is an effective, averaged
momentum scattering time.

A more accurate description of DP relaxation by Pikus
and Titkov [25] accounts for the different efficiencies and
energy dependencies of momentum scattering mechanisms by
including efficiency factors γ� in the expression for the tensor
γ̃s,ij of energy dependent spin-relaxation rates,

γ̃s,ij = (δij�2 − �i�j )

(∑
ν

γ�,ν

τ̃p,ν

)−1

, i,j = x,y,z , (5)

where τ̃p,ν is the energy dependent momentum scattering time
and γ�,ν the efficiency factor of the νth momentum scattering
mechanism. The Hamiltonian Hsoc ∝ k� is polynomial in
the magnitude of the wave vector, with the k3-dependent
Dresselhaus term corresponding to � = 3, while contributions
linear in k, such as strain-induced spin splittings, correspond to
� = 1 with γ1 = 1 [1,8,26]. Considering only the Dresselhaus
term, the directional average readily gives the isotropic spin-
relaxation rate

γ̃s,ij = δij

32

105

γ 2
e

�2
k6

(∑
ν

γ�,ν

τ̃p,ν

)−1

. (6)

The energy average is carried out for nondegenerate electrons
by assuming a Boltzmann distribution for the electron momen-
tum distribution, leading to, approximately

γ DP,nd
s = 〈

�2
eff,nd

〉
(Qτp)total (7)

with 〈
�2

eff,nd

〉 ≡ 8m∗3(kBT )3

�8
γ 2

e (8)

TABLE I. Values of the efficiency factors γ3 and efficiency
coefficients Q for different momentum scattering mechanisms.

Scattering mechanism γ3 Q Reference

polar optical phonon 11/6 1152/385 [18,25,27]
ionized impurity 6 32/21 [25]
deformation potential 1 96/35 [25]
piezoelectric 11/6 1152/385 [25]
dislocation 6 32/21 [18,28]

and

(Qτp)total ≡
(∑

ν

1/(τp,νQν)

)−1

, (9)

where τp,ν = 〈τ̃p,νEk〉/〈Ek〉. The efficiency coefficients Qν

depend on the specific momentum scattering mechanism and
are given by

Qν = 32

105

1

γ�,ν

〈
τ̃p,νE

3
k

〉〈Ek〉
〈τ̃p,νEk〉(kBT )3

. (10)

Assuming a power-law dependence τ̃p,ν ∝ En
k for the energy

dependence of the momentum scattering time, the efficiency
coefficients can be expressed as

Qν = 16

35

1

γ�,ν

(
n + 7

2

)(
n + 5

2

)
. (11)

The corresponding values of the efficiency factors γ� and
efficiency coefficients Qν for different momentum scattering
mechanisms are given in Table I.

In the degenerate regime, the absolute value k of the
electron wave vector is replaced by the Fermi wave vector
kF = (3π2)1/3n

1/3
D in Eq. (6) as only electrons at the Fermi

edge contribute significantly to scattering. The spin-relaxation
rate

γ DP,deg
s = 〈

�2
eff,deg

〉
τ

deg
p,eff (12)

follows accordingly for the degenerate regime, where nD is
the electron density,

〈
�2

eff,deg

〉 ≡ 96π4γ 2
e

35�2
n2

D , (13)

and

τ
deg
p,eff ≡

(∑
ν

γ�,ν

τp,ν(EF )

)−1

(14)

is the effective momentum scattering time.
In the presence of an external magnetic field, DP spin relax-

ation is additionally influenced by spin Larmor precession and
orbital cyclotron motion, respectively [29]. Larmor precession
around the external magnetic field can efficiently suppress the
precession around the fluctuating internal effective magnetic
field [30], thus leading to a slowdown of DP relaxation
according to [1,25]

γ DP
s (Bext) = γ DP

s,0

1 + (ωLτp)2
(15)
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with the Larmor precession frequency ωL = gμBBext/�, the
Landé g factor, the spin-relaxation rate at zero magnetic field
γ DP

s,0 , and the effective, averaged momentum scattering time
τp. A slowdown of DP relaxation results also from the orbital
motion of electrons in a nonquantizing external magnetic
field, which leads to a cyclotron motion of the electrons.
The longitudinal component of the electronic quasimomentum
is conserved in this case, while the transversal components
precess with the cyclotron frequency ωc = qBext/m∗. The
resulting averaging of the fluctuating effective magnetic field
leads to suppression of DP relaxation according to [1,31]

γ DP
s (Bext) ≈ γ DP

s,0

1 + (ωcτp)2
. (16)

B. Spin relaxation of localized electrons

Electrons strongly localized at defects have zero aver-
age wave vectors, hence the DP spin-relaxation mechanism
discussed in the previous section is efficiently suppressed.
Instead, the spin relaxation of localized electrons is driven
by hyperfine interaction with the nuclei of lattice atoms or
by spin-orbit interactions [34]. In the former case, localized
electrons interact via hyperfine Fermi contact interaction with
the large number of nuclei in the localization volume of the
electron. This hyperfine interaction corresponds to an effective
nuclear magnetic field, which acts on the electron spin and
whose fluctuations cause dephasing of the electron spin. The
spin dephasing time due to the fluctuating hyperfine field
follows for completely isolated electrons as [1,35,36]

γ HF
s = 1

�

√
2
∑

j Ij (Ij + 1)A2
j yj

3NL

, (17)

where the sum runs over the nuclear isotopes with yj as
the abundance, Aj as the hyperfine constant and Ij as the
nuclear spin of isotope j . The number NL of nuclei that
effectively interact with the electron is estimated via the
ratio of the electron localization volume VL to the volume
v0 of the unit cell. The electron localization volume VL may
further be approximated by the volume Ve = 4/3πa3

e with
a modified Bohr radius ae = 1.5ε/(m∗/me)aH , where ε is
the static dielectric constant and aH the Bohr radius of an H
atom [37].

For increasing donor density nD , electron hopping between
donors limits the correlation time τc of spin precession in the
fluctuating nuclear field. The spin dephasing rate is then given
by [30,34]

γ HF,h
s = 2

3

〈
ω2

nucl

〉
τc (18)

with 〈ω2
nucl〉 = (v0/8π�

2a3
e )

∑
j Ij (Ij + 1)A2

j being the mean
square of the spin precession frequency in the fluctuating
nuclear field.

Spin relaxation of localized electrons can also be driven
by spin-orbit interaction, which results in an anisotropic
contribution to the exchange interaction between localized
electrons [38]. Qualitatively, spin-orbit interaction leads to
small rotations of the electron spins if two localized electrons
exchange positions. These spin rotations can be ascribed to
a corresponding fluctuating effective magnetic field, which

finally leads to spin dephasing. The spin dephasing rate due to
this anisotropic exchange interaction follows as [39]

γ aex
s = 2

3 〈ϕ2〉τ−1
c , (19)

where 〈ϕ2〉 is the mean-squared value of the angle ϕ of spin
rotation due to the exchange.

For localized electrons, an external magnetic field leads
generally to a linear increase of the spin-relaxation rate

γ HF
s ∝ Bext (20)

for high magnetic fields Bext [13,36,37,40], which might
be explained by variations �g of the g factor, leading to
inhomogeneous dephasing.

C. Other spin-relaxation mechanisms

Generally, spin relaxation in semiconductors can be caused
by several other mechanisms than the ones discussed in the
previous sections. In the following, we will give a brief
overview of these mechanisms.

Spin relaxation of delocalized electrons due to the so-
called Elliott-Yafet (EY) mechanism is based on the mix-
ing of spin-up and spin-down electron states by spin-orbit
coupling [1,8,41,42]. Due to this mixing, spin-independent
momentum scattering can cause spin flips, resulting finally in
spin relaxation. The spin-relaxation rate due to the Elliott-
Yafet mechanism can be estimated by the relation for the
long-range interaction part, which is usually dominating in
III-V semiconductors [1,43],

γ EY
s = A

(
E

Eg

)2

η2

(
1 − η/2

1 − η/3

)2 1

τp

, (21)

where E = kBT in the nondegenerate regime and E = EF in
the degenerate regime, respectively, η = �so/(Eg + �so) with
Eg as the band-gap energy and �so as the spin-orbit splitting,
and A is a dimensionless constant between 2 and 6 depending
on the dominating momentum scattering mechanism.

Electron scattering with holes can lead to electron spin
relaxation via simultaneous spin flips due to the electron-
hole exchange interaction. The effectiveness of this so-called
Bir-Aronov-Pikus (BAP) mechanism depends strongly on the
state of the holes, resulting in a complex dependence of
spin relaxation on hole density and temperature [44]. Several
approximate expressions have been derived for limiting cases
such as scattering of electrons by holes bound to acceptors
or by free, nondegenerate holes [1,25]. Generally, the BAP
mechanism is, however, only relevant for substantial hole
concentrations [2].

The wave-vector or energy dependence of the Landé g

factor can additionally lead to spin relaxation, which speeds
up for increasing external magnetic field [45]. This mech-
anism becomes, however, important only for high magnetic
fields [46].

D. Total spin-relaxation rate

In general, both localized and free, delocalized electrons
exist in the semiconductor. Efficient exchange scattering
leads, however, to spin-relaxation times common for both
systems [34,47,48]. The corresponding spin-relaxation rate
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TABLE II. Values of the Dresselhaus spin-splitting constant γe

from different theoretical models.

γe (eVÅ3) Model Reference

0.508 sp3s∗ tight-binding Refs. [32,33]
0.235 sp3d5s∗ tight-binding Ref. [33]
0.84 tight-binding, empirical pseudopotential Ref. [19]

observed in the experiment follows approximately as [48]

γs ≈ nloc/ntotal

τ loc
s

+ ndeloc/ntotal

τ deloc
s

, (22)

where ntotal is the total electron density, and nloc and ndeloc are
the densities of localized and delocalized electrons, respec-
tively, with τ loc

s and τ deloc
s as the corresponding spin-relaxation

times for localized and delocalized electrons, respectively.

III. SAMPLES AND EXPERIMENTAL SETUP

All β-GaN samples under investigation were grown by
plasma-assisted molecular beam epitaxy (MBE) [49–51].
Table III summarizes details on the layer structure of the
investigated samples, which fall in four groups: samples
belonging to group A were grown on top of a β-AlN buffer
layer [52] on 3C-SiC/Si(001) substrates, with Si doping of the
top β-GaN layer resulting in n-type doping densities [53] nD

from nD = 1 × 1017 cm−3 up to 1.5 × 1019 cm−3. The phase
purity of the β-GaN layer was verified by high resolution
x-ray diffraction (HRXRD) measurements (see Table IV). The
β-GaN epilayers for the samples of group B were directly
grown on 3C-SiC/Si(001) substrates and exhibit n-type doping
densities from nD = 1 × 1017 cm−3 up to 1 × 1018 cm−3.
Sample C consists of 400 nm β-GaN grown on a 30 nm-thick
SiC layer produced by carbonizing a Si(001) substrate [54],
resulting in a low residual electron doping density of nD =
6 × 1016 cm−3 of the β-GaN layer. Sample D was grown on
a GaAs(001) substrate, and exhibits a background electron
doping density of nD = 8 × 1017 cm−3 with a mobility of
75 cm2/Vs as determined by Hall measurements [51].

Time-resolved photoluminescence (PL) measurements
were performed with the frequency-doubled output of a

TABLE IV. Phase purity of samples A2-A7 as determined by high
resolution x-ray diffraction.

sample phase purity (%)

A2 99.5
A3 99.8
A4 99.3
A5 99.7
A6 97.5
A7 99.7

femtosecond-mode-locked Ti:sapphire laser with a repetition
rate of 80 MHz for excitation, and a synchroscan streak-camera
system for energy- and time-resolved detection. The excitation
energy was fixed at 3.55 eV and an average excitation power
of 8 mW was used.

For the TRKR measurements, the output of a femtosecond-
mode-locked Ti:sapphire-laser was frequency-doubled and
split into pump and probe beam. The pump beam was
polarization-modulated between right and left circularly polar-
ized, respectively, at a frequency of 50 kHz by a photoelastic
modulator, before it was focused down to a spot with a
diameter of approximately 100 μm on the sample surface.
The temporal evolution of the spin-polarization of the electron
ensemble initially created by the pump pulses was tracked
via the Kerr rotation of the linearly polarized probe pulses,
which were temporally delayed via a variable mechanical
delay line. A cascaded lock-in amplifier detection scheme
using the fast polarization modulation of the pump pulses and a
significantly slower amplitude modulation of the probe pulses
was employed for a good signal-to-noise ratio. The energy
of pump and probe was set to the maximum of the TRKR
signal, corresponding to 3.280 eV for the lowest doped samples
and 3.293 eV for the samples with the highest doping level,
respectively, at low temperatures. For increasing temperature,
these energies redshifted following the temperature-induced
decrease of the band gap. The average pump and probe power
was 10 and 1 mW, respectively. The samples were mounted in
a cold-finger cryostat and an external magnetic field Bext was
applied in the sample plane.

TABLE III. Doping density, layer structure, and substrate of samples A1-A7, B1-B3, C, and D.

doping density β-GaN β-AlN buffer
sample nD (cm−3) thickness (nm) thickness (nm) substrate

A1 1 × 1017 580 30 12 μm 3C-SiC/Si(001)
A2 5 × 1017 580 15 12 μm 3C-SiC/Si(001)
A3 1 × 1018 580 15 12 μm 3C-SiC/Si(001)
A4 5 × 1018 580 30 12 μm 3C-SiC/Si(001)
A5 5 × 1018 580 15 12 μm 3C-SiC/Si(001)
A6 1 × 1019 580 39 12 μm 3C-SiC/Si(001)
A7 1.5 × 1019 580 39 12 μm 3C-SiC/Si(001)
B1 1 × 1017 100 no AlN buffer 9 μm 3C-SiC/Si(001)
B2 5 × 1017 500 no AlN buffer 9 μm 3C-SiC/Si(001)
B3 1 × 1018 500 no AlN buffer 9 μm 3C-SiC/Si(001)
C 6 × 1016 400 no AlN buffer 30 nm 3C-SiC/Si(001)
D 8 × 1017 970 no AlN buffer GaAs(001)
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FIG. 1. (a)–(c) Temperature dependent PL spectra for samples
A1, A3, and A7. (d) Temperature dependence of the effective lifetime
τ of the excitonic PL line.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the following section, we will present and discuss the
experimental results, starting first with the PL characterization
of the samples, before discussing the dependence of spin
relaxation on temperature, magnetic field, and doping density.
Finally, we address shortly the influence of phase purity and
substrate on the spin dynamics.

A. Photoluminescence

Figures 1(a)–1(c) shows typical PL spectra of samples
A1, A3 and A7 for different temperatures. The PL spectra
of samples A1 and A3 are dominated by luminescence lines
at 3.26 eV and 3.144 eV at low temperatures. The PL line at
3.144 eV stems from a donor-acceptor-pair transition (DAP)
with its LO phonon replica at 3.057 eV. For temperatures �50
K, the DAP line is superseded by the band-acceptor transition
(e,A0) approximately 25 meV higher in energy [55]. Similarly,
the luminescence line at 3.26 eV originates from the radiative
decay of donor-bound-excitons (D0,X) at low temperatures,
and is gradually replaced by recombination of free excitons
(FX) at higher temperatures [56]. The full width at half
maximum (FWHM) of the excitonic line of, e.g., 25 meV
for sample A1 at a temperature of T = 15 K, compares well
with values in the literature [56,57], thus demonstrating the
good quality of the samples. With increasing temperature,
the PL lines redshift due to the temperature-induced band-
gap shrinking, accompanied by an intensity decrease and
broadening of the lines. The short effective lifetime of the
excitonic PL line on the order of 20 ps [cf. Fig. 1(d)] shows
that recombination is predominantly nonradiative consistent
with the decrease in intensity.

The PL spectrum of the highly n-doped sample A7 [see
Fig. 1(c)] shows a broad, asymmetric PL line shape [58] typical
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FIG. 2. TRKR transients for sample A1 for (a) different temper-
atures and (b) different external magnetic fields. (c) TRKR transients
for samples A1, A3, and A7 at T = 15 K.

for degenerate bulk semiconductors due to band-to-band
transitions or recombination of free electrons with localized
hole states [49]. For increasing temperature, the line shape
broadens and evolves into a more symmetric line shape,
resulting in an almost Gaussian form at room temperature
due to thermal excitation and broadening effects [59].

B. Temperature dependence of spin dynamics

First, we will discuss the temperature dependence of spin
relaxation. Figure 2(a) shows typical TRKR transients for
sample A1 at different temperatures in an external magnetic
field Bext = 0.1 T. The transients show oscillations, which are
caused by Larmor precession of the electron spins around the
external magnetic field, and a temporal decay of the amplitude
due to spin relaxation and generally also due to the decay
of the optically excited carrier density. The corresponding
Larmor precession frequency ωL and the spin-relaxation time
τs are extracted from the transients by fits of the form
[A1 exp(−t/τc) + A2] exp(−t/τs) cos [ωL(t − t0)], where the
time τc accounts for the decay of the optically excited
carrier density [11]. Here, τc is found to approximately
equal the effective decay time τ (compare Sec. IV A) and
to be short as compared to the spin-relaxation time τs for
all measurements. Carrier densities are therefore virtually
constant on the timescale of spin relaxation. The Larmor
precession frequency ωL is related to the electron Landé g

factor via ωL = gμBBext/�. We find a g factor g ≈ 1.95 in
agreement with the literature value [60]. Within experimental
accuracy, the g factor is independent of temperature and doping
level for all investigated samples in complete agreement with
expectations from k · p theory for the combination of large
band gap and small spin-orbit coupling in β-GaN [61].
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0.1 T. The gray arrow marks the spin-relaxation time τHF

s due to the
hyperfine interaction estimated via Eq. (17).

The temperature dependence of the spin-relaxation time
τs is shown in Fig. 3. Two temperature regimes are clearly
observed for the two lower doped samples A1 and A3. At
temperatures T � 50 K, the spin-relaxation time increases
with T , while a decrease of τs with T is observed for T � 50 K.
In contrast, the highly doped sample A7 shows an almost
constant spin relaxation time as reported previously [19].

First, we will discuss the nonmonotonic temperature de-
pendence of spin relaxation in samples A1 and A3, which can
be explained by the combined action of hyperfine-induced
spin relaxation of localized electrons and DP relaxation
of delocalized electrons. At low temperatures, a substantial
fraction of electrons is localized at defects, and hyperfine-
induced spin relaxation dominates, while DP relaxation is
comparably inefficient at low temperatures. With increasing
temperature, both the fraction of delocalized electrons as well
as the efficiency of DP relaxation increase, resulting in the
dominance of DP relaxation at high temperatures.

For the low-temperature regime, where the spin relaxation
of localized electrons via hyperfine interaction dominates,
we estimate a spin-relaxation time τHF

s ≈ 2.1 ns according
to Eq. (17). The effect of the N nuclei is neglected as
compared to the Ga nuclei [62], for which a hyperfine constant
AGa = 42 μeV averaged over the 69Ga and 71Ga isotopes is
used [62,63]. The estimated spin-relaxation time is in good
agreement with the experimentally found values for the lowest
temperature of T = 15 K (compare the gray arrow marking
τHF
s in Fig. 3). The experimentally observed increase of

the spin-relaxation time with temperature then follows from
increasing delocalization and hence increasing contribution
from slow DP relaxation. The overall longer spin-relaxation
times for sample A3 with its higher doping level as compared
to sample A1 are again expected as a consequence of the
smaller fraction of localized carriers.

In the high-temperature regime of spin relaxation, the
experimentally observed decrease of the spin-relaxation time
with temperature can be explained by the dominance of DP
relaxation. The increasing temperature leads to the occupation
of higher k states and a corresponding increase of the effective
magnetic field [see Eq. (3)], resulting finally in faster spin
relaxation. For a quantitative comparison of the predictions
of DP theory to the experimentally observed temperature
dependence of spin relaxation, both the effective magnetic field
average and the momentum scattering time have to be known
according to Eqs. (4) to (12). The experimental determination
of the momentum scattering time via transport measurements
is, however, often hindered in β-GaN due to the use of highly
conductive substrates. In addition, an experimentally measured
total momentum relaxation time does not account for the
different efficiencies of the individual momentum scattering
processes [cf. Eq. (5)] [64]. We therefore model the momentum
scattering time in the following, thus allowing us to include the
different efficiencies of the individual momentum scattering
mechanisms as discussed in Sec. II A. Generally, the transport
mobility μe is linked to the momentum scattering time τp via
τp = μem

∗/q. We model the total mobility μe in the following
by including several scattering processes via Matthiessens rule

1

μe

= 1

μdisl
e

+ 1

μ
po
e

+ 1

μ
dp
e

+ 1

μii
e

+ 1

μ
pe
e

, (23)

where the mobility μdisl
e due to dislocation scattering is given

by [65,66]

μdisl
e (T ,nD) = 30

√
2πε2d2(kBT )3/2

q3λDf 2
√

m∗ndisl
(24)

with ndisl as the dislocation density, d as the distance between
acceptor centers along the dislocation line, f as the occupation
ratio of these acceptors and

λD =
√

εkBT

q2nD

(25)

as the Debye screening length. For the simulations, it was
assumed that d is equal to the lattice constant a0 of β-GaN and
f is equal to 1 [67]. The mobility μ

po
e due to scattering with

polar optical phonons is modeled by [68]

μpo
e = 8

3
√

2π

�
2(kBT )1/2

qkBTLOm∗3/2

εε∞
ε − ε∞

(e� − 1)χ (�) (26)

with � = TLO/T , TLO = �ωLO/kB and

χ (�) = 3
8

√
π� (27)

for TLO 
 T . The mobility μ
dp
e due to acoustic phonon

deformation potential scattering is given by [43,69]

μdp
e =

√
8π

3

q�
4cl

a2
cm

∗5/2(kBT )3/2
(28)

with the deformation potential ac and the spherically aver-
aged [70]

cl = (3c11 + 2c12 + 4c44)/5 . (29)
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Scattering with ionized impurities leads to the mobility [71]

μii
e = 128

√
2πε2(kBT )3/2

m∗1/2q3nD

[
ln

(
1 + (12πεkBT )2

q4n
2/3
D

)]−1

.

(30)

The mobility due to piezoelectric scattering is given by [43]

μpe
e = 140

√
2π

3

�
2

qm∗3/2(kBT )1/2

1

h2
14(4/ct + 3/cl)

(31)

with the spherically averaged parameter [70]

ct = (c11 − c12 + 3c44)/5 (32)

and [72]

h14 = e14/ε . (33)

Figure 4(a) shows exemplarily the contributions from the
different scattering mechanisms to the total mobility μe for
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FIG. 4. Simulated temperature dependence of (a) the contribu-
tions of the different scattering mechanisms to the total mobility μe

for nD = 1 × 1017 cm−3 and ndisl = 5 × 109 cm−2 and (b) the total
mobility μe for nD = 1 × 1017 cm−3 and ndisl = 1 × 109, 5 × 109,
and 5 × 1010 cm−2 (lines I–III). Lines IV and V are for doping
densities of 1 × 1018 and 1 × 1019 cm−3 and a dislocation density
of ndisl = 5 × 109 cm−2.

TABLE V. Material parameters of cubic GaN.

Symbol Value Reference

Spin orbit splitting �so 0.017 eV Ref. [74]
Effective electron mass m∗ 0.15 m0 Ref. [75]
LO phonon frequency ν̃LO 740 cm−1 Ref. [76]
Static dielectric constant ε 9.5 ε0 Ref. [67]
High-frequency ε∞ 5.35 ε0 Ref. [67]

dielectric constant
Lattice constant a0 0.45 nm Ref. [77]
Deformation potential ac −2.77 eV Refs. [78,79]
Elastic constant c11 296 GPa Ref. [78]
Elastic constant c12 154 GPa Ref. [78]
Elastic constant c44 206 GPa Ref. [78]
Piezoelectric constant e14 0.50 C/m2 Ref. [80]

a doping density nD = 1 × 1017 cm−3 and a typical value [73]
of the dislocation density of ndisl = 5 × 109 cm−2, using the
material parameter given in Table V. The total mobility is
dominated by dislocation scattering at low temperatures and
by polar optical phonon scattering at high temperatures, while
ionized-impurity scattering gains importance with increasing
doping level. The dislocation density ndisl and the doping
density nD are therefore the sample specific parameters
governing the mobility. The temperature dependence of the
total mobility is shown in Fig. 4(b) for the range of doping
densities nD investigated here and for values of the dislocation
density covering the typical range found for our samples
with a layer thickness of approximately 500 nm on SiC
substrates [73]. Overall, the simulated values of the mobility
agree well with available experimental values for the mobility
in β-GaN [51,67,81].

In the next step, the contributions of the individual scatter-
ing mechanisms to the total scattering time can be weighted by
their corresponding efficiency factors, thus allowing a quan-
titative comparison between the experimental spin-relaxation
times and the predictions of DP theory.

We start by discussing the two lower doped samples A1 and
A3. Figure 5(a) shows the simulated temperature dependence
of the weighted effective momentum scattering time (Qτp)total

according to Eq. (9) for the doping densities of samples A1
and A3, assuming a typical dislocation density of ndisl =
5 × 109 cm−2. Following Eq. (7), the product τs(Qτp)total

of the experimentally determined spin-relaxation time τs and
the simulated (Qτp)total can then be directly compared to the
inverse effective magnetic field average 1/〈�2

eff,nd〉 predicted
by DP theory [cf. Eq. (8)]. Figure 5(b) shows the corresponding
comparison between τs(Qτp)total and 1/〈�2

eff,nd〉 for different
values of the spin-splitting constant γe and temperatures up to
500 K [82]. Qualitatively, the slope of τs(Qτp)total matches the
T −3 dependence predicted by DP theory [see Eq. (8)] very well
for temperatures T � 250 K for both samples. Quantitative
agreement is, however, only obtained for a value of γe =
2.5 eVÅ3, which strongly exceeds the published theoretical
values (see Table II). The significantly shorter spin-relaxation
times for lower temperatures T � 250 K can be understood
by increasing degeneracy for lower temperatures and strong
contribution from spin relaxation of localized carriers.
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FIG. 5. (a) Simulated temperature dependence of the weighted
momentum scattering time (Qτp)total according to Eq. (9) for a
dislocation density ndisl = 5 × 109 cm−2 and doping densities nD =
1 × 1017 and 1 × 1018 cm−3, respectively. (b) Temperature depen-
dence of the product τs(Qτp)total of the experimental spin-relaxation
time τs and (Qτp)total from 80 to 500 K on a double-logarithmic
scale. The solid lines show the inverse squared effective magnetic
field average 1/〈�2

eff,nd〉 predicted by DP theory for different values
of the spin-splitting constant γe.

An analogous comparison can be made for the degenerately
doped sample A7. In this case, the effective magnetic field
average 〈�2

eff,deg〉 and the effective momentum scattering time

τ
deg
p,eff according to Eqs. (13) and (14) have to be used to

account for the degeneracy. Figure 6(a) shows the simulated
temperature dependence of τ

deg
p,eff , which is approximately

constant as expected for a degenerate electron gas [1]. The
product τsτ

deg
p,eff is then also found to be almost temperature

independent, which completely agrees with the prediction of
DP theory for the case of degeneracy [cf. Fig. 6(b)] [3,19]. This
agreement clearly indicates the dominance of DP relaxation
over the full temperature range due to the degeneracy of
the sample. Consistent with the above results for the lower
doped samples, quantitative agreement with DP theory is
again obtained for a value of the spin-splitting constant of
γe = 2.5 eVÅ3.

This value of the spin-splitting constant is, however,
substantially larger than published theoretical values (see
Table II). In the following, we will discuss possible reasons
for this discrepancy. An obvious reason for the disagreement
would be a too small value of γe predicted by theory. It
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FIG. 6. (a) Simulated temperature dependence of the effective
momentum scattering time τ

deg
p,eff according to Eq. (14) for a doping

density nD = 1.5 × 1019 cm−3 and a dislocation density ndisl = 5 ×
109 cm−2. (b) Temperature dependence of τsτ

deg
p,eff from 15 K up to

293 K on a semi-logarithmic scale. The solid lines show the inverse
squared effective magnetic field average 1/〈�2

eff,deg〉 predicted by DP
theory for different values of the spin-splitting constant γe.

is well known from other semiconductors, particularly from
the extensively studied GaAs, that the theoretical prediction
of the spin-splitting constant is difficult, resulting in a wide
range of predicted values [83]. The few theoretically predicted
values for γe in β-GaN also show considerable scatter (cf.
Table II), with, however, a tendency to smaller values for
increased complexity of the theoretical models [19,32,33]. We
note that no experimental values for the spin-splitting constant
in β-GaN are available for comparison. Another reason for
the observed discrepancy might be the assumption of a perfect
crystal lattice in the theoretical prediction of γe. Cubic GaN
possesses, however, a complex microstructure, which possibly
influences the spin dynamics in several ways. First, cubic GaN
shows inclusions of the thermodynamically preferred wurtzite
phase of GaN (α-GaN), arising from stacking faults on {111}
planes. These α-GaN inclusions furthermore form two types of
anti-phase domains (APD) in β-GaN grown on 3C-SiC, with
different α-GaN content in the two types of APDs [84]. This
complex phase mixture could lead to additional contributions
to DP spin relaxation, as the polar α-GaN inclusions and the
charge accumulation at the interfaces [85] might contribute
to random spin-orbit coupling similar to dopant ions [86].
We note that while HRXRD characterizations indicate a high
phase purity and thus a small amount of α-GaN domains in

235202-8



ELECTRON SPIN DYNAMICS IN CUBIC GaN PHYSICAL REVIEW B 94, 235202 (2016)

our samples, these measurements only provide information
averaged over the whole layer thickness, while in reality
the α-GaN phase content increases with increasing layer
thickness [84]. Due to the short laser penetration depth, our
TRKR measurements probe predominantly the electron spin
dynamics close the surface, where the α-GaN phase content
is expected to be higher than indicated by the HRXRD
measurement. Besides α-GaN inclusions, cubic GaN epilayers
show also a high density of dislocations, which might influence
DP relaxation via two, counteracting mechanisms. On the
one hand, an increasing dislocation density causes shorter
momentum scattering times as discussed above, thus leading
to an increase of the spin-relaxation time. On the other hand,
dislocations in GaN are positively charged [87], thus creating
an additional spin-orbit field comparable to the spin-orbit
field of donors [86], which leads to shorter spin lifetimes for
increasing dislocation density. While only the first mechanism
has theoretically been considered so far [28], experimental
results in α-GaN point at the possible importance of the second
mechanism [88].

A significant underestimation of the mobility and hence
the momentum scattering time in our simulations could
also explain the shorter spin-relaxation times observed
experimentally than expected theoretically. The simulated
mobilities agree, however, well with available experimen-
tal values [51,67,81]. In addition, electron-electron scatter-
ing also shortens the momentum scattering time for DP
relaxation, while it does not contribute to the transport
mobility. Inclusion of electron-electron scattering would

hence increase the gap between experiment and theory even
further.

Microstrain variations in the β-GaN epilayers lead to an
additional contribution to the conduction band spin splitting.
The strain-induced spin splitting was, however, shown to
have only a negligible effect on the spin dynamics [89],
thus excluding strain variations as a possible source for the
discrepancy.

We finally note that EY and BAP relaxation play only a neg-
ligible role. Estimating spin-relaxation times for EY relaxation
via Eq. (21) gives values on the order of microseconds, being
several orders of magnitude longer than the experimentally
observed spin-relaxation times. A significant influence of BAP
relaxation is not expected, as the BAP mechanism was shown
to be effective only for considerable hole concentrations [1,2],
while our samples are n-doped and holes optically excited by
the pump pulse recombine rapidly (see Sec. IV A).

C. Magnetic field dependence of spin dynamics

The investigation of the magnetic field dependence of spin
relaxation gives important information on, e.g., the symmetry
of the spin-relaxation tensor [10,20] or on the dominating spin-
relaxation mechanism [13]. Figure 7 shows the magnetic field
dependence of spin relaxation for the lower doped samples A1
and A3 as well as for the degenerate sample A7 at temperatures
between 15 and 293 K. First, we will discuss the magnetic
field dependence of the spin-relaxation time for the two lower
doped samples A1 and A3. At low temperatures, the spin-
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FIG. 7. Magnetic field dependence of the spin-relaxation time τs for samples A1, A3, and A7 at (a) T = 15, (b) 80, and (c) 293 K. (d)
Magnetic field dependence of the corresponding spin-relaxation rate γs for sample A1 at T = 15, 80, and 293 K. The solid lines show fits to the
γs ∝ Bext dependence of Eq. (20). (e) Simulated magnetic field dependence γ DP

s (Bext)/γ DP
s,0 of the ratio of spin-relaxation rates due to the effects

of Larmor precession and cyclotron motion, respectively, according to Eqs. (15) and (16). An effective momentum scattering time τp = 25 fs
was used in the simulation. (f) Temperature dependence of the ratio β = τs,0/τs,B of experimental spin-relaxation times at zero magnetic field
and Bext = 0.55 T for samples A1, A3, and A7. The dashed line marks a value of β = 1, indicative of DP relaxation.
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relaxation time strongly decreases for increasing magnetic
field [cf. Fig. 7(a)]. The linear magnetic field dependence of
the corresponding spin-relaxation rate [see Fig. 7(d)] is typical
for the spin relaxation of localized electrons [cf. Eq. (20)].
The magnetic field dependence of the spin-relaxation time
flattens with increasing temperature, resulting in an almost
constant spin-relaxation time at room temperature [compare
Figs. 7(b)–7(d)]. This transition supports the interpretation
of the temperature dependence of spin relaxation in the
previous section. At low temperatures, spin relaxation is
governed by the spin relaxation of localized electrons via
the hyperfine interaction, which is characterized by the linear
magnetic field dependence of the spin-relaxation rate that we
experimentally observe for sample A1 and A3. With increasing
temperature, the degree of localization decreases and the
efficiency of DP relaxation increases simultaneously, leading
to the dominance of DP relaxation at room-temperature. DP
relaxation is essentially independent of the external magnetic
field for the field range investigated here, as cyclotron motion
and Larmor precession around the external magnetic field
lead only to a minute modification of the spin-relaxation
rate [see Fig. 7(e)]. Due to the different magnetic field
dependencies of spin relaxation of localized electrons and
DP relaxation, the ratio β = τs,0/τs,B of the experimental
spin-relaxation times τs,0 in zero magnetic field and τs,B in
a finite magnetic field Bext = 0.55 T can be used as a probe for
the importance of localization for spin relaxation [13]. For the
spin relaxation of localized electrons, β > 1 follows, while DP
relaxation corresponds to β = 1. The temperature dependence
of β shown in Fig. 7(f) illustrates the transition from spin
relaxation dominated by localized electrons to DP dominated
spin relaxation at room temperature.

Additional evidence for the important influence of localized
electrons on spin relaxation even up to room temperature
comes from the magnetic field dependent measurement of spin
relaxation shown in Fig. 8 for sample A1 where, similar to
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FIG. 8. Magnetic field dependence of the spin polarization in
Faraday configuration for sample A1 at a temperature of T = 293 K
and a time delay �t = 2.1 ns between pump and probe pulse. The
solid line shows a fit according to Eq. (34).

resonant spin amplification (RSA) measurements, the external
magnetic field is scanned for a fixed time delay �t between
pump and probe pulse. The external magnetic field Bz is
oriented perpendicular to the sample plane in this measurement
(Faraday configuration). The observed increase of spin polar-
ization for moderate external fields Bz is typical for localized
electrons subject to hyperfine-induced spin relaxation and can
be understood as a suppression of the fluctuating hyperfine
field by the external field, with the half width at half minimum
of the peak as a direct measure of the hyperfine field Bhf [90].
Approximating the dip by a Lorentzian [37,90]

AFar(Bext) = A0

[
1 − 2A1/3

1 + (Bz/Bhf)2

]
(34)

gives Bhf ≈ 57.7 mT. According to

τs = 2
√

3�/(gμBBhf) (35)

a spin dephasing time τs ≈ 0.35 ns follows [37], supporting the
assumption of a significant contribution of localized electrons
to the total spin relaxation up to room temperature. The
shorter spin-relaxation time of localized electrons at room
temperature as compared to low temperatures is expected,
particularly due to the stronger localization at deep defects
and phonon-induced dephasing [91]. We note that deep states
with strongly localized wave functions are well-known to be
present in β-GaN from PL measurements [57,92].

Finally, we discuss the magnetic field dependence of
the degenerately doped sample A7. For this sample, spin
relaxation is found to be almost independent of the magnetic
field over the whole temperature range [see Figs. 7(a)–7(c)
and 7(e)]. This flat magnetic field dependence with β ≈ 1
[cf. Fig. 7(f)] clearly demonstrates that DP relaxation is
dominating due to the degeneracy and the correspondingly
small degree of localization in this sample. This finding is in
complete agreement with the conclusion from the temperature
dependence in the previous section.

D. Doping density dependence of spin dynamics

The dependence of spin relaxation on the doping density
gives additional important information complementary to the
information from temperature or magnetic field dependent
measurements, for example on the dominating spin-relaxation
mechanism or on the leading contribution to DP relax-
ation [12,39]. Figure 9 shows the doping density dependence of
the spin-relaxation time for ten samples with doping densities
nD = 6 × 1016–1.5 × 1019 cm−3 at temperatures of 80 and
293 K, respectively. A nonmonotonic density dependence
of the spin-relaxation time is found at both temperatures,
with a maximum spin lifetime at an intermediate density of
1018 cm−3. In the following, we will show that the observed
density dependence can again be understood by the interplay
of spin relaxation of localized electrons and DP relaxation of
free electrons.

Generally, the doping density influences the spin dynamics
in a complex way, as it determines via the degree of localization
not only the relative importance of spin relaxation of localized
and delocalized electrons, respectively, but also the absolute
efficiency of spin-relaxation mechanisms in the two regimes.
We will therefore first discuss the doping density dependence
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of the different spin-relaxation mechanisms in more detail,
starting with the spin relaxation of localized electrons. For
small densities of localized electrons with correspondingly
large separations between neighboring electrons, the localized
electrons do not interact with each other and a density-
independent spin-relaxation rate γ HF

s according to Eq. (17)
results. A pronounced density dependence occurs, however, at
higher densities for electrons localized at donors, where ex-
change between the donor-bound electrons strongly increases
with doping density [34]. In this case, spin relaxation both due
to hyperfine interaction as well as due to anisotropic exchange
interaction depends on the correlation time τc [see Eqs. (18)
and (19)], which strongly decreases with doping density.

A nonmonotonic density dependence with maximum spin
lifetime at an intermediate density results, as spin relaxation
due to the hyperfine interaction slows down with increasing
density, while spin relaxation due to anisotropic exchange
speeds up with density [34,39]. To compare the predicted
density dependence to the experimental results, we calculate
the spin-relaxation rates γ HF,h

s due to hyperfine interaction
according to Eq. (18) and γ aex

s due to anisotropic exchange
according to Eq. (19). The correlation time τc is estimated
via [39]

τc ≈ �/ξJ (rc) , (36)

where the exchange constant J (r) is approximated in analogy
to hydrogenic systems by [39,93]

J (r) = 0.821EB

(
r

aB

)5/2

e(−2r/aB ) . (37)

The average characteristic distance rc between interacting
donors is assumed to be

rc = ζn
−1/3
D . (38)

The prefactor ζ is estimated either from the maxima of
distribution functions of the distance to the nearest neighbors
or from percolation theory [34]. The numerical factor ξ is of
the order of one. We use the values ζ = 0.65 and 0.8 following
from experimental data for GaAs at low temperatures [39]. The
mean-squared value of the angle of spin rotation ϕ in Eq. (19)
is numerically approximated by [39]

〈ϕ2(r)〉1/2 =
√

2γe

EBa3
B

[
0.323 + 0.436

(
r

ae

)
+ 0.014

(
r

ae

)2
]

(39)

with the modified Bohr radius ae defined as above and
the approximate binding energy EB = EB,H (m∗/m0)/(ε/ε0)2,
where EB,H is the Rydberg energy of an H atom. Figure 10
shows the corresponding simulated density dependence, where
spin relaxation is limited for small donor concentrations
by the relaxation of isolated electrons. The resulting total
spin-relaxation time shows indeed a nonmonotonic density
dependence. The predicted spin-relaxation times exceed, how-
ever, the experimentally found spin-relaxation times by almost
two orders of magnitude. In addition, the predicted density for
maximum spin lifetimes is smaller than the experimentally
observed density by a factor of 20. These findings clearly rule
out the density dependence due to donor-bound electrons as
an explanation for the observed density dependence of spin
relaxation.

Next, we will discuss the density dependence in the regime
of DP relaxation of delocalized electrons, where both the
magnitude of the effective magnetic field and the momentum
scattering time depend on the doping density. Generally,
two regimes of spin relaxation exist in the majority of
bulk III-V semiconductors, leading again to a nonmonotonic
density dependence with maximum spin-relaxation time at an
intermediate density [2,12]. The two regimes can conveniently
be characterized by the ratio of the lattice temperature T to
the Fermi temperature TF , where the Fermi temperature TF =
EF /kB is determined by the doping density nD via the Fermi
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FIG. 10. Simulated doping density dependence of the spin-
relaxation times of donor-bound electrons due to hyperfine interaction
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together with the resulting total spin-relaxation time (solid line) for a
value of the spin-splitting constant of γe = 2.5 eVÅ3. For comparison,
the spin-relaxation time due to anisotropic exchange is also shown
for γe = 0.84 eVÅ3.

energy EF = (3π2)2/3
�

2n
2/3
D /2m∗. For lattice temperatures

T 
 TF well exceeding the Fermi temperature, the electron
system is nondegenerate and the effective magnetic field
average is approximately independent of the doping density.
Usually, momentum scattering is dominated by ionized impu-
rity scattering and electron-electron scattering in bulk III-V
semiconductors, for which the momentum scattering time
decreases with doping density. Overall, the spin-relaxation
time then increases with density in the nondegenerate regime
for the majority of III-V semiconductors. In β-GaN, however,
momentum scattering is dominated by dislocation scattering,
which weakens for increasing doping density. The total
momentum scattering time is therefore expected to moderately
increase with doping density, leading to a slightly decreasing
spin-relaxation time in the nondegenerate regime. In the sec-
ond regime, where the Fermi temperature exceeds the lattice
temperature (TF 
 T ), the electron system is degenerate. The
effective magnetic field average rapidly grows with doping
density in this regime as higher k states get populated. The
momentum scattering time is, on the other hand, almost
constant in the degenerate regime, hence the spin-relaxation
time decreases with density in the degenerate regime. Overall,
a nonmonotonic density dependence is expected to result from
these two regimes with a maximum spin lifetime at a critical
density nD,c, for which the Fermi temperature TF (nD,c) ≈ T

is comparable to the lattice temperature T [2]. For β-GaN
with strong dislocation scattering, a transition from an almost
constant or slightly decreasing spin-relaxation time to the
pronounced decrease in the degenerate regime is expected at
the critical density nD,c.

Here, critical densities of nD,c = 1.5 × 1017 and 1.06 ×
1018 cm−3, respectively, correspond to the investigated tem-
peratures of T = 80 and 293 K. The experimentally ob-
served density dependence therefore clearly deviates from

the predicted DP density dependence for T = 80 K, as a
pronounced increase of the spin-relaxation time is found
in the nondegenerate regime and the density for maximum
spin lifetime in addition strongly deviates from the predicted
nD,c [see dashed line in Fig. 9(a)]. At T = 293 K, the
experimental density for maximum spin lifetime coincides
with the predicted critical density nD,c [see dashed line in
Fig. 9(b)], the pronounced increase of the spin-relaxation time
for nondegenerate densities does, however, not agree with the
expected density dependence for β-GaN.

Following the above discussion, the experimentally ob-
served density dependence can be understood neither by spin
relaxation of localized electrons nor by DP relaxation alone,
but only by the combined spin relaxation of localized and
delocalized electrons. For low densities nD � 1018 cm−3,
spin relaxation of electrons localized at deep states strongly
contributes to the total spin relaxation. Increasing density
leads to a stronger contribution from comparably weak DP
relaxation, resulting in an increase of the total spin-relaxation
time with density. For high densities, DP relaxation dominates
due to the small degree of localization and the strongly
increased efficiency of the DP mechanism. The spin-relaxation
time shows the corresponding drastic decrease with density
being typical for DP relaxation in the degenerate regime. The
comparison between the density dependence of the product
τsτ

deg
p,eff of the experimental spin-relaxation time τs and the

simulated effective momentum scattering time τ
deg
p,eff with the

inverse squared effective magnetic field average 1/〈�2
eff,deg〉

predicted by DP theory for degenerate electrons strongly
supports this interpretation, as good agreement is found for
samples A4, A5, and A7 for both temperatures of 80 and
293 K (see Fig. 11).
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effective magnetic field average 1/〈�2

eff,deg〉 predicted by DP theory
for different values of the spin-splitting constant γe.
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time at T = 80 K for sample A6 with 97.5% phase purity and sample
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spin-relaxation time at T = 80 and 293 K, respectively, for sample D
grown on GaAs substrate.

E. Influence of hexagonal phase content and substrate on the
spin dynamics

The investigated β-GaN epilayers possess a complex
microstructure which potentially has a strong influence on
the spin dynamics as discussed above. In the remaining, we
will briefly present additional measurements on the influence
of the phase mixture of cubic and hexagonal crystal phases
as well as of dislocations. First, the spin dynamics of the
degenerately doped samples A6 and A7 is compared. Both
samples have the same doping level and layer structure, but
different phase purities of 97.5% and 99.7%, respectively (see
Table IV). Figure 12(a) shows the magnetic field dependence
of spin relaxation for both samples at a temperature of
T = 80 K. The spin-relaxation time is almost independent of
the magnetic field for both samples, indicating the dominance
of DP relaxation as a consequence of degeneracy. Moreover,
the spin-relaxation times approximately agree for the two
samples. The almost identical spin dynamics in both samples
despite their substantially different phase purity suggests an
only marginal influence of the hexagonal phase. More in-depth
studies are, however, required for a conclusive statement on
the role of phase mixture for the dynamics of spin relaxation.

Finally, we investigate the possible influence of disloca-
tions. For this purpose, we study the spin dynamics in a
sample grown on GaAs substrate (sample D with a doping

density of nD = 8 × 1017 cm−3), as β-GaN epilayers grown
on GaAs substrates generally have higher dislocation densities
than comparable layers grown on 3C-SiC [73]. Figure 12(b)
shows the magnetic field dependence of spin relaxation for
sample D at temperatures of T = 80 and 293 K. The spin
dynamics differs in two aspects from the spin dynamics of
comparable samples on 3C-SiC, which were discussed before
(cf. Fig. 7). First, sample D shows an almost flat magnetic
field dependence already at T = 80 K, while the magnetic
field dependence flattens out only at 293 K in comparable
samples grown on SiC. Second, the spin-relaxation times are
shorter for sample D than for comparable samples on 3C-SiC.
Both these findings can be interpreted as more efficient DP
relaxation, which then starts to dominate spin relaxation
already at lower temperatures and additionally leads to shorter
spin-relaxation times. The strength of DP relaxation can be
estimated for sample D as its room-temperature mobility μD

e =
75 cm2/Vs has been determined by Hall measurements [51].
Our simulations reproduce μD

e for a dislocation density of
ndisl = 4 × 1010 cm−2, allowing us to further simulate the
corresponding weighted momentum scattering time (Qτp)total

according to Eq. (9) and to estimate the spin-splitting constant
γe = 6 eVÅ3 via Eqs. (7) and (8). Such a high value for
the spin-splitting constant indicates an important role of
dislocations for spin relaxation, which can, however, only
be clarified by a more thorough experimental and theoretical
study.

V. SUMMARY

Summarizing, we have experimentally investigated the
electron spin dynamics in cubic GaN for temperatures from
15 K up to 500 K, magnetic fields up to 1 T and doping
densities from 6 × 1016 cm−3 up to 1.5 × 1019 cm−3. We
observe a nonmonotonic temperature dependence and a
characteristic flattening of the magnetic field dependence of
spin relaxation for increasing temperature at moderate doping
levels. In contrast, the spin-relaxation time is independent of
temperature and magnetic field strength at degenerate doping
levels. In addition, spin relaxation shows a nonmonotonic
doping density dependence. All these findings are consistently
explained by the dominance of spin relaxation of localized
electrons up to moderate temperatures and doping levels, with
a transition to Dyakonov-Perel dominated spin relaxation for
higher temperatures and doping densities. Quantitative agree-
ment to predictions of Dyakonov-Perel theory requires the
assumption of a larger spin-splitting constant than theoretically
predicted. Possible sources for large effective spin splittings
have been discussed, including charged dislocations and a
phase mixture with hexagonal GaN.
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Cordier, A. D. Wieck, and D. Hägele, Phys. Rev. B 84, 153202
(2011).

[13] J. H. Buß, J. Rudolph, S. Shvarkov, H. Hardtdegen, A. D. Wieck,
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As, D. Schikora, and K. Lischka, Appl. Phys. Lett. 72, 1439
(1998).

[57] D. J. As, Proc. SPIE 7608, 76080G (2010).
[58] The oscillatory structures on the PL spectra are due to Fabry-

Perot interferences.
[59] J. De-Sheng, Y. Makita, K. Ploog, and H. J. Queisser, J. Appl.

Phys. 53, 999 (1982).
[60] M. W. Bayerl, M. S. Brandt, T. Graf, O. Ambacher, J. A.

Majewski, M. Stutzmann, D. J. As, and K. Lischka, Phys. Rev.
B 63, 165204 (2001).

235202-14

https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1103/PhysRevB.79.125206
https://doi.org/10.1103/PhysRevB.79.125206
https://doi.org/10.1103/PhysRevB.79.125206
https://doi.org/10.1103/PhysRevB.79.125206
https://doi.org/10.1103/PhysRevB.16.790
https://doi.org/10.1103/PhysRevB.16.790
https://doi.org/10.1103/PhysRevB.16.790
https://doi.org/10.1103/PhysRevB.16.790
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1063/1.1583145
https://doi.org/10.1063/1.1583145
https://doi.org/10.1063/1.1583145
https://doi.org/10.1063/1.1583145
https://doi.org/10.1016/j.spmi.2004.12.007
https://doi.org/10.1016/j.spmi.2004.12.007
https://doi.org/10.1016/j.spmi.2004.12.007
https://doi.org/10.1016/j.spmi.2004.12.007
https://doi.org/10.1063/1.3261755
https://doi.org/10.1063/1.3261755
https://doi.org/10.1063/1.3261755
https://doi.org/10.1063/1.3261755
https://doi.org/10.1103/PhysRevB.81.155216
https://doi.org/10.1103/PhysRevB.81.155216
https://doi.org/10.1103/PhysRevB.81.155216
https://doi.org/10.1103/PhysRevB.81.155216
https://doi.org/10.1103/PhysRevB.84.153202
https://doi.org/10.1103/PhysRevB.84.153202
https://doi.org/10.1103/PhysRevB.84.153202
https://doi.org/10.1103/PhysRevB.84.153202
https://doi.org/10.1063/1.4804558
https://doi.org/10.1063/1.4804558
https://doi.org/10.1063/1.4804558
https://doi.org/10.1063/1.4804558
https://doi.org/10.1063/1.4819767
https://doi.org/10.1063/1.4819767
https://doi.org/10.1063/1.4819767
https://doi.org/10.1063/1.4819767
https://doi.org/10.1002/pssb.201350185
https://doi.org/10.1002/pssb.201350185
https://doi.org/10.1002/pssb.201350185
https://doi.org/10.1002/pssb.201350185
https://doi.org/10.1063/1.1606873
https://doi.org/10.1063/1.1606873
https://doi.org/10.1063/1.1606873
https://doi.org/10.1063/1.1606873
https://doi.org/10.1103/PhysRevB.71.245312
https://doi.org/10.1103/PhysRevB.71.245312
https://doi.org/10.1103/PhysRevB.71.245312
https://doi.org/10.1103/PhysRevB.71.245312
https://doi.org/10.1063/1.4901108
https://doi.org/10.1063/1.4901108
https://doi.org/10.1063/1.4901108
https://doi.org/10.1063/1.4901108
https://doi.org/10.1063/1.3478838
https://doi.org/10.1063/1.3478838
https://doi.org/10.1063/1.3478838
https://doi.org/10.1063/1.3478838
https://doi.org/10.1103/PhysRevLett.93.147405
https://doi.org/10.1103/PhysRevLett.93.147405
https://doi.org/10.1103/PhysRevLett.93.147405
https://doi.org/10.1103/PhysRevLett.93.147405
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1007/11423256_20
https://doi.org/10.1007/11423256_20
https://doi.org/10.1007/11423256_20
https://doi.org/10.1007/11423256_20
https://doi.org/10.2478/v10155-010-0086-8
https://doi.org/10.2478/v10155-010-0086-8
https://doi.org/10.2478/v10155-010-0086-8
https://doi.org/10.2478/v10155-010-0086-8
https://doi.org/10.1063/1.2993344
https://doi.org/10.1063/1.2993344
https://doi.org/10.1063/1.2993344
https://doi.org/10.1063/1.2993344
https://doi.org/10.1103/PhysRevB.70.245203
https://doi.org/10.1103/PhysRevB.70.245203
https://doi.org/10.1103/PhysRevB.70.245203
https://doi.org/10.1103/PhysRevB.70.245203
https://doi.org/10.1063/1.3018600
https://doi.org/10.1063/1.3018600
https://doi.org/10.1063/1.3018600
https://doi.org/10.1063/1.3018600
https://doi.org/10.1016/j.ssc.2011.09.019
https://doi.org/10.1016/j.ssc.2011.09.019
https://doi.org/10.1016/j.ssc.2011.09.019
https://doi.org/10.1016/j.ssc.2011.09.019
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.85.121303
https://doi.org/10.1103/PhysRevB.85.121303
https://doi.org/10.1103/PhysRevB.85.121303
https://doi.org/10.1103/PhysRevB.85.121303
https://doi.org/10.1103/PhysRevB.64.075305
https://doi.org/10.1103/PhysRevB.64.075305
https://doi.org/10.1103/PhysRevB.64.075305
https://doi.org/10.1103/PhysRevB.64.075305
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1038/nphys537
https://doi.org/10.1038/nphys537
https://doi.org/10.1038/nphys537
https://doi.org/10.1038/nphys537
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRevB.66.035207
https://doi.org/10.1103/PhysRevB.66.035207
https://doi.org/10.1103/PhysRevB.66.035207
https://doi.org/10.1103/PhysRevB.66.035207
https://doi.org/10.1103/PhysRevB.66.233206
https://doi.org/10.1103/PhysRevB.66.233206
https://doi.org/10.1103/PhysRevB.66.233206
https://doi.org/10.1103/PhysRevB.66.233206
https://doi.org/10.1103/PhysRevB.24.3776
https://doi.org/10.1103/PhysRevB.24.3776
https://doi.org/10.1103/PhysRevB.24.3776
https://doi.org/10.1103/PhysRevB.24.3776
https://doi.org/10.1103/PhysRevB.70.113201
https://doi.org/10.1103/PhysRevB.70.113201
https://doi.org/10.1103/PhysRevB.70.113201
https://doi.org/10.1103/PhysRevB.70.113201
https://doi.org/10.4028/www.scientific.net/MSF.527-529.1489
https://doi.org/10.4028/www.scientific.net/MSF.527-529.1489
https://doi.org/10.4028/www.scientific.net/MSF.527-529.1489
https://doi.org/10.4028/www.scientific.net/MSF.527-529.1489
https://doi.org/10.1016/j.jcrysgro.2010.01.040
https://doi.org/10.1016/j.jcrysgro.2010.01.040
https://doi.org/10.1016/j.jcrysgro.2010.01.040
https://doi.org/10.1016/j.jcrysgro.2010.01.040
https://doi.org/10.1063/1.126136
https://doi.org/10.1063/1.126136
https://doi.org/10.1063/1.126136
https://doi.org/10.1063/1.126136
https://doi.org/10.1063/1.118521
https://doi.org/10.1063/1.118521
https://doi.org/10.1063/1.118521
https://doi.org/10.1063/1.118521
https://doi.org/10.1063/1.120588
https://doi.org/10.1063/1.120588
https://doi.org/10.1063/1.120588
https://doi.org/10.1063/1.120588
https://doi.org/10.1117/12.846846
https://doi.org/10.1117/12.846846
https://doi.org/10.1117/12.846846
https://doi.org/10.1117/12.846846
https://doi.org/10.1063/1.330581
https://doi.org/10.1063/1.330581
https://doi.org/10.1063/1.330581
https://doi.org/10.1063/1.330581
https://doi.org/10.1103/PhysRevB.63.165204
https://doi.org/10.1103/PhysRevB.63.165204
https://doi.org/10.1103/PhysRevB.63.165204
https://doi.org/10.1103/PhysRevB.63.165204


ELECTRON SPIN DYNAMICS IN CUBIC GaN PHYSICAL REVIEW B 94, 235202 (2016)

[61] J. H. Buß, T. Schupp, D. J. As, D. Hägele, and J. Rudolph,
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