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History 



2012 was the 100th Aniversery of X-ray Diffraction 
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• X-rays were discovered by Wilhelm Conrad Röntgen in 1895 

• In 1912, Paul Peter Ewald developed a formula to describe the passage of 

light waves through an ordered array of scattering atoms, based on the 

hypothesis that crystals were composed of a space-lattice-like construction 

of particles.  

• Maxwell von Laue realized that X-rays might be the correct wavelength to 

diffract from the proposed space lattice. 

• In June 1912, von Laue published the first diffraction pattern in Proceedings 

of the Royal Bavarian Academy of Science. 

The diffraction pattern of copper sulfate, published in 1912 



 

 

 

 

 

 

 

 

Basics 



Characteristic X-ray radiation 
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• Electrons from the filament strike the 
target anode, producing characteristic 
radiation via the photoelectric effect. 

 

• The electrons knock out electrons of 
an inner shell (K, L; M etc.), electrons 
of the outer shells drops down under 
submission of characteristic X-ray 
emission.   

 

• Fine structure of the atome shell, 
orbitals split into sublevels Ka1, Ka2;.. 

 

• The anode material (Cu, Mo, Au, …) 
determines the wavelengths of 
characteristic radiation.  

 

• While we would prefer a 
monochromatic source, the X-ray 
beam actually consists of several 
characteristic wavelengths of X rays. 



Bragg´s law for  diffraction 
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• For parallel planes of atoms, with a 
space dhkl between the planes, 
constructive interference only occurs 
when Bragg’s law is satisfied.  

– In our diffractometers, the X-ray 
wavelength l is fixed. 

– Consequently, a family of planes 
produces a diffraction peak only at a 
specific angle q. 

– The space between diffracting 
planes of atoms determines peak 
positions.  

 

• Additionally, the plane normal [hkl] 
must be parallel to the diffraction 
vector s 

– Plane normal [hkl]: the direction 
perpendicular to a plane of atoms 

– Diffraction vector s: the vector that 
bisects the angle between the incident 
and diffracted beam   

Bhkldn  sin2l
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Thank you for your attention 

The diffraction peak intensity is determined by the arrangement of atoms in the 

entire crystal 

• The structure factor Fhkl sums the result of scattering from all of the 
atoms in the unit cell to form a diffraction peak from the (hkl) planes of 
atoms 

• The amplitude of scattered light is determined by: 

– where the atoms are on the atomic planes  

• this is expressed by the fractional coordinates xj yj zj 

– what atoms are on the atomic planes  

• the scattering factor fj quantifies the efficiency of X-ray scattering at any 
angle by the group of electrons in each atom 

– The scattering factor is equal to the number of electrons around the atom at 0° θ, 
the drops off as θ increases 

• Nj is the fraction of every equivalent position that is occupied by atom j 
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X-ray beam path and goniometer motions 
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Figure 2. Illustration of the beam path and the different 

goniometer motions. 

M. Frentrup et al., J. Phys. D: Appl. Phys. 50 (2017) 433002 



X-ray equipment 



Generation of X-rays 
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• Sealed X-ray tubes tend to operate at 1.8 
to 3 kW.  

• Rotating anode X-ray tubes produce 
much more flux because they operate at 9 
to 18 kW.  

– A rotating anode spins the anode at 
6000 rpm, helping to distribute heat 
over a larger area and therefore 
allowing the tube to be run at higher 
power without melting the target. 

• Both sources generate X rays by 
striking the anode target with an 
electron beam from a tungsten 
filament. 

– The target must be water cooled. 

– The target and filament must be 
contained in a vacuum. 

• Exit window: Be 



PANalytical X´Pert Pro MPD 

8 

Optoelectronic

Materials & Devices

D.J. As Characterization Techniques of Solids 

Euler Cradle 



PANalytical X´Pert Pro MPD 
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Tube and programable slit 
Detection side 

Filter 



This image shows a 4-bounce Ge monochromator 
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• Each pair of diffracting crystals is 
channel-cut from a single piece of 
Ge 

– This prevents misorientation 
between the pair of crystals 

• Two sets of channel-cut crystals are 
used 

– The orientation between these 
two sets must be precisely 
aligned to get a usable X-ray 
beam 

• Slits are used to control the width of 
the beam entering the first channel-
cut crystal and to control the width 
in-between the two sets of channel-
cut crystals 

11 



Euler Cradle 
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Schematic drawing of a diffractometer 

O. Masson et al., Rev. Sci. Instrum. 76, 063912 (2005) 



Laue measurements 



Laue diffraction 
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Bhkldn  sin2l

 A stationary mounted crystal will 

be irradiated by a white X-ray 

beam. Since  and d are specified 

by the crystal orientation, one gets 

a stereografical projection of the 

(reciprocal) lattice plans at angles 

2 as points with equal nl/d. 

 Bragg condition 

The images are taken in transmission (forward scattering) for small crystals 

or in reflection (backward scattering) on X-ray films, luminescence folie, or 

X-ray image sensors. 

Since the crystal structure (d) is mostly known, Laue images are mainly 

used to determine the orientation () of the single crystal (e.g. substrate). 



Laue diffraction pattern 
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• Von Laue’s diffraction pattern supported two 

important hypotheses 

– X-rays were wavelike in nature and 

therefore were electromagnetic radiation 

– The space lattice of crystals 

 

• Bragg consequently used X-ray diffraction to 

solve the first crystal structure, which was the 

structure of NaCl published in June 1913. 

 

• Single crystals produce “spot” patterns similar 

to that shown to the right.   

 

• However, powder diffraction patterns look quite 

different.   

The second diffraction pattern 

published was of ZnS.  

Because this is a higher 

symmetry material, the pattern 

was less complicated and 

easier to analyze 



Laue image of wurtzit ALN in c-direction 
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Typically angle sections of       

-30° <  < 30° are recorded in 

respect to the incident beam. 

15 



Laue image of wurtzit ALN in m-, a-direction and 14° off-oriented 
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)/arctan(2/1 DLx 

Determination of the off-orientation x to the plane 

L = distance on the film 

D = distance film – crystal 

14° off orientied in relation to the c-

axes in the direction to the a-axes 

(and crystal is rotated by 45°) 



Laue images of cubic zincblende structure 
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4-fold mirror 3-fold 

space group F 
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Powder diffraction 



Powder diffraction 
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• The detector moves in a circle around the 

sample 

– The detector position is recorded as the 

angle 2theta (w-2θ) 

– The detector records the number of X-

rays observed at each angle 2θ 

– The X-ray intensity is usually recorded 

as “counts” or as “counts per second” 

 

• Many powder diffractometers use the Bragg-

Brentano parafocusing geometry 

– To keep the X-ray beam properly 

focused, the incident angle omega 

changes in conjunction with 2theta 

– This can be accomplished by rotating 

the sample or by rotating the X-ray tube.   
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An X-ray powder diffraction pattern is a plot of the intensity of X-rays 

scattered at different angles by a sample  
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Powder diffraction 
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In an ideal  powder all crystal orientations are equally distributed 

Comparision with standard measurements („PDF-Files“) 

Identification of foreign phases  

(diffraction at angles  different to that the main crystal) 



Diffractometry of thin layers 
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Pole figures 



Texture mapping 
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Diagram explaining the measurement geometry to map a 

texture in reciprocal space and its projection onto a 2D map. 
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Ni single crystal pole figure  
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(a) Schematic representation of a Ni single 

crystal pole figure at d = 2.03 Å.  

 

 

 

 

 

(b) Reciprocal space representation of the Ni 

reciprocal lattice and pole figure (red half 

sphere) in three dimensions. 
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Preferred Orientation (texture) 
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• Preferred orientation of crystallites can create a systematic variation in diffraction 

peak intensities 

– can qualitatively analyze using a 1D diffraction pattern by looking at how 

observed peak intensities deviate systematically from the ideal 

– a pole figure maps the intensity of a single peak as a function of tilt and rotation 

of the sample 

• this can be used to quantify the texture 
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Pole figures for different wurtzite and zincblende reflections of GaN grown on 

(0 0 1) zb oriented 3C-SiC/Si-templates (a)–(c). The diagram illustrates the 

crystallographic arrangement of both phases. 
24 



High resolution XRD 



Motivation 
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HRXRD can measure: 

• Structural Information 

– Composition 

– Thickness 

– Superlattice period 

• Defects 

– Mismatch 

– Relaxation 

– Misorientation 

– Dislocation Density 

– Mosaic Spread 

– Curvature 

– Inhomogeneity 

– Surface Damage 

 

 

XRR can measure: 

• Thickness 

• Surface and Interface Roughness 

• Density or composition of the 

topmost layer 

 

HRXRD and XRR are both used to study thin films and benefit from the same 

optics, so we often consider them together 

25 
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Various scan types 



Diffractometer 
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Schematic plot of the of the Philips X´pert material research diffractometer 

consisting of the X-ray tube, hybrid monochromator, euler cradle and detector. 
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Reciprocal space 
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Scattering vectors Q 
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Scattering vector Q:  
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w-2 scans 



SiGe on Si 
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A typical diffraction spectrum of a symmetric „single scans“ of an  SiGe-epilayer on Si. 



HRXRD of Si/SiGe superlattice deposited on (001) Si  
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w-2 scan 

experimental 

simulation 



(002) w2q scan from MQWs 
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Rocking curve 

(w-scan) 



A rocking curve (w-scan) produces observed intensity from planes that are not perfectly parallel 
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Rocking curve 

• Defects like mosaicity, dislocations, and curvature create 

disruptions in the perfect parallelism of atomic planes 

– This is observed as broadening of the rocking curve 

– The center of the rocking curve is determined by the d-

spacing of the peaks 

• In a rocking curve, the detector is set at a specific Bragg angle and the sample is tilted.  

• A perfect crystal will produce a very sharp peak, observed only when the crystal is properly tilted so that 

the crystallographic direction is parallel to the diffraction vector s 

– The RC from a perfect crystal will have some width due to instrument broadening and the 

intrensic width of the crystal material 
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Linewidth dependence of cubic GaN epilayers vs film thickness 
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M. Frentrup et al., J. Phys. D: Appl. Phys. 50 (2017) 433002 

Decrease of the XRD ω-linewidth (FWHM) with increasing film thickness for oriented 

zincblende GaN grown on relevant substrates 3C-SiC, GaAs, MgO, and Si. 

Reduction in the defect density and an improvement in the material quality for 

thicker epitaxial films 
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Bowing of 3C-SiC wafer 
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Wafer curvation k: 

M. Frentrup et al., J. Phys. D: Appl. Phys. 50 (2017) 433002 
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Reciprocal Space Mapping 

(RSM) 



Reciprocal space Map 
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RSM of cubic GaN with and without hexagonal Inclusions 
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hex. inclusions 
SF … stacking faults 

DS … detector streaks 

CTR .. Crystal truncation rod 

BR … Bragg ring (from polycrystaline SiC)  



k-space map 
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Glazing incident XRD (GIXRD) 

X-ray Reflection (XRR) 



Diffractometry of thin layers 
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Investigations of thin films with grazing incidence XRD 

X-rays hit the lattice planes at the surface layer 

Angle of incidence typically < 4°, but larger than angle of total reflection 

 X-ray will be absorbed in the surface layer. 

Angle smaller than angle of total reflection 

 diffraction of the evanescente wave (only a few surface monolayers) 
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X-ray reflection  
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Film thickness d: Roughness r: 

Constriction of 

interferences 

Increasing 

roughness 

Edge of total reflection 

<-> density 

WOx – layer 

Density thickness roughness 
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What techniques can be used to get which film information 
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Thickness Composition Lattice Strain/ 

Relaxation 

Defects Orientation Residual 

Stress 

Crystallite 

Size 

Perfect Epitaxy XRR, 

HRXRD 

HRXRD, RC Assume 100% Assume 

none 

HRXRD -- -- 

Nearly perfect 

epitaxy 

XRR, 

HRXRD 

HRXRD, RC HRXRD RC HRXRD -- -- 

Textured 

epitaxial* 

XRR, 

HRXRD 

HRXRD HRXRD, IP-

GIXD 

RC HRXRD -- -- 

Strongly textured 

polycrystalline 

XRR XRPD, IP-

GIXD 

IP-GIXD XRPD, 

IP-GIXD 

IP-GIXD, 

PF 

IP-GIXD XRPD, IP-

GIXD 

Textured 

polycrystalline 

XRR XRPD, 

GIXD or IP-

GIXD 

-- XRPD, 

GIXD OR 

IP-GIXD 

PF Psi XRPD, 

GIXD 

Polycrystalline XRR XRPD, 

GIXD 

-- XRPD, 

GIXD 

PF Psi XRPD, 

GIXD 

Amorphous XRR -- -- -- -- -- -- 

XRR- X-Ray Reflectivity 

HRXRD- High Resolution XRD using  

coupled scan or RSM 

RC- Rocking Curve 

XRPD- Bragg-Brentano powder diffraction 

GIXD- grazing incidence XRD 

IP-GIXD- in-plane grazing incidence XRD 

PF- pole figure 

Psi- sin2psi using parellel beam 
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