

			Leistungs	verglei	ch		:	
		Auflösung		Vergrößerung		Schä	rfentiefe	
Lichtmikroskop		50	00 nm	6– 100 x		bei '	bei 100x 2-3 µm	
Rasterelektronen- mikroskop		10 nm		20 – 20000x		300 als L	300 mal besser als Lichtmikroskop	
Transmissions- elektronenmikroskop		0.5-0.2 nm		50 - 50000x		begr Schi	begrenzt durch Schichtdicke	
				Ruhebild-EM		1		
	Transmission		TEM		STEM			
	Rückstreuu	uung Reflexionsm		ikroskop REM (engl.		SEM)		
apl.Prof. Dr. D.J.	As							

apl.Prof. Dr. D.J. As

Betriebsart des REM						13	
Tabelle 1.1.B	etriebsarten des Raster-Elektrone Zugrundeliegender physikalischer Effekt	Information	Auflösungs- grenze	Potential- kontrast	Beeinflussung des SE-Signals durch das Probenpotential und der SE-Bahnen durch die Proben-Kollektor-Geometris	Abb. elektr. Poten- tiale in Form von Helligkeitsinderungen. Funktionstest bei integrierten Halb- leiterschaltungen. Piezoelektrika Ferroelektrika	1–10 µт 0,1–0,01 V
elektronen- (SE)-Bild	von der Flächenneigung Materialabhängigkeit	topographie	(20) 30-200 X	Magnetischer Kontrast	Ablenkung der SE durch magnetische Streufelder an der	Abb. des magnetischen Streufeldes in Form	1–10 µm ∫Bds =
Rückstreu- elektronen- (RE)-Bild	Abhängigkeit des Rückstreu- koeff. von der Flächenneigung Stärkere Schatteneffekte als im	Oberflächen- topographie	0,1–1 μm stärkeres Rauschen bei	Тур I	Oberfläche	von Helligkeitsände- rungen (Tonbänder, Ferromagnetika)	10 ⁻⁸ Vs n
	SE-Bild Erhöhte Rückstreuung an Kanten		hohen Vergr.	Typ II	Beeinflussung der RE-Bahnen im Innern der Probe	Abb. der Magne- tisierung in Ferro-	1–10 µm
Materialabhängigkeit Eindringtiefe ≃ ½ Reichweite Energiefilterung "Low-Loss electrons"	Materialkontrast Tiefeninformation Höhere Auf- lösung	0,1–1 μm 1 μm 20 Å–0,1 μm	Elektro- motorische Kraft (EMK)	Auftreten einer EMK bei der Bestrahlung von pn-Übergängen	Abb. von pn-Über- gingen (auch unter- halb von Aufdampf-	0,1 µm	
Probenstrom- bild	Veränderungen des Proben- stromes durch Variation der SE-Ausbeute und des Rückstreukoeffizienten	Oberflächen- topographie Materialkontrast	0,1–1 µm			u. Oxidschichten) Breite des Überganges Messung von Halbleiterkonstanten	
Channelling- Diagramme Abhängigkeit des Rück und der SE-Ausbeute v Kristallorientierung zu einfallenden Strahl	Abhängigkeit des Rückstreukoeff. und der SE-Ausbeute von der Kristallorientierung zum	Kristallstruktur- analyse und Orientierungsbest, Kristallschäden in dünnen Oberfl Schichten	1-10 μm Winkelaufl. einige 10 ⁻⁴ rad Tiefe: einige 100 Å		Reichweite der Elektronen	Tiefe der pn-Über- gänge und Dicke der Aufdampfschichten	
	einfallenden Strahl				Rekombination der Minoritäts- träger an Gitterfehlern	Abb. von Ver- setzungen	
SE- und RE- Bild		Kristall- orientierungs- kontrast	500-1 000 Å		Lawinendurchbruch an Fehlern in pn-Übergängen	Lokalisation der Mikroplasmen	
					Potentialdifferenzen bei Be- nutzung des Elektronenstrahles als Sonde	Widerstandinhomo- genitäten, Messung von Diffusionslängen	
apl.Pro	of. Dr. D.J. As						

Kathodo- fuminesseer Emission voo Lichtquanten (Infrarot bis UV) durch Elektroomberduß Leuchtverteilung in Photphoren und Habbiters, Florers- zenzeikrookopie an biol.Objekten (E. B. Dianschnitter), Lokale Messung des Sinsitionsspektrung Information Auflösung greaze Ringen- mikrosanalyog Emission voo Lichtquanten Elektroomberduß Umagenetic (SOO Å) ana Elementanalyse Traasmis- tionsbid (SOO Å) ana Elementanalyse (SOO Å) ana Elementanalyse Materialadifferen- zierung Materialadif			Betrie	bsart o	des RE	MII		14		
Biol. Opickfin (E. P., Definishoningskrung Pressmin- ionabilid Ab. der Winkelverstning tran- mitteriert Eitheritones von Schichtdicke und Material 2-100.Å Ringen- mitrosanalyse Emissionspektrung Qualitative und simul- tase Elementanalyse- ionersteiling, Achtven initi energie- der Probe (500.Å) tase Elementanalyse- ider Probe Materialdificere- sitering Materialdificere- sitering Materialdificere- sitering 2-100.Å Ringen- projektions- der velkelingerigeriverikalise der Probe Qualitative und simul- der Probe (500.Å) tase Elementanalyse- der Probe (500.Å) tase Elementanalyse- der Probe Materialdificere- sitering Materialdificere- sitering Materialdificere- sitering Materialdificere- sitering Materialdificere- sitering Historial Materialshefticere- sitering Historial Materialshefticere- sitering Historial Materialshefticere- sitering Historial Materialshefticere- sitering Historial Materialshefticere- sitering 2-5.Å Ringen- projektion Spuremanalyse (Mataniteri Rosel- gramme Spuremanalyse Ristallitruktur- und Orieptierungsbest. 10 µm Niaroislobe Mitro- schreiber Klausische Bioktoolen, Budon Orieptierungsbest. Orieptierungsbest.	Kathodo- lumineszenz	Emission von Lichtquanten (Infrarot bis UV) durch Elektronenbeschuß	Leuchtverteilung in Phosphoren und Halbleitern, Fluores- zenzmikroskopie an	1–10µm	Betriebsart	Zugrundeliegender physikalischer Effekt	Information	Auflösungs grenze		
Rintger- mitroanalyse Emission der charakteristischen Strahlung, Nachweis mit energie- die reisen in der keinergie- die Probe Qualitative und simul- tane Elementanalyse- Elementanalyse- der Probe (500 Å) tane Elementanalyse- Elementanalyse- der Probe Materialdifferer- zierung Materialdifferer- zierung Rintger- projektions- der Vergrückerte Abb. projektions- der Orjekter der Probe Inneastruktur biol. unetalogr. Proben 0,5-1 µm biol. unetalogr. Proben Höchstaußerung Höchstaußerung 2-5 Å Rintger- mikroakopie Vergrückerte Abb. Schattenprojektion Inneastruktur biol. unetalogr. Proben 0,5-1 µm biol. unetalogr. Proben Inneastruktur biol. unetalogr. Proben 0,5-1 µm biol. unetalogr. Proben Höchstaußerung. Biologr. Gitterfehler Abb. kristalliner Objekter Gitterfehler Objekter Gitterfehler Objekter Gitterfehler Interalsche Bicktroambeugung. Gitterfehler Höchstaußerung. Gitterfehler Höchstaußerung. Gitterfehler Objekter Gitterfehler Objekter Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Höchstaußerung. Gitterfehler Objekter Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Höchstaußerung. Gitterfehler Objekter Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Interalsche Bicktoroambeugung. Gitterfehler Interalsche Bicktoroambeugung. Gitterfeh			biol. Objekten (z. B. Dünnschnitten), Lokale Messung des Emissionsspektrums		Transmis- sionsbild	Abh. der Winkelverteilung trans- mittierter Elektronen von Schichtdicke und Material	Massendickever- teilung in der Schicht	2–100 Å		
Object en Hindlagening (Kristalhooschromator) Juneatrikturgen der Probe Pieldemisiosaksthode, Ultra- hochvakuum, Strahldurch- Signalvaratöreitung HochstaußGoung 2-5 Å Rönzen- Brotzenen Vergröderte Abb, ed Objekte durch mitroskopie Inneatriktur biol.u.mstillogr. Proben 0,5-1 µm Hochvakuum, Signalvaratöreitung HochstaußGoung 2-5 Å Rönzen- Brotzenen Inneatriktur ed Objekte durch mitroskopie Inneatriktur biol.u.mstillogr. Proben 0,5-1 µm Hochvakuum, Signalvaratöreitung Abb. kristalliner, Objekte - Gitterföller </td <td>Röntgen Emission der charakteristischen mikroanalyse Strahlung, Nachweis mit energie- dispersiven Halbleiterdetektoren</td> <td>Qualitative und simul- tage Elementanalyse-</td> <td>(500 Å) 0,1-1 μm</td> <td></td> <td>Materialabhängigkeit der Energieverluste</td> <td>Materialdifferen- zierung</td> <td></td>	Röntgen Emission der charakteristischen mikroanalyse Strahlung, Nachweis mit energie- dispersiven Halbleiterdetektoren	Qualitative und simul- tage Elementanalyse-	(500 Å) 0,1-1 μm		Materialabhängigkeit der Energieverluste	Materialdifferen- zierung				
Renzem- projections- mikroskopie Vergrößerte Abb. de Objekte durch Schattenprojektion Inneaturktur biol u. metallogr. Proben 0,5-1 µm Rönzem- mikroskopie Losiation durch Rönzem- Rönzeme Kossi- Diagramme Spuremanlyse (Kitsuklizerange) ca.0.5-1 mm Rönzem- Rönzem- Rönzem- Rönzem- Rönzem- Rönzem- Bigramme Spuremanlyse (Kitsuklizerange) ca.0.5-1 mm Rönzem-		oder wellenlängendispersiv (Kristallmonochromator)	der Probe			Feldemissionskathode, Ultra- hochvakuum, Strahldurch- messer einige Å, elektronische Signalverarheitung	Höchstauflösung	2-5Å		
Röngam- fluorezzena fluorezzena fluorezzena Röngen- kosal- Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal- Cosal Diagramme Kosal- Cosal Diagramme Kosal- Cosal D	Röntgen- projektions- mikroskopie	Vergrößerte Abb. des Objektes durch Schattenprojektion	Innenstruktur biol. u. metallogr. Proben	0,5–1 µm		Elektronenbeugung	Abb. kristalliner Objekte u. Gitterfehler			
Rentgen- Diagramme Erzeugung eines Bieugungsbia- grammes mit Konsel-Linice (Auftachne mit Film in Rickstreuung) Kristalläuruktur- und Orieptierungabest. 10 µm Im konvergenien Biddel Sekundär- Ionenbeschopie Sittmän Zamense mit Konvergenien Biddel Mikro- sierung integrierer Halbleiterschaltungen 10 µm Auger- Bigkringung Zamenbesik Konsel- insennassen (Onenbeschuß Elementanalyse 20-100 µm Auger- Bigkringung Zamenbesik Konsel- (Ultrahodovakuum) Tiefe: (Ultrahodovakuum) 20-100 µm Auger- Bigkringung Materialanalyse (Ultrahodovakuum) Tiefe: 2-10Å Nanostrukturierung Verschliebung des Auger-Peaks durch Probespotentials Lokale Messung des Probespotentials 0.1 µm	Röntgen- fluoreszenz	Ionisation durch Röntgenquanten	Spurenanalyse	ca.0,5-1 mm	Beugung in Transmission	Klassische Elektronenbeugungs- diagramme in dicken Schichten (Kikuchi-Diagramme), Beugung	Kristallstruktur- und Orientierungsbest.			
Sekundär- ionernassen (STMS) Zerstäubung durch Ionern beschuß Elementanaliyse 20-100 µm Auger- eisktronsen eisem Spektronsenerer Materialanalyse (Ultrahochvakuum) 20-100 µm Verschlebung des Auger-Peaks durch Probespotentials Materialanalyse (Ultrahochvakuum) Tiefe: 2-10Å Verschlebung des Auger-Peaks durch Probespotentials Lokale Messung des Probespotentials 0.1 µm	Röntgen- Kossel- Diagramme	Erzeugung eines Beugungsdia- grammes mit Kossel-Linien (Aufnahme mit Film in Rückstreuung)	Kristallstruktur- und Orientierungsbest.	10 µm	Mikro- schreiber	im konvergenten Bündel Vernetzung von Photolack durch Elektronenbeschuß	u.a. Mikrominiaturi- sierung integrierter Halbleiterschaltungen	0,1-t µm		
Auger- Registrierung der Augereick- troosen (Vor-1000+V) mit Verschiebung des Auger-Peaks durch Probespotentials Materialanalyse (Ultrahodivekuum) Lokale Messung des Probespotentials Tiefe: 2-10Å Lokale Messung des Probespotentials Lokale Messung des Lokale Messung des Probespotentials Lokale Messung des Lokale Messung des	Sekundär- ionenmassen spektroskopie (SIMS)	Zerstäubung durch Ionen beschuß	Elementanalyse	20-100 µm						
Auger- Registrierung der Auger-ele- dektronem, torone (100-1000 V) mit einem Spektrometer Verschiebung des Auger-Peaks durch Probenpotentiale Lokale Messurg des Probenpotentials Tele: 2-10Å Nanostrukturierung Z.B. von Photonischen Kristaller					Elektronen-Strahl Lithographie:					
Verschiebung des Augez-Peaks durch Probespotentiale Probespotentials Z.B. von Photonischen Kristaller	Auger- elektronen	Registrierung der Augerelek- tronen (100–1000 eV) mit einem Spektrometer	Materialanalyse . (Ultrahochvakuum)	Tiefe: 2–10 Å	Nanostrukturierung					
		Verschiebung des Auger-Peaks durch Probenpotentiale	Lokale Messung des Probenpotentials	0,1 µm		z.B. von Pho	tonischen Kri	staller		
	apl.Pro	f. Dr. D.J. As								

TEM - Transmissionselektronenmikroskop

Beim Transmissionselektronenmikroskop (TEM) durchstrahlen die Elektronen das Probenmaterial, das zu diesem Zweck entsprechend dünn sein muss. Je nach Ordnungszahl der Atome, aus denen die Probe besteht, der Höhe der Beschleunigungsspannung und der gewünschten Auflösung kann die sinnvolle Probendicke von wenigen Nanometern bis zu einigen Mikrometern reichen. Je höher die Ordnungszahl und je niedriger die V_B sind, desto dünner die Probe sein. Wird der Primärelektronenstrahl über die Probe gerastert, und die

23

durchgelassenen Elektronen detektiert und einem Punkt auf der Probenoberfläche zugeordnet, so bezeichnet man dieses Verfahren als Raster-Transmissionselektronenmikroskopie (STEM vom engl. Scanning Transmission Electron Microscope).

Durch eine Änderung des Projektiv-Linsensystems kann anstatt des Zwischenbildes auch die Fokusebene der Objektiv-Linse vergrößert abgebildet werden (siehe Abbildung). Man erhält so wie beim EBSD-Verfahren im REM ein Elektronenbeugungsbild mit dessen Hilfe sich die Kristallstruktur der Probe bestimmen lässt.

Das Transmissionselektronenmikroskop kann sinnvoll mit verschiedenen Analysemethoden erweitert werden, besonders verbreitet sind EDX sowie Elektronen-Energieverlust-Spektroskopie (EELS). Beide Verfahren können zur Bestimmung der Konzentration und Verteilung chemischer Elemente in der Probe benutzt werden. Man spricht beim Einsatz dieser Methoden oft von analytischer Transmissionselektronenmikroskopie.

apl.Prof. Dr. D.J. As

