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Abstract 

Calculus in two dimensions leads to two different types of integrals: 
Riemann integrals of exact differential forms (df) are path independent, 

fixed, “clay”. Stokes integrals of not exact forms (δf) are path dependent, 
flexible, “putty”. Productive and financial cycles may be represented by 
Stokes integrals. The resulting differential equations may be regarded as the 

basic laws of economics: The first law: δ Y = d K – δ P relates income (δ Y) 

to capital (d K) and production (δ P). The second law, δ Y = λ d F, replaces 

the Solow model: Y ≠ F(K, N). Putty cannot be equal to clay, putty income 

(δY) is only proportional to the clay production function (dF). The function 
(F) may be interpreted as the entropy of the economic system and replaces 
the Cobb Douglas function of neoclassical theory. 

Introduction 

Econophysics is a relatively new field on the exchange of methods between 
natural and socio-economic sciences [1-3]. A recent overview has been 
given by Yakovenko and Rosser [4]. The present paper is focussed on the 
mathematical background of putty and clay functions. The terms putty and 
clay have been introduced to economics by Johansen [5] in 1959, and have 
been discussed in the literature [6, 7]. Putty functions are unpredictable, 
they are flexible “ex ante” and fixed “ex post”. Examples are company 
profits or income (Y): in the beginning of the year (ex ante) profits are 
flexible, they may be estimated, but not predicted. At the end of the year (ex 
post) profits or income are fixed. Clay functions are predictable, they are 
fixed “ex ante” and “ex post”. One example is the production function 
F(K,N), which may be regarded as a production recipe. Companies need to 
calculate the fixed production output (ex ante), before they invest in capital 
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(K) and labor (N). This fixed value must be the same after production (ex 
post). Production and economic growth are generally treated by neoclassical 
theory [8 – 10]. In the present paper production and economic growth are 
based on two dimensional calculus as they depend on the two parameters or 
production factors, capital (K) and labor (N). Section 1 introduces Riemann 
and Stokes integrals and the notations putty and clay in two dimensional 
calculus. In section 2 monetary and production circuits are shown to be 
examples of putty Stokes integrals. The resulting differential laws are 
presented in section 3 as the first and second law of macro-economics. In 
section 4 entropy is introduced as the new production function of economic 
systems. Section 5 compares the entropy based Lagrange function of 
econophysics to the Lagrange function used in economic applications. In 
section 6 we come to the conclusion that entropy as the new production 
function replaces the Cobb Douglas function and questions many results 
that have been obtained so far from the Solow model of neoclassical theory. 

1 Putty and clay in two dimensional calculus  

1.1 Exact differential forms  

In two dimensional space (x, y) the exact differential form d f  of a function 
f(x, y) is generally marked by a “d” and is given by [11,12]  

   d f (x, y)  =  (∂ f / ∂ x ) d x + (∂ f / ∂ y)  d y      

          =     a ( x, y)  d x  +  b ( x, y)   d y     (1.1) 

 The mixed second derivatives of  “d f”  will always be equal,  

      ∂ 2 f / ∂ y ∂ x   = ∂ b / ∂ x  =   ∂ a / ∂ y    =   ∂ 2 f / ∂ x ∂ y  (1.2).  

1.2. Riemann integral of exact or clay differential forms  

Integrals of exact differential forms are called Riemann integrals, they 
depend on the integral limits A and B, but not on the path (u) of integration,  

    ∫=

u

yxdfyxf ),(),(             (1.3).  

d f may be called a “clay” differential form, it may be integrated without 
knowing the path of integration in advance, since the stem function f (x, y) 
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is independent  of the path. The closed Riemann integral along a closed path 
in the x – y plane will always be zero,  

   0),(∫ =yxdf                (1.4). 

1.3. Not exact differential forms  

Differential forms in two dimensions are generally not exact. A not exact 

differential form δ g,  

    δ g (x, y) =  a ( x, y) d x +  b ( x, y) d y       (1.5) 

is marked by a “δ”. The mixed derivatives of δ g will not be equal,  

        ∂ b / ∂ x   ≠  ∂ a / ∂ y  ≠  ∂ 2 f / ∂ x ∂ y      (1.6). 

1.4. Stokes integral of not exact or putty differential forms  

Integrals of not exact forms in two dimensions are called Stokes integrals, 
they depend on the integral limits A , B and on the path (u) of integration,  

     ∫=

u

u yxgyxg ),(),( δ            (1.7).  

The differential δ g may be called a “putty” differential form, it may only be 
integrated, after the specific path is known. A stem function g ( x, y) does 
not exist, only functions g u ( x, y), which are different for each path (u).  

 The closed integral of δ g along a closed line in the x – y plane is never 
zero,  

       0),( ≠∫ yxgδ               (1.8). 

The closed integral may be divided into two open integrals, from A = 
(x 0, y 0) to B = (x 1, y 1) and back from B to A:  
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The integrals along a closed line in the x – y plane will not cancel. 
They have the same limits, but the path (u) is different. 
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1.5. Integrating factor  

A not exact putty form in two dimensions, δ g (x, y)  may be turned into an 

exact clay form  d f (x, y)  by an integrating factor λ, 

   d f (x, y)    =    (1 / λ ) δ g (x, y)          (1.10) 

In two dimensions the function f (x, y) and the integrating factor λ (x, y) 
always exist.  
 In the following sections calculus of putty and clay differential forms will 
now be applied to economics. 

2  Economic Circuits  

2.1  The natural production circuit by Quesnay 

One of the first economists, the French medical doctor Françoise Quesnay 
(1694 – 1774) was inspired by the human blood circuit and looked at natural 
production not as a continuous process, but as a production circuit: Every 
day workers from households go to work in the fields, the capital of the 
village, and bring back home consumption goods from the fields. 
 Consumption goods are the reward for labor in the fields. The labor 
invested in the fields is directly related to the output of produce: a hard 
worker will pick many apples, less hard work leads to fewer apples. Work 
and consumption goods are part of the same production circuit and can be 
measured in units of energy per circuit, in Joules or kWh. The circuit or 
number of cycles is dimensionless.  

2.2  Modern production and monetary circuits  

Macro-econophysics is based on Quesnay´s cyclic approach and regards the 
closed production circuits as Stokes integrals of work or production (δ P),  

       ∫ ≠∆= 0uPPδ            (2.1).  

The closed cycle, the Stokes integral of production is an “ex post” process, 
as the production output ∆P u is not zero. 
 In modern production the output is not the reward of labor input. There is 
a second cycle, a monetary or financial circuit. Industry pays wages (Y H) 
for labor to households, and households pay consumption costs (C H) for 

goods to industry. A second monetary or financial circuit (δ Y) measures the 
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production circuit (δ P) – not in units of energy per cycle, but in monetary 
units per cycle, like US $, €, British £ or Japanese ¥. 

1. The equivalence of monetary circuit (δ Y) and production circuit (δ P) in 
may be expressed by the closed Stokes integrals  

       0≠−=∫ ∫ PY δδ           (2.2). 

The negative sign of the Stokes integral of (δ P) indicates the opposite 

direction of the circuits (δ Y) and (δ P).  
2. The equivalence of production and monetary circuits corresponds to 

equilibrium of supplies of producers (δ P) and demand of buyers, who pay 

the agreed amount of money (δ Y).  
3. The cycle length is generally part of a contract between the parties.  
4. Surplus (S u) may be positive or negative. Positive surplus or profits are 
due to productive forces, negative surplus or losses are due to frictional 
forces.  

5. The equivalence of monetary (δ Y) and production circuit (δ P) in 
Eq.(2.2) are the basis for all macro econophysical calculations. 

2.3  Modern monetary circuits  

1. The value of the Stokes integral of the monetary circuit is called profit or 
surplus (S u), the index “u” stands for a specific production path or process. 

       
uSY ±=∫δ              (2.3).  

2. The closed Stokes integral (2.3) may be split into two parts,  

      uuu

B

A

A

B

SCYYYY =−=+=∫ ∫ ∫δδδ      (2.4). 

Income and costs are defined by open integrals, where the limits of 
integration are A (donor) and B (receiver). 

           ∫=

B

A

u YY δ              (2.5). 

             ∫=−

A

B

u YC δ              (2.6).  

Income, costs and surplus are “putty” functions, they are path dependent and 
cannot be calculated until the money is paid.  
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3  Differential laws of economics  

3.1 First law of economics  

1. The equivalence of monetary (δ Y) and productive (δ P) circuits in 
Eq.(2.2)  is expressed by Stokes integrals. The law of equivalence may also 
be given in differential forms:  

      δ Y  =  d K − δ P            (3.1). 

Eq.(3.1) is the balance of economic systems and states a well known fact: 

Profits (δ Y) depend on capital (d K) and labor or work (δ P). 

Income and profit (δ Y) are generated by production (δ P). The negative 

sign of (δ P) indicates that labor has to be invested in order to make profits. 
Eq.(3.1) is a basic differential law of economics. 
2. In addition we obtain an “ex ante” differential form (d K), as the closed 
integral of an exact form (d K) is zero, Eq.(1.4). 

 Income (δ Y) and labor (δ P) are measured in monetary units. This must 
also be true for (d K): the function (K) represents capital, the only monetary 
variable, that has not been discussed in econophysics, so far. The exact 
differential form of capital (d K) drops out of the Stokes integral (2.2), this 

means: Income is generated by labor (δ P), capital cannot generate capital: 
“It was not by gold or by silver, but by labour, that all the wealth of the 

world was originally purchased.” (Adam Smith, wealth of nations I.6.11). 
3. Eq. (3.1) may be compared to the first law of thermodynamics of heat 

(Q), energy (E) and work (W): δQ = d E - δW, accordingly, we may call it 
the first law of economics.    

3.2  Second law of economics 

A not exact “putty” differential form (δ Y) may be turned into an exact 

“clay” differential form (d F) by an integrating factor (λ), Eq.(1.10): 

           d F  =   δ Y / λ             (3.2).  

1. The function F may be called production function. In all economic 
systems a clay production function (F) will exist “ex ante”.  

2. The integrating factor (λ) exists in all economic systems, in production, in 
markets and finance.  

3. Eq.(3.2) corresponds to the second law of thermodynamics, d S = δ Q / T 
and may be called second law of economics. The production function (F) 

corresponds to the entropy function (S), the price level (λ) of a market 
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corresponds to the mean energy level or temperature (T) in physical 
systems. 
4. Classical economic theory assumes the existence of an “ex ante” 
production function (F). This assumption is confirmed by calculus  in 

Eq.(3.2). We may solve Eq.(3.2) for δ Y and obtain  

           δ Y  =   λ  d F            (3.3).  

5. Eq.(3.2) relates “putty” (δ Y ) income to the “clay” production function 

(F) by an integrating factor (λ). This result is in contrast to the Solow model 

of neoclassical theory: Y ≠ F(K, N), putty income cannot be equal to the 
clay production function. The Solow model cannot be correct! 
 
3.2.1 Production function F 

The production function F of the second law of economics exists for every 
closed economic system. In a farmers market the production function is 
given by the amount of wheat, corn, produce, fruits that is offered. In a 
company the production function is related to the number of people in  
different jobs, the number of workers, engineers, clerks, drivers, secretaries, 
managers etc. in the company. In economies the production function is 
determined by the number of different factories, companies, business firms 
of a country. As the production function depends on the numbers (N) of 
elements in the different economic systems, the function F (N)  will be 
dimensionless. 
 
3.2.2 Integrating factor λλλλ 

The integrating factor (λ) corresponds to temperature (T) in physical 
systems. Temperature is the mean kinetic energy per particle of a closed 
physical system. In economics efficient markets at equilibrium will lead to 

zero arbitrage, this means a common price level (λ) per item will evolve for 

the same product. In societies (λ) is the living standard of a population, in 

economies (λ) is the GDP per capita. Like temperature (T) in physics we 

expect (λ) to one of the leading functions in economics. This will be 
discussed in more detail, below.  

4  Entropy as production function  

 
4.1  Entropy and probability 

The production function F is given by entropy, like in physical systems. 
This has already been pointed out by Roegen [13] and Jaynes [14]. Entropy 

depends on the number of possibilities Ω to place N elements into k 
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different categories. The production function F of a company is the number 

Ω of possibilities to place N people in k different professions. 

       F  =  ln  Ω             (4.1).  

The number of possibilities Ω  is the number of possible combinations,   

          Ω =  N! / Π k N k !            (4.2).  

Applying the Sterling approximation  ln (N !) = N ln N − N, we obtain for 
the entropy production function  

    F  = ln Ω  =  N ln N − Σ k N k ln N k        (4.3).  

The entropy production function F depends in a logarithmic way on the 
number N k of elements in each of the k categories, like the number N k of 
employees in each of the k professional groups in accompany or the number 
N k of fruits for each fruit k at a fruit market.The number N represents the 
total number of items, the total number of employees in a company, the total 
number of fruits in a fruit market. The function F is uniquely defined in each 
economic system (company, market) and has no adjustable parameters.  

4.2  Relative binary entropic production function f (N 1, N 2) 

The number of people N k in each profession may be substituted by the 
relative number  x k = N k / N. Dividing Eq.(4.3) by the number N of 
employees we get the entropic production function per capita f = F / N: 

    f  = F / N =    −   Σ k x k ln x k           (4.4).  

Economic applications often consider only the competition between two 
different groups, k = 2. In a company a percentage x 1 of the people work in 
the office and a percentage x 2 in production. This leads to  

    f (x 1, x 2)  =  −  ( x 1 ln x 1  + x 2 ln x 2)      (4.5).  

f  is the entropic production function or output per capita. 

With x 1 + x 2 = 1  and replacing the variable x 1 by x (x ≡ x 1) we obtain 

    f ( x )  =  −   x ln x  + (1 – x) ln (1 - x)      (4.6)  

In binary systems the production function per capita f(x) depends only on 
one parameter x, e. g. the size of the larger group. Eq.(4.6) will be applied to 
problems with a constant number N of employees in the next paragraph.  
 

4.3  Entropy and Cobb Douglas production function 

In a company with a given number of employees a percentage x of the 
people works in the office and (1-x) of the people work in production. The 
relative production function of neoclassical theory is given by the Cobb 
Douglas function per capita,  
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   f C D ( x ) =     x  α  (1 - x )  1- α           (4.7) 

The output per person f C D depends now on one parameter x, the percentage 

of people in the larger group, and the uncertain value of elasticity α ! The 
function f (x) in Eq.(4.6) and the Cobb Douglas function f C D have been 
compared in fig. 1 for a constant number of people in two different jobs. 

The Cobb Douglas exponents α are assumed to be α = 0,7 and  α = 0,5.  
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Fig. 1. Production function per employee f (x) for a company with N people 
at two kinds of jobs. A percentage x = x 1 people work in job (1) and x 2 in 
job (2). The output per employee, eq.(4.6) is plotted versus x in the range 
from 0 to 1.  The Cobb Douglas function per capita,  f C D in eq.(4.7) has 
been calculated for α = 0,7 and α = 0,5. The value of elasticity α remains 
uncertain. 

 
The maximum output per employee of the entropic production function f is 
found at x max = 0,5. The maximum output is f (x = ½ ) = ln 2 = 0,693.  

The maximum output of the Cobb Douglas function f C D at x max = α  

remains uncertain like α.  For α = 0,5 we obtain  f C D (x = ½ ) = 0,500. 

The entropy production function f(x) is nearly always larger than the Cobb 
Douglas function f C D by a factor of  A = 1,4. Apparently the Cobb Douglas 
function requires a factor A = 1,4 as an approximation to the real entropy 
production function, Eq.(4.6).   
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5  Lagrange function  

5.1  Variation of the Lagrange function 

The first and second laws (3.1) and (3.2) may be combined eliminating δ Y,   

      δ P   =  d K −  δ Y  =  d K − λ d F        (5.1). 

By subtracting and adding F d λ we do not change the value of  δ P. 

With  d (λ F) = λ d F + F d λ  we obtain:  

      δ P   =  d (K − λ F)  + F d λ          (5.2). 

      δ P   =    d L   +  F d λ            (5.3). 

         L   =    (K − λ F)             (5.4). 

The function L is called Lagrange function. This function L exists in all 
economic systems. This function has an important economic feature. 
Markets have to optimize the amount of specific commodities and also the 
price. Companies have to determine the number of people working at each 
job, and also the salary of the people. The mathematical answer to these 
problem is given by the Lagrange principle: 

     L  =  K  −   λ F   →   minimum!       (5.5)  

L is the Lagrange function that has to be minimized. F is the production 

function, K the capital or budget restriction. λ is the integrating factor and is 
also called Lagrange parameter. Eq.(5.5) indicates that in optimal markets 
costs K are always at minimum and the production function F is always at 
maximum. Examples are given in the next paragraphs. 

 

5.2  Entropy and budget restrictions  

A company has N 1 permanent and N 2 temporary employees. The wages per 
hour are w 1 for the permanent and w 2 for the temporary staff. The total 
costs of wages are 

    K  =   N 1 w 1  + N 2 w 2           (5.6) 

At constant number (N) of employees the Lagrange function (5.4) may be 
minimized with respect to N 1 and N 2,  

    L =    (N 1 w 1 + N 2 w 2)            (5.7) 

     −  λ {(N 1+N 2) ln (N 1+N 2) − N 1 ln N 1 − N 2 ln N 2} =  min! 

At minimum the derivation with respect to N 1 and N 2 will be zero:  
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   ∂ L / ∂ N 1 =  ln (N 1 + N 2) + 1 − N 1 ln N 1 − 1 − w 1 / λ   =  0 (5.8) 

   ∂ L / ∂ N 2 =  ln (N 1 + N 2) + 1 − N 2 ln N 2 − 1 − w 2 / λ   =  0 (5.9) 

Introducing the relative numbers of staff x 1 and x 2, the calculated 
distribution of people in the two jobs follows a Boltzmann distribution, 

        x 1  = N 1 / N  =  exp (− w 1 / λ )        (5.10) 

        x 2  = N 2  / N  =  exp (− w 2 / λ )        (5.11) 

The relative numbers of permanent and temporary staff x 1 and x 2, the 

Lagrange parameter λ, the mean output per person f = F / N and the mean 
wages per person may be calculated from the wages w 1  and w 2  without 
any further assumptions:. 
 
5.2.1  Entropy and budget restrictions of a restaurant 

A restaurant has a constant number (N) of employees, N 1 permanent staff 
and N 2 temporary helpers. The wages per hour are w 1 = 15 € for the 
permanent and w 2 = 7,5 € for the temporary staff. With the given values of 
w 1 and w 2 we obtain  

        x 1
0
  = exp (− w 1 / λ ) =   0,38         

        x 2 
0

  = exp (− w 2 / λ ) =   0,62         

    λ   =           15,58          
    f 0  =          0,664        
   K / N =             10,365         

The relative numbers of permanent and temporary staff x 1 and x 2, the 

Lagrange parameter λ, the mean output per person f = F / N and the mean 
wages per person have been calculated from the wages w 1  and w 2  without 
any further assumptions. 
  

5.2.2. Graphic solution of budget restrictions   

Three lines lead to the point (x 10 ; x 20 ) of optimal production, fig. 2: 
(1). The first (straight) line is given by the constant total number N of 
employees,  x 1 = N 1 / N  and  x 2 = N 2 / N  or 

      x 2  =   1  − x 1                (5.12). 

(2). The second line is the curve of maximal production, it is defined by 
eqs.(5.8) and (5.9),  

              
12 /

12

ww
xx =               (5.13). 

This curve intersects the first line, eq.(5.12), at  to the point (x10 ; x 20 ) of 
optimal production.  
(3). The third line, the budget restriction (5.6) may be constructed by 
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      x 2  =   x 20  −  (w 1 / w 2 ) 
.... ( x 1  − x 10 )      (5.14) 

after the point of optimal production (x 10 ; x 20 ) has been determined from 
condition (1) and (2).  

(4). A fourth line is given by the iso- production line. However, the entropy 
production function, eq.(4.6),  

    f 0   =  −  ( x 1 ln x 1  + x 2 ln x 2) = 0,664     (5.15).  

is an implicit function and cannot be solved analytically for x 2 at a constant 
f 0. The iso-production function can only be found by employing a computer 
program and is not shown in fig. 2. However, as the budget restriction is the 
tangent of iso-production, this line is not needed  for constructing the point 
of optimal production (x 10 ; x 20 ).  
 

                   

Graphical solution for entropy

-1

-0,5

0

0,5

1

1,5

0 0,2 0,4 0,6 0,8 1

x (1)

x
 (

2
)

rel. number of employees

maximal production

budget restriction
 

Fig. 2. Graphical solution of optimal production at minimal costs: Three 
functions lead to the optimal point ( x 10 , x 20 ) = (0,38; 0,62): 1. The relative 
number of employees, 2. the line of maximal production according to 
entropy. 3. the budget restriction. 4. the iso- production line at constant 
entropy is implicit and cannot be shown analytically.  

 

5.3  Budget restrictions according to Cobb Douglas 

In neoclassical economics the Cobb Douglas production function F C D   

           F C D    =    N 1 
α N 2 

1 - α   =     N  x 1 
α x 2 

1 - α        (5.16)  

is applied in the Lagrange function (4.9). In addition to wages E k  

employees are rated by an additional parameter α. For an arbitrary value α = 
0,7 we obtain 

          x 1  =  α /[ α / E 1  +  (1 - α) / E 2] / E 1  = 0,538    
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         x 2  =  α /[ α / E 1  +  (1 - α) / E 2] / E 2  = 0,462    

       f 0 
C D =  x 1 

α x 2 
1 - α             = 0,5141  

   K / N =  ( w 1 x 1 + w 2 x 2 )        = 11,54  

5.3.1 Graphic solution of budget restrictions (Cobb Douglas)  

The optimal production at minimal costs may also be  taken from a graphic 
solution, fig 3.  
 
 

                 

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,5

1,0

1,5

2,0

 iso-costs (Cobb Douglas)
 budget restriction

 maximal production
 const. number of employees

x
 2

X 
1

 

Fig. 3. Graphical solution of optimal production at minimal costs according 
to Cobb Douglas with α = 0,7: Four functions lead to the optimal point of 
production ( x 10 , x 20 ) = (0,538; 0,462): 1. The constant number of total 
employees, 2. the line of  optimal production according to Cobb Douglas,   
3. the budget restriction, 4. the iso- production line according to Cobb 
Douglas. The solutions depend on the choice of the elasticity parameter α.  

 
Again four functions lead to optimal production according to Cobb Douglas: 
(1) The constant total number of employees, x 1 = N 1 / N  and  x 2 = N 2 / N,   

      x 2  =   1  −  x 1                

(2) The second line is the line of maximal production according to Cobb 
Douglas, 

      x 2  =    x 1  [(1− α) / α] (w 1 / w 2 )     

(3) The budget restriction is given by Eq.(5.14),  

      x 2  =   x 20  −  (w 1 / w 2 ) 
.... ( x 1  − x 10 )       

and may be constructed after the point of optimal production (x 10 ; x 20 ) has 
been determined from condition (1) and (2).  

 (4) The iso- production line is found by solving the Cobb Douglas 
function for  x 2 at constant production  f 0 

C D : 

              x 2 =    f 0 
C D 1 / (1 - α)   /  x 1 

α / (1 - α)             

but this function is not needed for the constructing of the point of optimal 
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production (x 10 ; x 20 ). In fig. 3 the four lines meet at the point of optimal 
production at minimal costs according to Cobb Douglas, which depends on 

the choice of elasticity parameter α = 0,7. 
 

5.4.  Comparing entropy to the Cobb Douglas function  

Comparing the entropy function to the Cobb Douglas function with α = 0,7 
leads to the following optimal parameters:  
 

Parameters Entropy Cobb Douglas 

x 10   0,38   0,54 
x 2 0   0,62   0,46 
f 0    0,66   0,51 
K / N 10,36 11,54 

    Table I: Optimal parameters  according to 
    a) entropy and b) the Cobb Douglas function 
 

For all values of α  the Cobb Douglas function differs from the entropy data. 
The optimal point of production (x 1 , x 2) differs from entropy, the mean 
output f C D  is lower and the mean wage costs K / N of the Cobb Douglas 
function are higher than for the entropy related production function f.  

The Cobb Douglas function obviously is not the optimal production 
function. In addition the results always depend on the arbitrary parameter of 

elasticity α. This makes neoclassical theory flexible, but inexact! For exact 
economic calculations neoclassical theory must be replaced by the first and 
second law based on two dimensional calculus. This new approach leads to 
new concepts in production and in the theory of finance.  

6  Conclusions  

The tools of two dimensional calculus lead to a new foundation of 
production and economic growth. The resulting laws may be regarded as the 
natural basis of macro-economics.  The new laws replace the Solow model 
of growth in neoclassical theory, the Cobb Douglas production function is 
replaced by the entropy function.  
 The Stokes laws of macro-economics are in complement to the principle 
of entropy maximization [14], which may be regarded as a tool of micro-
economics. Beyond this we may apply Stokes integrals and entropy 
maximization to many specific fields of economics, e. g. financial markets 
[15] and the financial crisis. 
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