Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Publikationen

2017

Polaron optical absorption in congruent lithium niobate from time-dependent density-functional theory
M. Friedrich, W. G. Schmidt, A. Schindlmayr und S. Sanna
Phys. Rev. Materials 1, 054406 (2017).

Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory
M. Friedrich, W. G. Schmidt, A. Schindlmayr und S. Sanna
Phys. Rev. Materials 1, 034401 (2017).

Zn-VI quasiparticle gaps and optical spectra from many-body calculations
A. Riefer, N. Weber, J. Mund, D. R. Yakovlev, M. Bayer, A. Schindlmayr, C. Meier und W. G. Schmidt
J. Phys.: Condens. Matter 29, 215702 (2017).

Consistent atomic geometries and electronic structures of five phases of potassium niobate from density-functional theory
F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W. G. Schmidt und A. Schindlmayr
Adv. Mater. Sci. Eng. 2017, 3981317 (2017).

2016

LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles
M. Friedrich, A. Schindlmayr, W. G. Schmidt und S. Sanna
Phys. Status Solidi B 253, 683 (2016).

LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects
A. Riefer, M. Friedrich, S. Sanna, U. Gerstmann, A. Schindlmayr und W. G. Schmidt
Phys. Rev. B 93, 075205 (2016).

2015

Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory
M. Friedrich, A. Riefer, S. Sanna, W. G. Schmidt und A. Schindlmayr
J. Phys.: Condens. Matter 27, 385402 (2015).

Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon
M. Bouhassoune und A. Schindlmayr
Adv. Condens. Matter Phys. 2015, 453125 (2015).

2014

Spin excitations in solids from many-body perturbation theory
C. Friedrich, E. Şaşıoğlu, M. Müller, A. Schindlmayr und S. Blügel
in First-Principles Approaches to Spectroscopic Properties of Complex Materials (Topics in Current Chemistry, Band 347), herausgegeben von C. Di Valentin, S. Botti und M. Cococcioni (Springer, Berlin, Heidelberg, 2014), S. 259.

The GW approximation for the electronic self-energy
A. Schindlmayr
in Many-Electron Approaches in Physics, Chemistry and Mathematics (Mathematical Physics Studies, Band 29), herausgegeben von V. Bach und L. Delle Site (Springer, Cham, 2014), S. 343.

Theoretical investigation of the band structure of picene single crystals within the GW approximation
S. Yanagisawa, Y. Morikawa und A. Schindlmayr
Jpn. J. Appl. Phys. 53, 05FY02 (2014).

Many-body perturbation theory: The GW approximation
C. Friedrich und A. Schindlmayr
in Computing Solids: Models, ab initio Methods and Supercomputing (Schlüsseltechnologien, Band 74), herausgegeben von S. Blügel, N. Helbig, V. Meden und D. Wortmann (Forschungszentrum Jülich, 2014), S. A4.1.

2013

Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations
A. Riefer, M. Rohrmüller, M. Landmann, S. Sanna, E. Rauls, N. J. Vollmers, R. Hölscher, M. Witte, Y. Li, U. Gerstmann, A. Schindlmayr und W. G. Schmidt
in High Performance Computing in Science and Engineering '13 (Transactions of the High Performance Computing Center, Stuttgart), herausgegeben von W. E. Nagel, D. H. Kröner und M. M. Resch (Springer, Cham, 2013), S. 93.

HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation
S. Yanagisawa, Y. Morikawa und A. Schindlmayr
Phys. Rev. B 88, 115438 (2013).

Optical response of stoichiometric and congruent lithium niobate from first-principles calculations
A. Riefer, S. Sanna, A. Schindlmayr und W. G. Schmidt
Phys. Rev. B 87, 195208 (2013).

Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere
A. Schindlmayr
Phys. Rev. B 87, 075104 (2013).

2012

Hybrid functionals and GW approximation in the FLAPW method
C. Friedrich, M. Betzinger, M. Schlipf, S. Blügel und A. Schindlmayr
J. Phys.: Condens. Matter 24, 293201 (2012).

2011

Theoretical approach to the ultrafast nonlinear optical response of metal slabs
M. Wand, A. Schindlmayr, T. Meier und J. Förstner
in Proceedings of the Conference on Lasers and Electro-Optics (CLEO:2011), OSA Technical Digest (Optical Society of America, 2011), JTuI59.

Simulation of the ultrafast optical response of metal slabs
M. Wand, A. Schindlmayr, T. Meier und J. Förstner
Phys. Status Solidi B 248, 887 (2011).

2010

First-principles calculation of electronic excitations in solids with SPEX
A. Schindlmayr, C. Friedrich, E. Şaşıoğlu und S. Blügel
in Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics (Progress in Physical Chemistry, Band 3), herausgegeben von F. M. Dolg (Oldenbourg, München, 2010), S. 67.

First-principles calculation of electronic excitations in solids with SPEX
A. Schindlmayr, C. Friedrich, E. Şaşıoğlu und S. Blügel
Z. Phys. Chem. 224, 357 (2010).

Efficient implementation of the GW approximation within the all-electron FLAPW method
C. Friedrich, S. Blügel und A. Schindlmayr
Phys. Rev. B 81, 125102 (2010).

Wannier-function approach to spin excitations in solids
E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth und S. Blügel
Phys. Rev. B 81, 054434 (2010).

Electronic structure and effective masses in strained silicon
M. Bouhassoune und A. Schindlmayr
Phys. Status Solidi C 7, 460 (2010).

Do we know the band gap of lithium niobate?
C. Thierfelder, S. Sanna, A. Schindlmayr und W. G. Schmidt
Phys. Status Solidi C 7, 362 (2010).

2009

Measurement of effective electron mass in biaxial tensile strained silicon on insulator
S. F. Feste, T. Schäpers, D. Buca, Q. T. Zhao, J. Knoch, M. Bouhassoune, A. Schindlmayr und S. Mantl
Appl. Phys. Lett. 95, 182101 (2009).

Optical conductivity of metals from first principles
A. Schindlmayr
AIP Conf. Proc. 1176, 157 (2009).

Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method
C. Friedrich, A. Schindlmayr und S. Blügel
Comput. Phys. Commun. 180, 347 (2009).

2008

Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach
C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr und M. Scheffler
Phys. Rev. B 77, 235428 (2008).

2007

Interaction of radiation with matter. Part II: Light and electrons
A. Schindlmayr
in Probing the Nanoworld (Materie und Material, Band 34), herausgegeben von K. Urban, C. M. Schneider, T. Brückel, S. Blügel, K. Tillmann, W. Schweika, M. Lentzen und L. Baumgarten (Forschungszentrum Jülich, 2007), S. A1.21.

Time-dependent density-functional theory for extended systems
S. Botti, A. Schindlmayr, R. Del Sole und L. Reining
Rep. Prog. Phys. 70, 357 (2007).

Ab initio study of the half-metal to metal transition in strained magnetite
M. Friák, A. Schindlmayr und M. Scheffler
New J. Phys. 9, 5 (2007).

Quasiparticle calculations for point defects at semiconductor surfaces
A. Schindlmayr und M. Scheffler
in Theory of Defects in Semiconductors (Topics of Applied Physics, Band 104), herausgegeben von D. A. Drabold und S. K. Estreicher (Springer, Berlin, Heidelberg, 2007), S. 165.

Dielectric anisotropy in the GW space-time method
C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R. W. Godby und M. Scheffler
Comput. Phys. Commun. 176, 1 (2007).

2006

Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110)
M. Hedström, A. Schindlmayr, G. Schwarz und M. Scheffler
Phys. Rev. Lett. 97, 226401 (2006).

Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method
C. Friedrich, A. Schindlmayr, S. Blügel und T. Kotani
Phys. Rev. B 74, 045104 (2006).

Many-body perturbation theory: The GW approximation
C. Friedrich und A. Schindlmayr
in Computational Condensed Matter Physics (Materie und Material, Band 32), herausgegeben von S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek und R. G. Winkler (Forschungszentrum Jülich, 2006), S. A5.1.

Time-dependent density-functional theory
A. Schindlmayr
in Computational Condensed Matter Physics (Materie und Material, Band 32), herausgegeben von S. Blügel, G. Gompper, E. Koch, H. Müller-Krumbhaar, R. Spatschek und R. G. Winkler (Forschungszentrum Jülich, 2006), S. A4.1.

Many-body perturbation theory: The GW approximation
C. Friedrich und A. Schindlmayr
in Computational Nanoscience: Do It Yourself! (NIC-Serie, Band 31), herausgegeben von J. Grotendorst, S. Blügel und D. Marx (John von Neumann Institute for Computing, Jülich, 2006), S. 335.

2002

Quasiparticle calculations for point defects on semiconductor surfaces
M. Hedström, A. Schindlmayr und M. Scheffler
Phys. Status Solidi B 234, 346 (2002).

2001

Diagrammatic self-energy approximations and the total particle number
A. Schindlmayr, P. García-González und R. W. Godby
Phys. Rev. B 64, 235106 (2001).

Self-consistency and vertex corrections beyond the GW approximation
A. Schindlmayr
in Recent Research Developments in Physics, herausgegeben von S. G. Pandalai (Transworld Research Network, Trivandrum, 2001), Band 2, S. 277.

Exchange-correlation kernels for excited states in solids
K. Tatarczyk, A. Schindlmayr und M. Scheffler
Phys. Rev. B 63, 235106 (2001).

2000

Decay properties of the one-particle Green function in real space and imaginary time
A. Schindlmayr
Phys. Rev. B 62, 12573 (2000).

1999

Universality of the Hohenberg-Kohn functional
A. Schindlmayr
Am. J. Phys. 67, 933 (1999).

1998

Spectra and total energies from self-consistent many-body perturbation theory
A. Schindlmayr, T. J. Pollehn und R. W. Godby
Phys. Rev. B 58, 12684 (1998).

Systematic vertex corrections through iterative solution of Hedin's equations beyond the GW approximation
A. Schindlmayr und R. W. Godby
Phys. Rev. Lett. 80, 1702 (1998).

Assessment of the GW approximation using Hubbard chains
T. J. Pollehn, A. Schindlmayr und R. W. Godby
J. Phys.: Condens. Matter 10, 1273 (1998).

1997

Excitons with anisotropic effective mass
A. Schindlmayr
Eur. J. Phys. 18, 374 (1997).

Violation of particle number conservation in the GW approximation
A. Schindlmayr
Phys. Rev. B 56, 3528 (1997).

1995

Density-functional theory and the v-representability problem for model strongly correlated electron systems
A. Schindlmayr und R. W. Godby
Phys. Rev. B 51, 10427 (1995).http://physik.uni-paderborn.de/#

Gruppenleitung

Prof. Dr. Arno Schindlmayr

Vielteilchentheorie

Arno Schindlmayr
Telefon:
+49 5251 60-2338
Fax:
+49 5251 60-3435
Büro:
N3.344

Die Universität der Informationsgesellschaft