Nanostrukturierte Oberflächen für zukünftige Quantencomputerchips

 |  SFBCeOPP  |  Nachrichten AG Zentgraf

Quantencomputer sind eine der zentralen Zukunftstechnologien des 21. Jahrhunderts. Forscher*innen der Universität Paderborn um Prof. Dr. Thomas Zentgraf haben nun in Kooperation mit Kolleg*innen der Australian National University und der Singapore University of Technology and Design eine neue Technologie zur Manipulation von Licht entwickelt, die als Grundlage zukünftiger optischer Quantencomputer dienen kann. Die Ergebnisse wurden jetzt im international renommierten Journal „Nature Photonics“ veröffentlicht.

Neue optische Elemente zur Manipulation von Licht ermöglichen fortschrittlichere Anwendungen in der modernen Informationstechnologie, insbesondere bei Quantencomputern. Eine große Herausforderung bleibt jedoch die sogenannte nicht-reziproke Lichtausbreitung durch solche Elemente. Prof. Dr. Thomas Zentgraf, Leiter der Arbeitsgruppe für ultraschnelle Nanophotonik an der Universität Paderborn, erklärt: „Während Licht bei der reziproken Ausbreitung den gleichen Weg vorwärts wie rückwärts durch eine Struktur zurücklegen kann, ist die nicht-reziproke Lichtausbreitung vergleichbar mit einer Einbahnstraße, in der es sich nur in eine Richtung ausbreiten kann." Die Nichtreziprozität ist in der Optik eine besondere Eigenschaft, die dazu führt, dass das Licht unterschiedliche Materialeigenschaften hervorbringt, wenn seine Richtung umgekehrt wird. Ein Beispiel wäre ein Fenster aus Glas, das von einer Seite durchsichtig ist und das Licht durchlässt, aber von der anderen Seite betrachtet wie ein Spiegel wirkt und das Licht reflektiert. Man spricht von einer Dualität. „Im Bereich der Photonik kann eine solche Dualität sehr hilfreich sein, um neuartige optische Elemente für die Manipulation von Licht zu entwerfen", so Zentgraf.

In einer aktuellen Zusammenarbeit zwischen seiner Arbeitsgruppe an der Universität Paderborn und Forscher*innen der Australian National University und der Singapore University of Technology and Design wurde eine solche nicht-reziproke Lichtausbreitung mit einer Frequenzkonversion, also der Veränderung der Wellenlänge (Farbe) von Laserlicht, kombiniert. „Wir haben die Frequenzkonversion an den speziell designten Strukturen mit Größen im Bereich wenigen hundert Nanometern genutzt, um das für das menschliche Auge unsichtbare Infrarotlicht in sichtbares Licht umzuwandeln", erklärt Dr. Kruk, Marie Curie Fellow in der Gruppe von Zentgraf. Die Experimente zeigen, dass dieser Umwandlungsprozess nur für eine Beleuchtungsrichtung der nanostrukturierten Oberfläche stattfindet, während er für die entgegengesetzte Beleuchtungsrichtung vollständig unterdrückt wurde. Diese Art der Dualität in den Eigenschaften für die Frequenzkonversion wurde genutzt, um Bilder in eine ansonsten transparente Oberfläche zu kodieren. „Wir haben die Anordnung der verschiedenen Nanostrukturen so gestaltet, dass sie ein unterschiedliches Bild liefern, wenn die Probenoberfläche entweder von vorne oder von hinten beleuchtet wird", sagt Zentgraf und fügt hinzu: „Diese Bilder wurden nur sichtbar, wenn wir infrarotes Laserlicht zur Beleuchtung verwendet haben."

In ihren ersten Experimenten war die Intensität des frequenzgewandelten Lichts im Sichtbaren noch sehr gering. In einem nächsten Schritt soll die Effizienz deshalb weiter gesteigert werden, damit weniger Infrarotlicht für die Frequenzumwandlung benötigt wird. In zukünftigen optisch-integrierten Schaltkreisen könnte die Richtungssteuerung der Frequenzumwandlung genutzt werden, um Licht direkt mit anderem Licht zu schalten oder um bestimmte Photonenzustände für quantenoptische Berechnungen direkt auf einem kleinen Chip zu erzeugen. „Vielleicht sehen wir eine Anwendung in zukünftigen optischen Quantencomputern, in denen die gerichtete Erzeugung einzelner Photonen durch Frequenzkonversion eine wichtige Rolle spielt", sagt Zentgraf.

Zum Artikel:

https://doi.org/10.1038/s41566-022-01018-7

 

Prof. Zentgraf im Optiklabor.
Schematische Darstellung des Funktionsprinzips der Metaoberfläche. Für unterschiedliche Beleuchtungsrichtungen erscheinen verschiedene Bilder auf der Oberfläche. Dieser Effekt wird als nichtreziproker Effekt bezeichnet.

Contact

Weitere Stellenausschreibungen

Positions for student assistance (SHK, WHB), Bachelor-, and Master-Thesis

We are continuously looking for interested students and interns to actively participate in our research projects. If you are interested to join our group, please contact Prof. Thomas Zentgraf.

Read more

Details can be found in the official job openings (Postdoc position in QPIC-1)

Read more

Details can be found in the official job openings (Kennziffer5291)

Read more

Details can be found in the official job openings (PhD position in QPIC-1)

Read more

An der Universität Paderborn ist am Department Physik -Physikdidaktik- eine Stelle mit einer abgeordneten Lehrkraft für besondere Aufgaben gemäß § 42 HG zu besetzen. Die Stelle dient der wissenschaftlichen Qualifizierung (Promotion oder Habilitation) im Projekt -Untersuchung der Experimentellen Kompetenz von Lehramtsstudierenden (GyGe)-. Mit der Abordnung sind Lehraufgaben im Umfang von 13 SWS verbunden. Besoldung: A 13/ A 14 LBesO 2.…

Read more

Die Arbeitsgruppe freut sich über interessierte und engagierte Studenten, die als SHKs an unseren Forschungsprojekten mitarbeiten möchten. Bei Interesse kontaktieren Sie Prof. Dr. Dirk Reuter. Our group is continuously looking for interested and dedicated students, who want to actively participate in our research projects as student assistants (SHK). If you are interested, please contact Prof. Dr. Dirk Reuter.

Read more

Gerne  vergeben wir  an engagierte Studenten Themen für Bachelor- und Masterarbeiten, die sich an aktuellen Forschungsfragen innerhalb unserer Arbeitsgruppe orientieren. Bei Interesse wenden Sie sich bitte an Prof. Dr. Dirk Reuter. We are looking for dedicated students doing their bachelor or master thesis with us. The topics are related to actual research in our group.  If you are interested, please contact Prof. Dr. Dirk Reuter.

Read more

We are continuously looking for interested students and interns to actively participate in our research projects. If you are interested, please contact Prof. Christine Silberhorn.

Read more