Special provisions of the examination regulations for the Master's degree program in Materials Science at the Faculty of Natural Sciences at Paderborn University

dated 12.01.2024

Paderborn University has issued the following regulations on the basis of Section 2 (4) and Section 64 (1) of the North Rhine-Westphalia Higher Education Act (Hochschulgesetz - HG) of September 16, 2014 (GV.NRW. p. 547), last amended by Article 1 of the Act of July 12, 2019 (GV. NRW. p. 425, corrected p. 593):

Contents

§ 31 General and special provisions	. 3
§ 32 Acquisition of skills and language regulations	
§ 33 Academic degree	. 3
§ 34 Start of studies	. 4
§ 35 Admission requirements	
§ 36 Structure, course content, modules	. 5
§ 37 Participation requirements, admission	. 6
§ 38 Examiners	
§ 39 Achievements in the modules	. 6
§ 40 Master's thesis	. 7
§ 41 Overall grade	
§ 42 Additional benefits	
§ 43 Repetition of examinations	. 8
§ Section 44 Transitional provisions	. 8
§ Section 45 Entry into force, expiry and publication	. 8
Appendix 1: Study plan	10
Appendix 2: Module descriptions	11

§ 31 General and special provisions

These Special Provisions apply in conjunction with the General Provisions for the Examination Regulations for the Master's degree programs of the Faculty of Natural Sciences at Paderborn University as amended (General Provisions). For a proper structure of the study program, a study plan can be found in the appendix. Details on the modules can be found in the module descriptions in the appendix, which are part of these Special Provisions.

§ 32 Acquisition of skills and language regulations

(1) The course provides in-depth knowledge, skills and methods in materials science. The focus is particularly on the molecular understanding of matter and, based on this, students learn about the entire process chain from design using atomistic simulation through to macroscopic materials. A wide range of analysis and characterization techniques as well as synthesis methods are presented and applied by the students in two practical courses with a predominantly chemical or physical focus and in a lecture series.

Graduates are thus able to independently work on and critically evaluate issues in the field of materials science with a high level of scientific qualification. By setting a corresponding focus in the compulsory elective area, a profile can be formed in the areas of materials analysis and simulation, as well as sustainable materials and nanotechnology.

One of the strengths of this degree course is its highly interdisciplinary orientation thanks to the participation of the Faculties of Natural Sciences (Chemistry/Physics), Mechanical and Electrical Engineering, Computer Science and Mathematics. This enables an extensive range of courses and a wide range of compulsory elective modules. The content is thus taught from different perspectives, enabling students to communicate appropriately in interdisciplinary teams of scientists and engineers in their future careers. Basically, this is a science-based degree course that not only qualifies students for work in (research-based) industry, but also opens the door to an academic career with a subsequent doctorate.

Current topics such as sustainable materials, additive manufacturing methods or machine learning/artificial intelligence are also central components of this range of courses and can be explored in greater depth by choosing the appropriate course. The respective contents of the courses are described in detail in the module descriptions.

(2) The Master's degree program and Master's examination are held in English. All examinations are also conducted in this language.

§ 33 Academic degree

The academic degree "Master of Science" (M.Sc.) is awarded on successful completion of the Master's degree program.

§ 34 Start of studies

The course can only be started in the winter semester.

§ 35 Admission requirements

- (1) In implementation of § 5 of the General Provisions, the degree program requires a degree that includes the competencies described below:
 - a) Fundamentals of physics: Mastery of the fundamentals of mechanics, thermodynamics, electrodynamics, atomic physics, quantum mechanics and solid state physics, combined with the ability to create models and abstract mathematical formulations of physical facts.
 - b) Practicals: Recognizing and extracting essential scientific correlations based on self-conducted experiments, logging and critical evaluation of the experimental results. Confident handling of basic chemical, physical or materials science experimental set-ups and measurement methods.
 - c) Chemical fundamentals: mastery of the fundamentals of inorganic, organic and physical chemistry, material systematics, energetics, bonding theory, basic spectroscopic methods.
 - d) Higher mathematics: Mastery of the basic mathematical concepts and methods required to understand and solve problems in the Master's degree program in Materials Science. This involves sound knowledge in the areas of linear algebra, analysis, Fourier series, differential equations, vector analysis.
- (2) The Examination Board shall determine the prerequisites. If competencies or study components are missing, enrolment may be granted on condition that these are made up for through appropriate studies and proven by passing the associated examinations by the time of registration for the Master's thesis. The decision on this and on the type and scope of the studies and examinations is made by the Examination Board on the basis of the previous degree. The missing competencies or study components to be made up must not exceed 30 CP. The studies and examinations should be completed in the first semester of the Master's degree course.
- (3) The Bachelor's degree must have been completed with an overall grade of at least 3.0 (or an equivalent foreign final grade).
- (4)In addition to the requirements specified in § 5 of the General Provisions, the following additional admission requirements apply:

English language skills according to the Common European Framework of Reference for Languages with at least level B2.

English language skills can be proven in particular by Abitur certificates showing level B 2 or by Abitur certificates from NRW showing that English was completed as a continued foreign language at least at the end of qualification phase 1 of the upper secondary school with at least sufficient performance or 5 points (basic course or advanced course). Furthermore, English language proficiency can be proven, for example, by TOEFL (internet-based, 87 points), IELTS (5.5), Cambridge ESOL (FCE) or UNIcert II or an equivalent certificate. The certificate submitted must not be older than a maximum of two years from the start of the semester for which enrollment is requested. Proof of language proficiency is a prerequisite for enrollment.

(5)In the event that the applicant has definitively failed an examination required by the examination regulations in the previous degree program at a university within the scope of the Basic Law and the previous degree program has a significant content-related proximity to the Master's degree program

in Materials Science, enrollment will be denied under the conditions of § 5 paragraph 3 of the General Provisions.

§ 36 Structure, course content, modules

- (1) The following modules must be completed in the Master's degree program in Materials Science: Compulsory modules:
 - Module 1: General Concepts in Materials Science (10 LP)
 - Module 2: Atomistic Materials Modeling (6 LP)
 - Module 3: Nanomaterials (5 LP)
 - Module 4: Materials Analysis (5 LP)
 - Module 5: Laboratory Course on Materials Physics and Analysis (6 CP)
 - Module 6: Laboratory Course on Materials Chemistry and Analysis (5 LP)
 - Module 7: Sustainable Materials and Processes (6 CP)
 - Module 8: Project based Course (8 LP)
 - Module 9: Master Thesis (30 LP)

Compulsory elective modules:

```
[Compulsory elective area 1: Materials Analysis]
```

Module 10: Advanced Electron Microscopy (6 LP)

- Module 11: Ion Beam Analysis of Materials (6 LP)
- Module 12: Time resolved Spectroscopy (5 LP)
- Module 13: Surface and Interface Analysis (5 LP)
- [Compulsory elective area 2: Theoretical and Computational Materials Science]
- Module 14: Atomistic Dynamics and Artificial Intelligence in Materials Science (6 CP)
- Module 15: Computational Spectroscopy (6 LP)
- Module 16: Simulation of Materials at the Meso- and Macroscale (6 CP)
- Module 17: Spintronics (6 LP)
- [Compulsory elective area 3: Advanced Materials and Biomaterials]
- Module 18: Particles and Composites (5 LP)
- Module 19: Additive Manufacturing (5 CP)
- Module 20:Sustainable Electrochemistry (6 CP)
- Module 21: Biomaterials (5 LP)
- [Compulsory elective area 4: Nanomaterials and Nanotechnology]
- Module 22: Functional Materials (6 LP)
- Module 23: Photonic Nanostructures (6 CP)
- Module 24: Micro Electromechanical Systems (6 LP)
- Module 25: Semiconductor Epitaxy (6 LP)
- Module 26: Semiconductor Technology (6 CP)
- Module 27: Solid-State Materials Chemistry (6 CP)

- (2) In the compulsory elective area, there are four thematic focuses, the content of which can be found in the overview above. At least one module must be chosen from three of these four areas. A total of three modules with 5 CP and four modules with 6 CP must be taken in the compulsory elective area. In addition, students are responsible for setting their own focus.
- (3) If the majority of students select modules from the compulsory elective areas 1 and 2 or 3 and 4, a corresponding profile is shown on the Master's certificate with the additional designation "Materials Analysis and Simulation" or "Sustainable Materials and Nanotechnology".

§ 37 Participation requirements, admission

- (1) Participation requirements for a module in accordance with Section 7 (2) of the General Provisions are governed by the module descriptions.
- (2) Admission to the Master's thesis can only be granted to students who are enrolled in the Master's degree course in Materials Science at Paderborn University at the time of applying for admission or who have been admitted as a secondary student in accordance with § 52 HG and have acquired all CPs of the curriculum with the exception of up to 12 CPs that do not relate to internships. These requirements must also be met during the examinations.
- (3) Further requirements for participation in examinations in accordance with Section 12 (2) of the General Provisions are set out in the module descriptions.

§ 38 Examiners

The group of examiners can be expanded within the scope of Section 65 HG.

§ 39 Achievements in the modules

- (1) In the modules, work must be completed in accordance with the module descriptions.
- (2) Examinations are held in the form of written examinations, oral examinations or in other forms in accordance with § 15 of the General Provisions. The following other forms are envisaged in particular:
 - 1. Project report:

Here, students should present and critically discuss the main results of their project studies in an appropriate manner. The external form and content of the report should be based on a publication in a specialist journal so that students become familiar with the publication of research data in international journals during their studies.

2. Seminar report:

The students each prepare a report, including the critical evaluation and technically appropriate discussion of original data from practical experiments; structured in analogy to a scientific publication. The examination consists of the evaluation of the quality of these reports against the background of the knowledge acquired in the associated seminar.

- 3. Experiment as a whole: The experiment consists of several partial performances:
 - An ungraded test before the experiment, in which the preparation of the experiment in theory and practice, as well as the knowledge of the necessary safety regulations is checked the sensible execution of the experiment including the recording of measurement data

- a short, ungraded discussion after the experiment about the results and any problems encountered during implementation
- a graded report that briefly highlights the theoretical background and the execution of the experiment and should focus on the evaluation of the data and its critical discussion. A practical course consists of several individual experiments, all of which must be completed. The overall grade for the practical course is calculated from the average of all grades.
- Lecture: Here, students are asked to prepare a current research topic for an interdisciplinary audience on the basis of (specified) publications and present it in a scientifically appropriate and exemplary manner.

Further details can be found in the module descriptions.

(3) The duration of a written examination is 60 to 180 minutes.

The duration of an oral examination is approx. 30 to 45 minutes.

The duration of a presentation is 15 to 45 minutes.

The scope of a project report is 30 to 50 pages.

A seminar report should be 2 to 3 pages long.

The scope of an internship report is 5 to 10 pages, whereby the focus should be on the evaluation and discussion of the results.

Further details can be found in the module descriptions.

- (4) If the module descriptions contain framework specifications regarding the form, duration or scope of examinations, the Examination Board shall determine, in consultation with the examiner, how the examination is to be performed. This will be announced by the respective lecturer and in the Campus Management System of Paderborn University or in another suitable manner within the first three weeks of the lecture period at the latest.
- (5) The following in particular may be considered as coursework:
 - Lecture on an exemplary topic (max. 30 minutes)
 - Protocol on practical experiments (approx. 4,000 words)

The module descriptions provide further details. If the module descriptions contain framework specifications, the respective lecturer will specify how the coursework is to be completed. This will be announced by the respective lecturer in the first three weeks of the lecture period at the latest and in the Campus Management System of Paderborn University or in another suitable manner.

(6) Attendance requirements are regulated in the module descriptions.

§ 40 Master's thesis

- (1) The Master's thesis should be between 50 and 100 pages in length. The processing time for the Master's thesis is 20 weeks. If the duration is less than 16 weeks, this must be justified in writing by the supervisor.
- (2) An oral defense in accordance with § 19 of the General Provisions is required. The oral defense lasts 30-45 minutes. In the oral defense of the Master's thesis, the candidate shall present and explain the thematic focus and results of the thesis (approx. 20 minutes). This is followed by a discussion. The Master's thesis and oral defense have a weighting of 4:1 when calculating the grade for the final module.

§ 41 Overall grade

The overall grade is calculated in accordance with § 21 of the General Provisions.

§ 42 Additional benefits

Students can complete additional work in accordance with § 20 of the General Provisions in modules of the degree program that do not have a participant limit.

§ 43 Repetition of examinations

A failed final module examination or partial module examination can be repeated three times.

§ Section 44 Transitional provisions

- (1) These Special Provisions apply to all students who are enrolled for the first time in the Materials Science Master's degree program in the Faculty of Natural Sciences at Paderborn University from the winter semester 2024/2025.
- (2) Students who were enrolled on the Master's degree course in Materials Science at Paderborn University before the winter semester 2024/2025 shall take their Master's examination, including repeat examinations, for the last time in the winter semester 2026/2027 in accordance with the examination regulations for the Master's degree course in Materials Science at the Faculty of Natural Sciences at Paderborn University in the version dated 16 June 2017 (AM.Uni.Pb. 45.17), last amended by the statutes dated 23 March 2018 (AM.Uni.Pb. 05.18). The Master's examination, including repeat examinations, is then taken in accordance with these special provisions. Upon application to the Examination Board, it is possible to change to these special provisions beforehand. The application is irrevocable.

§ Section 45 Entry into force, expiry and publication

- (1) The Special Provisions enter into force on 01.10.2024. At the same time, the examination regulations for the Master's degree course in Materials Science at the Faculty of Natural Sciences at Paderborn University in the version dated March 23, 2018 (AM.Uni.Pb. 05.18) shall cease to apply. § Section 44 remains unaffected.
- (2) The Special Provisions are published in the Official Notices of Paderborn University (AM.Uni.Pb.).
- (3) In accordance with Section 12 (5) HG, a violation of procedural or formal provisions of the Higher Education Act or of the university's regulatory or other autonomous law can no longer be asserted against these regulations after one year has elapsed since the publication of these regulations, unless
 - 1. the order has not been duly published,

- 2. the Executive Committee has previously objected to the decision of the body adopting the regulations,
- 3. the formal or procedural defect has been notified to the university in advance, stating the violated legal provision and the fact giving rise to the defect, or
- 4. no reference was made to the legal consequences of the exclusion of complaints when the order was made public.

Appendix 1: Study plan

Semester	Module	LP	Workload (h)
1.	General Concepts of Materials Science	10	300
	Atomistic Materials Modeling	6	180
	Nanomaterials	5	150
	Materials Analysis	5	150
	Variant A: one module from the compulsory elective area with 5 LP	5	150
	Option B: one module from the compulsory elective area with 6 CP	6	180
Total		31 or 32	930 or 960
2.	Laboratory course on Materials Physics and Analysis	6	180
	Variant A: three modules from the compulsory elective area with 6 CP and one module with 5 CP	23	690
	Option B: two modules from the compulsory elective area with 6 CP and two modules with 5 CP	22	660
Total		29 and 28 respectiv ely	870 or 840
3.	Laboratory course on Materials Chemistry and Analysis	5	150
	Project based course	8	240
	Sustainable Materials and Processes	6	180
	Variant A and B: one module from the compulsory elective area with 5 CP and one module from the compulsory elective area with 6 CP	11	330
Total		30	900
4.	Master Thesis	30	900
Total		30	900

Appendix 2: Module descriptions

	eral Cor	icepts i	in Materials Scien	ce								
//oo	dule nun	nber:	Workload (h): 300	LP: 10	Sem (1.	ester of	study:	Rotatio : WS		ation em.):	Languaç e: en	P/WP :
	Modu	le stru	cture:									
		Cou	rse			Teac hing form	Conta time (lf-study	Statu: (P/WF		up size)
	la		anced Concepts in nce and Engineer			V	45	75	75		арр	rox. 120
	lb		anced Concepts in nce and Engineer			Ü	15	30		Р	up t	o 30
	lla	Qua Scie	ntum Mechanics ir nce	n Materials		V	30	60		Р	арр	rox. 120
	llb	Qua Scie	ntum Mechanics ir nce	n Materials		Ü	15	30		Р	up t	o 30
		basic mende	knowledge of the ed	structure ar	nd crys	tal struct	ture of s	olid subs	tances, t	basics of	f thermody	namics a
ŀ		eal stru	cture of solids and	l crystal defe	ects							
	 El. Di Ag Fa Bi Pr Pr St 	astic an splaced ageing a illure m nary ar nase tra opertie ructure	in solids and plastic deformate ments and consoli nd fatigue of mate nechanisms and pl nd ternary phase c ansitions so f metallic, poly poperty relations	dation mech rials rediction liagrams meric and ce	anisms eramic I	s materials	3					
	 El. Di Ag Fa Bi Pr Pr St 	astic ai splace geing a iilure m nary ar nase tra opertie ructure indame	in solids nd plastic deforma ments and consoli nd fatigue of mate nechanisms and pl nd ternary phase c ansitions es of metallic, poly	dation mech rials rediction liagrams meric and ce	anisms eramic I	s materials	3					

	F	u distribution in the block book we distant		
	-	y distribution in the black body radiator as a mechanical variable		
		of the harmonic oscillator		
		k's quantum of action		
		ohr atomic model		
		-particle dualism		
		chrödinger equation		
	 Opera 	•		
		functions and eigenvalues		
	-	cal interpretation of the wave amplitude		
	-	-dimensional waves		
		article in the box		
	-	er examples from atomic and molecular physics		
		atoms and molecules radiate		
		leisenberg uncertainty principle		
5	Learning	outcomes / competences:		
	I: In the le	cture, students acquire knowledge of essential and advanced	concepts of mater	ials science on the basis
		hysical and chemical concepts. The lecture enables beginners	•	
		s with the fundamentals of materials science not covered there		•
		vith a degree in materials science.		j
		into account the historical development of quantum mechani	cs from classical	mechanics students are
	-	d with the fundamentals of quantum mechanics. The introd		
		undamentals required for an introduction to quantum mechan		
		physics and the interaction of electromagnetic waves with a	•	•
		ications of quantum mechanics. This enables students to carry	•	
	at any tim			•
		pective exercises, students apply the content learned in the lea	tures to simple pr	oblems and present their
		e.g. by presenting them on the blackboard. In this way, they		•
		ation and the ability to present scientific facts appropriately.	p.e.e.e	
6	Examinat	ion performance:		
	[x] Final m	nodule examination (MAP) [] Module examination (MP) [] Mod	ule part examinati	ons (MTP)
	to	Form of examination	Duration or	Weighting for the
			scope	module grade
	la-IIb	Written exam or	120-180 min.	100 %
		Oral examination	30-45 min.	
7	Academie	c achievement / qualified participation:		
	none			
8	Requirem	ents for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poi	nts are awarded if the final module examination is passed.		
		n fan avarall avada.		
10	Weighting	g for overall grade:		

	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Mirko Schaper / N. N. (Lecturers of Physical Chemistry)
13	Other notes:
	none
14	Recommended reading:
	I: W. D. Callister, D. G. Rethwisch; Materials Science and Engineering, Wiley
	II: P. W. Atkins, Physical Chemistry, Wiley

2 1 N 2 E n 3 P n 4 C • • • • 5 L	b Aton Elective optinone Participation none Contents: Elements Basics of Density fi Basic rate	nistic Materials Mo nistic Materials Mo nistic Materials Mo ions within the m n requirements: s of the quantum the electronic structure unctional theory es and pseudopote	neory of mole	1.	Teac hing form ∨ Ü	Conta time (1 30 30			i): e: en Status P/WP)	Group (TN) approx up to 3	x. 120
2 E n 3 P n 4 C • • • • •	Cou a Atom b Atom b Atom Elective option none Participation none Contents: Elements Basics of Density fi	nistic Materials Mo nistic Materials Mo nistic Materials Mo ions within the m n requirements: s of the quantum the electronic structure unctional theory es and pseudopote	neory of mole		hing form ∨ Ü	time (1 30 30	h) (h) 60	(I	P/WP)	(TN)	x. 120
2 E n 3 P n 4 C • • • • • •	b Aton Elective optinone Participation none Contents: Elements Basics of Density fi Basic rate	nistic Materials Mo ions within the m n requirements: s of the quantum th electronic structur unctional theory es and pseudopote	neory of mole		Ü	30					
n 3 P n 4 C • • • • 5 L	none Participation none Contents: Elements Basics of Density fi Basic rate	or requirements: s of the quantum the electronic structure unctional theory es and pseudopote	neory of mole ral calculatio		and solid	ls					
• • • • • 5 L	 Elements Basics of Density f Basic rate 	electronic structur unctional theory es and pseudopote	ral calculatio		and solid	ls					
		on or structural and	d vibrational	propert	ties and	thermod	lynamic qua	antities of r	nolecules	and sol	lids
	Ability to inde The students understa know the are able are profic Espresso	tcomes / competer ependently simulat and the basic methor relevant nomencle to identify suitable cient in common p o, including the det ability to discuss a	te atomic-sca ods of atomi ature, methods for program pack termination c	istic mat r the stru kages fo of useful	terial sin uctural e or atomis I numerio	nulation elucidatic stic struc cal para	and their a on of molec cture elucic meters and	reas of app ules, solids ation such basis sets	blication a s and nan n as Gaus	nd limita ostructu sian and	ations, th ires, d Quantu
		performance:									
ļ Ē		ule examination (N Form of examinat	/ = =	dule exa	amination	<u>n (MP) []</u>	Du	art examina ration or ope	Weig	TP) hting fo ule grad	
	,	Written exam or Dral examination)-180 min. 45 min.	100 %	6	
	Academic a	chievement / qua	lified partic	ipation	:						

	none
9	Requirements for the awarding of credit points:
	Credit points are awarded if the final module examination is passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	M.Sc. Physics
12	Module coordinator:
	Prof. Dr. Wolf Gero Schmidt / Prof. Dr. Arno Schindlmayr
13	Other notes:
	none
14	Recommended reading:
	K. Ohno, K. Esfarjani, Y. Kawazoe: Computational Materials Science: From Ab Initio to Monte Carlo Methods, 2nd edition, Springer, Berlin/Heidelberg, 2018, DOI:10.1007/978-3-662-56542-1
	J. G. Lee: Computational Materials Science: An Introduction, 2nd edition, CRC Press, Boca Raton, 2016, DOI:10.1201/9781315368429

		als												
Nar	omateria	als												
Мо	dule num	ber:	Workload (h):	LP:	Seme	ester of	study:	Rota	ation	Dura	tion	Lan	guag	P/WP:
3			150	5	1.			: WS		(in se 1	em.):	e: en		Ρ
	Modul	e stru	cture:			-					-			
		Cou	rse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WF		Group (TN)	o size
	а	•	sics and Technologo omaterials	gy of		V	30		60		Р		appro	x. 120
	b		sics and Technologo omaterials	gy of		Ü	30		30		Ρ		up to 3	30
2	Electiv none	ve opt	ions within the m	odule:										
1			nechanics are rec			l structur	e of soli	d subs	stance	s, basio	cs of the	ermod	lynamio	cs, basio
	Conte Th Pro Str La Pro gra	nts: ermod oductio ructurir teral si oductio aphene	ynamic and crysta on of thin films fror ng and modificatio tructuring of thin la on, processing an e and van der Waa	ommended allographic fu n the liquid p n of thin film ayers and su d application als materials	undame phase a ns using urfaces u n of 1-,	entals of r and vacuu thermal, using cor 2- and 3	nanoma um, vacu , wet-cho nvention 3-dimen	terials uum pł emical al and sional	hysics I, ion b I advar nano-	eam ar nced lit	nd plasr hograph	ma-ba hy pro	ased pro	ocesses
	Conte • Th • Pro • Str • La • Pro gra Learni	nts: ermod oductio ructurir teral si oductio aphene	ynamic and crysta on of thin films fror ng and modificatio tructuring of thin la on, processing an e and van der Waa tcomes / compet	ommended allographic fu n the liquid p n of thin film ayers and su d application als materials	undame phase a ns using urfaces u n of 1-,	entals of r and vacuu thermal, using cor 2- and 3	nanoma um, vacu , wet-cho nvention 3-dimen	terials uum pł emical al and sional	hysics I, ion b I advar nano-	eam ar nced lit	nd plasr hograph	ma-ba hy pro	ased pro	ocesses
	Conte Th Pro Str La Pro gra Learni Learni Knowle	nts: ermod oductio ructurir teral si oductio aphene ing ou edge o ochem s.	ynamic and crysta on of thin films fror ng and modificatio tructuring of thin la on, processing an <u>e and van der Waa</u> tcomes / compet tcomes f basic methods fo nical properties and	ommended allographic fu n the liquid p n of thin film ayers and su d application als materials rences:	undame phase a ns using urfaces u n of 1-, s, nanoc	entals of r and vacuu thermal, using cor 2- and 3 clusters, o modern	nanoma um, vacu , wet-che nvention 3-dimen core-she nanoma	terials uum ph emical al and sional ell struc	hysics I, ion b I advar nano- ctures) s, their	eam ar nced lit objects	nd plasr hograph s (nano	ma-ba hy pro wires	ased pro ocesses and na	ocesses anotube
	Conte Th Pro Str La Pro gra Learni Knowle physic models Comp Analyz	nts: ermod oductio ructurir teral si oductio aphene ing ou ing ou edge o ochem s. etenci s. etenci	ynamic and crysta on of thin films fror ng and modificatio tructuring of thin la on, processing an <u>e and van der Waa</u> tcomes / compet tcomes f basic methods fo nical properties and	ommended allographic fu n the liquid p n of thin film ayers and su d application als materials cor the produ d application c of nanoma	undame phase a ns using urfaces u n of 1-, s, nanoc ction of ns. Unde aterials,	entals of r ind vacuu thermal, using cor 2- and 3 clusters, o modern erstandin	nanoma um, vacu , wet-cho nvention 3-dimen core-she nanoma ig and m	terials uum ph emical, al and sional ell struc aterials nathem	hysics I, ion b I advar nano- ctures) s, their natical tablish	eam ar nced lit objects atomis formula	nd plasr hograph s (nanor tic struc ation of	ma-ba hy pro wires cture a the pl	ased pro ocesses and na and the hysical e lectur	ocesses anotube resultir facts ar
5	Conte Th Pro Str La Pro gra Learni Learni Knowle physic models Comp Analyz techno contex Ability	nts: ermod oductio oductio oductio aphene ing ou edge o ochem s. etenci e que logica t. to thir	lynamic and crysta on of thin films fror ng and modificatio tructuring of thin la on, processing an e and van der Waa tcomes / compet tcomes of basic methods for nical properties and fes: stions on the topi	ommended allographic fu m the liquid p n of thin film ayers and su d application als materials rences: or the produ d application c of nanoma ate problems nalytically a	undame phase a ns using urfaces u n of 1-, <u>s, nanoc</u> ction of ns. Unde aterials, s mathe nd logic	entals of r ind vacuu thermal, using cor 2- and 3 clusters, o modern erstandin	nanoma um, vacu , wet-cho nvention 3-dimen core-she nanoma g and m problem v, discus the abi	terials uum pr emical al and sional ell struc aterials nathem	hysics I, ion b I advar nano- ctures) s, their natical tablish ults and	eam ar nced lit objects formula a conr d classi	nd plasr hograph s (nano atic struc ation of nection	ma-ba hy pro wires cture a the ph to the	ased pro ocesses and na and the hysical e lectur materia	ocesses anotube resultir facts ar re, crea I-physic

6	Examinat	tion performance:		
	[x] Final n	nodule examination (MAP) [] Module examinati	on (MP) [] Module part examination	ons (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	a) and b)	Written exam or	120 - 180 min. 30-45 min.	100 %
7		Oral examination		
7	none	c achievement / qualified participation:		
8	Requiren	nents for participation in examinations:		
9	Requiren	nents for the awarding of credit points:		
	Credit poi	nts are awarded if the final module examination	ı is passed.	
10	Weightin	g for overall grade:		
	The modu	le is weighted with the number of credit points	(factor: 1).	
11	Use of th	e module in other degree programs:		
	M.Sc. Phy	ysics		
12	Module c	oordinator:		
	Prof. Dr. J	Jörg Lindner / Prof. Dr. Dirk Reuter		
13	Other not	tes:		
	none			
14	Recomm	ended reading:		
	B. Bhusha	an (ed.): Springer Handbook of Nanotechnology	1	
	Materials	Research Society Bulletin, Selected Issues; Ca	Imbridge University Press	

	erials Anal	ysis												
Mat	erials Analy	sis												
Mo 4	dule numbe	er: Workloa 150	ıd (h):	LP: 5	Sem 1.	ester of	study:	Rota : WS	ation	Durat (in se		Lang e: en	juag	P/WP: P
1		structure: Course				Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Grouț (TN)	o size
		Advanced Ana Advanced Ana		,		V Ü	30 15		60 45		P P		appro: up to :	x. 120 30
2	Elective none	options withi	n the m	nodule:										
3	Participa none	ntion requiren	nents:											
4	characte	re is held as a rization of mat				are micr	oscopic,	spect	troscop	oic, ele	ctrochei	mical n	netho	ds for the
	scattering	rd backscatter g, neutron tech spectroscopy.	ing spe	ectroscopy,	nuclea	r magne	tic reso	nance	spec	troscop	y, mas	ion, X- s spec	ctrosc	osorptior opy, ligh
5	scattering electron s Learning Students	g, neutron tech	ing spe niques, compet nd basi	ectroscopy, calorimetric ences: c knowledge	nuclea measu	r magne irement r	tic reso nethods ew of m	nance , infrar odern	e spect red and metho	troscop d Rama ds for t	y, mas in spect	ion, X- s spec roscop	ctrosco by, ellip zation	osorption opy, ligh osometry of solids
	scattering electron Etearning Students solid surf Examina	g, neutron tech spectroscopy. J outcomes / d acquire a sou aces and mate tion performa	ing spenniques, competind basi prial inte	ectroscopy, calorimetric ences: c knowledge rfaces. The	nuclea c measu e and a student	r magne irement r in overvie is know t	tic reso nethods ew of m he poter	nance , infrar odern ntials a	metho	troscop I Rama ds for t ts of th	y, mas in spect the chai e applic	ion, X- s spec roscop racteriz ability o	ctrosco by, ellip zation of the	osorption opy, ligh osometry of solids
5	scattering electron Etearning Students solid surf Examina	g, neutron tech spectroscopy. J outcomes / acquire a sou aces and mate	ing spenniques, competend basic erial intend ance: nation (l	ectroscopy, calorimetric ences: c knowledge rfaces. The MAP) [] Moo	nuclea c measu e and a student	r magne irement r in overvie is know t	tic reso nethods ew of m he poter	nance , infrar odern ntials a	metho	troscop J Rama ds for t ts of th <u>t exam</u> ation o	y, mas in spect the char e applic inations	ion, X- s spec roscop racteriz ability o	ctrosco by, ellip zation of the b) ting fo	osorption opy, ligh osometry of solids methods
	scattering electron Students solid surf Examina [x] Final	g, neutron tech spectroscopy. J outcomes / d acquire a sou aces and mate tion performa nodule examin	ing spenniques, competend basic erial intenation (I mation (I common	ectroscopy, calorimetric ences: c knowledge rfaces. The MAP) [] Moo	nuclea c measu e and a student	r magne irement r in overvie is know t	tic reso nethods ew of m he poter	nance , infrar odern ntials a	metho metho metho nd limi ule par sco 120	troscop J Rama ds for t ts of th <u>t exam</u> ation o	y, mas in spect the char e applic inations r V r	ion, X- s spec roscop racteriz ability o s (MTP Neight	ctrosco by, ellip zation of the b) ting fo	osorption opy, ligh osometry of solids methods
6	scattering electron s Students solid surf Examina [x] Final n to a) and b)	g, neutron tech spectroscopy. J outcomes / d acquire a sou aces and mate tion performation module examin Form of examined Written examined	ing spenniques, competend basis erial inter ance: mation (I xamina am or nation	ectroscopy, calorimetric ences: c knowledge rfaces. The MAP) [] Moo tion	nuclea measu e and a student dule exa	r magne irement r in overvie s know the amination	tic reso nethods ew of m he poter	nance , infrar odern ntials a	metho metho metho nd limi ule par sco 120	troscop I Rama ds for t ts of th ts of th ation o pe min.	y, mas in spect the char e applic inations r V r	ion, X- s spec roscop racteriz ability o s (MTP Neight nodule	ctrosco by, ellip zation of the b) ting fo	osorption opy, ligh osometry of solids methods
	scattering electron s Students solid surf Examina [x] Final n to a) and b) Academ none	g, neutron tech spectroscopy. J outcomes / d acquire a sou aces and mate tion performation form of examination Written examination Oral examination	ing spenniques, competend basis erial inter ance: mation (I kamina am or ination nt / qua	ectroscopy, calorimetric ences: ic knowledge rfaces. The MAP) [] Moo tion	nuclea measu e and a student dule ex-	r magne irement r in overvie is know the amination	tic reso nethods ew of m he poter	nance , infrar odern ntials a	metho metho metho nd limi ule par sco 120	troscop I Rama ds for t ts of th ts of th ation o pe min.	y, mas in spect the char e applic inations r V r	ion, X- s spec roscop racteriz ability o s (MTP Neight nodule	ctrosco by, ellip zation of the b) ting fo	osorption opy, ligh osometry of solids methods
6 7	scattering electron s Students solid surf Examina [x] Final n to a) and b) Academ none Requiren none Requiren	g, neutron tech spectroscopy. J outcomes / d acquire a sou aces and mate tion performa module examin Form of ex Written exa Oral examini ic achieveme	ing spenniques, competind basis erial inter ance: nation (I kamina am or nation nt / qua ticipatie awardi	ectroscopy, calorimetric ences: c knowledge rfaces. The MAP) [] Moo tion lified partic on in exami	nuclea measu e and a student dule ex- cipation	r magne irement r in overvie is know the amination n: s:	tic reso nethods ew of m he poter n (MP) [nance , infrar odern ntials a] Mode	metho metho metho nd limi ule par sco 120	troscop I Rama ds for t ts of th ts of th ation o pe min.	y, mas in spect the char e applic inations r V r	ion, X- s spec roscop racteriz ability o s (MTP Neight nodule	ctrosco by, ellip zation of the b) ting fo	osorptior opy, ligh osometry of solids methods

	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Guido Grundmeier / Prof. Dr. Jörg Lindner
13	Other notes:
	none
14	Recommended reading:
	The lecturers provide the students with the relevant literature or literature references for the respective topic in good time before the lecture.

5 1 M 2 E 1: e; 3 P n(4 C 1: •	II Scier Mana Elective opti : The studen experiments Participation none Contents: : Basic analy	rse rials Physics and ntific Practice and agement fons within the m its select three ex originate from the n requirements: rtical methods of n	Data nodule: periments f scientific fie	from a li	vork of th	Conta time (45 15 eriments ne workir	h) (h) 105 15 s that is curring groups in	rently previous for the second	m.): Status (P/WP P P esented) (T up up	ר אין	size et. The
1 M 2 E 1: 2 E 1: 2 P n(4 C 1: •	Count I Mate II Scient Mana Scient Elective opti Mana Elective opti The student Experiments of the student Participation Participation Contents: Basic analy	cture: rse rials Physics and ntific Practice and agement fons within the m its select three ex originate from the n requirements:	Analysis Data Data periments f scientific fie	from a li elds of v	hing form P S st of exp vork of th	time (45 15 eriments ne workir	SS act Self- (h) 105 15 s that is curring groups in	rently prevolved in	Status (P/WP P P esented	en Gr (T up up	oup si v) to 7 to 30	size et. The
2 E I: e; 3 P nn 4 C I: •	Count I Mate II Scient Mana Scient Elective opti Mana Elective opti The student Experiments of the student Participation Participation Contents: Basic analy	rse rials Physics and ntific Practice and agement fons within the m its select three ex originate from the n requirements: rtical methods of n	Data nodule: periments f scientific fie	elds of w	hing form P S st of exp vork of th	time (45 15 eriments ne workir	h) (h) 105 15 s that is curring groups in	rently provide in	(P/WP) P P) (T up up	t o 7 to 30	et. Th
2 E 1: e: 3 P nr 4 C 1: •	I Mate II Scier Mana Elective opti : The studen experiments of Participation none Contents: : Basic analy	rials Physics and ntific Practice and agement fons within the m ats select three ex originate from the n requirements:	Data nodule: periments f scientific fie	elds of w	hing form P S st of exp vork of th	time (45 15 eriments ne workir	h) (h) 105 15 s that is curring groups in	rently provide in	(P/WP) P P) (T up up	t o 7 to 30	et. Th
2 E 1: e: B P nd I: I: •	II Scier Mana Elective opti : The studen experiments Participation none Contents: : Basic analy	ntific Practice and agement fons within the m its select three ex originate from the n requirements:	Data nodule: periments f scientific fie	elds of w	S st of exp vork of th	15 eriments ne workir	15 s that is curring groups in	rently previous for the second	P	up d on the	to 30	et. Th
2 E 1: e: B P nd I: I: •	Mana Elective opti : The student experiments of Participation none Contents: : Basic analy	agement Ions within the m its select three ex originate from the n requirements: rtical methods of n	periments f scientific fie	elds of w	st of exp vork of th	eriments ne workir	s that is curring groups in	volved ir	esented	d on the	Interne	et. Th
I: ex P nd C I: •	: The studen experiments of Participation none Contents: : Basic analy	its select three ex originate from the n requirements: rtical methods of n	periments f scientific fie	elds of w	vork of th	ne workir	ng groups in	volved ir				
C C : •	none Contents: : Basic analy	tical methods of n		cience ar	re taught							
I C I: •	Contents: : Basic analy			cience ar	re taught		P 14					
re ste op	X-ray diff Surface v Compute Ellipsome : Philosophy esearch data torage, Big I pen science	raction on powder vetting and interfa r-aided determina etry on thin layers of science and s (repeatability, rej Data, regulations, and data, scientifi xts (definition of o	s and thin f cial energie tion of elect scientific me producibility archiving); ic miscondu	films es tron den ethod (h y, signifi profess uct, conf	nypothes cance, p sional eth fidentialit	is, falsifi recision nics in m y and ne	and accura naterials sci eutrality); ha	s of natu cy); han ence (cit ndling of	ure, emp ndling of tation, a f literatu	f researd authorsh ure; critic	h data p, cop al eva	a (dat pyrigh aluatio
5 L	_earning out	tcomes / compete	ences:									
	•	e of the fundame d structural materi										
m da m th fc gr	nacroscopic locument the neasuremen heir reliability or writing sci groups.	rn and deepen th properties and to results. By critica t results, students y and significance ientific papers late crete data and ex	o systemat Illy handling acquire th . By record er on. Stude	tically in g their ov ne comp ling the r ents also	nplement wn meas etence to results, s o improv	t them i urement o classif tudents re their to	n a real lal data and co y the measu acquire writ eamwork sk	ooratory omparing urement ten pres ills by w	environ g it with results sentation vorking	nment, e known a of other n skills ir on probl	evaluat nd put s in te n prepa ems in	ate an blishe erms c baratio n sma

6	Examin	ation performance:		
	[] Final	module examination (MAP) [] Module examina	tion (MP) [x] Module part examina	itions (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	I	Entirety of the tests	3	83%
	II	Written exam or Seminar report	approx. 90 min. 2-3 pages	17%
7	Academ none	nic achievement / qualified participation:		
8	Require	ments for participation in examinations:		
	-	lance on the test days is mandatory.		
9	Require	ments for the awarding of credit points:		
	Credit p	oints are awarded if the final module examinati	on is passed.	
10	Weighti	ng for overall grade:		
	-	dule is weighted with the number of credit point	s (factor: 1).	
11	Use of t	he module in other degree programs:		
	none			
12	Module	coordinator:		
		. Jörg Lindner / Prof. Dr. Guido Grundmeier / P	D Dr. Teresa de los Arcos	
13	Other n	•		
10	none			
14		mended reading:		
14	Re I)	nendeu reading.		
	The exa	ct literature for each course will be announced topics are as follows:	directly by the respective tutors. E	xamples of literature on
	Harringt (2021)	on, Santiso - Back-to-Basics tutorial - X-ray dif	raction of thin films- Journal of Ele	ectroceramics 47, 141-163
	Ellipsor	-		
		npkins and WA McGahan. Spectroscopic eliipso	pmetry and reflectometry. John Wi	ley and Sons (1999)
	Electroc	apacitors: hemical Supercapacitors: Scientific Fundame 78-1-4757-3058-6.	ntals and Technological Applicati	ons, B.E. Conway, 1999
		es in Supercapacitor and Supercapattery: Ir	novations in Energy Storage D	evices, M. Khalid, ISBN
	Re II)			
		e, "Introduction to the Philosophy of Science", L		

ſ	DFG Code "Guidelines for Safeguarding Good Scientific Practice";
	Kovac, "The ethical chemist: Professionalism and ethics in science", Oxford University Press, 2018;
	Hepburn & Andersen, "Scientific method", 2015;
	Meier & Zünd, "Statistical methods in analytical chemistry". John Wiley & Sons, 2005.

_ab	oratory Course	on Materials Cher	mistry and A	Analysis			ľ		T		I		
Mod	dule number:	Workload (h):	LP:	Sem	ester of	study:	Rot	ation	Dura	tion	Lang	guag	P/WP:
6		150	5	3.			:		(in se	em.):	e:		Ρ
	I						WS		1		en		
1	Module stru	ucture: urse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WF	-	Group (TN)) size
	Mat	erials Chemistry a	nd Analysis		Р	45		105		Р		up to	7
}	experiments	is select three exp originate from the on requirements:			•								
•	none												
Ļ	Contents:												
	 issues. Example Spectro Atomic for the Atomic of Molecul Synthese Sol-gel Synthese Additive Solid state 	is and analysis of p manufacturing of p ate NMR	urfaces and ased metho urfaces of po polymer hyb polymer mat	l interfac ods orous sc orid mate	ces olids					laught		ppned	
5	Learning o	utcomes / compet	ences:										
	and structur Students lea material with evaluate an	of the fundamental al materials. Applic arn and deepen the n a focus on materi d document the re published measure	ation of mo eir ability to als chemistr sults. By cr	dern da plan st ry and to ritically o	ta acquis ructured o systema dealing v	ition me experim atically i vith thei	ethods nents mpler r own	s and co for the ment th measu	ompute synthe em in a uremer	er techn esis and a real la nt data	iques. I chara borato and co	acteriza ory envi ompari	ation of ironmer ng it wi

6		t ion performance: odule examination (MAP) [x] Module examinatio	on (MP) [] Module part examina	tions (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
		Entirety of the tests	3	100%
7	Academic none	c achievement / qualified participation:		
8	-	nents for participation in examinations: be on the test days is mandatory.		
9	-	nents for the awarding of credit points: nts are awarded if the final module examination	is passed.	
10	•	g for overall grade: Ile is weighted with the number of credit points (factor: 1).	
11	Use of the none	e module in other degree programs:		
12		oordinator: Guido Grundmeier / Prof. Dr. Jörg Lindner / PD I	Dr. Teresa de los Arcos	
13	Other not	tes:		
	none			
14	The exact on relevar AFM :	ended reading: t literature for each experiment will be announce nt topics is the following: gstad. "Atomic Force Microscopy: Understandin ons, Inc		
	FTIR: W. Suetak Basics of	ka. "Surface Infrared and Raman Spectroscopy" f NMR:	'. 2014 Springer	
	James Ke	eler, Understanding NMR Spectroscopy, Wiley on of solid-state NMR:	2004.	
	Analysis c	va et al, Magic Angle Spinning NMR Spectrosco of Solid-Phase Systems, Anal. Chem. 2015, 87,		tructural and Dynamic
	J. P. Rao,	& nanoparticles: , K. E. Geckeler, Progr. Polym. Sci. 2011, 36, 88	37-913	
		rn, Progr. Polym. Sci. 2006, 31, 443-486 :kett, R. G. Gilbert, Polymer 2007, 48, 6965-699	1	
	D. Kucklin	ng, A. Doering, F. Krahl, and KF. Arndt: Stimul (eds.) Polymer Science: A Comprehensive Refe	i-Responsive Polymer Systems.	
	QS. Zha Batteries	ng, LS. Zha, JH. Ma, BR. Liang, J. Appl. Po :	lym. Sci. 2007, 103, 2962-2967	

Beard, Kirby W. Linden's handbook of batteries. McGraw-Hill Education, 2019. Winter, Martin, and Ralph J. Brodd. "What are batteries, fuel cells, and supercapacitors?". Chemical reviews 104.10 (2004): 4245-4270. Other:

Lazarides et al Making Hydrogen from Water Using a Homogeneous System Without Noble Metals. J. AM. CHEM. SOC. 2009, 131, 9192-9194 10.1021/ja903044n

Sust	ainable N	Nater	ials and Process	es										
Susta	ainable M	ateria	als and Processes											
Modu 7	ule numb	oer:	Workload (h): 180	LP: 6	Sem 3.	ester of	study:	Rotati : WS	ion	Durat (in se		Lang e: en	guag	P/WP: P
1	Module	stru Cou				Teac hing form	Conta time (Self-si h)	tudy	Status (P/WP		Group (TN)	o size
	I	•	hesis of Sustainat n Processes	le Materials	and	V	30	4	5		Ρ		approx	x. 120
	lla	Appl	ied Electrochemis	try		V	30	4	-5		Р		approx	x. 120
	llb	Appl	ied Electrochemis	try		Ü	15	1	5		Ρ		up to 3	30
2	Elective none	e opti	ons within the m	odule:										
4	Content I: Lectu producti and PEC and "Life II: Electu of electu	ts: on, p CVD e Cyc ron tra rocata	vledge of electroc eries: Concepts a olymer synthesis, processes), vacuu ele Assessment", s ansfer processes, alysis and electro osion, electrocher	and exampl composites, um process sustainable p semiconduc ochemical sy	es of sol-ge techno process ctor ele ynthesi	sustainal l chemisi logy, ren sing of ma ctrochen s, electro	ble synt ry, thin f ewable aterials. histry, ac ochemic	thesis ro film depo resourco dvanced al surfa	outes ositio es, ba l elec ace te	for m n (e.g. asic co trocher	electroo incepts mical ar	depos of "Gi nalytic	ition, C reen C s, fund	CVD, PVD hemistry" amentals
5	I: Stude advance II: Stude They ha	nts h ed un ents l ave an ion of	tcomes / compet ave broad knowle derstanding of the nave in-depth kno n advanced under sustainable electro very.	dge in the fi assessmen wledge in th rstanding of	t of sus ne field integra	stainabili of comp al and loo	ty conce plex electical election	pts in m ctrocher rochem	nateria mical iical a	als dev proces nalysis	elopme sses at s at inte	ent. solid-: erfaces	state ir s as w	nterfaces. ell as the
6			performance:											
	[x] Final		ule examination (N		lule exa	aminatio	<u>ו (MP) [</u>] Modul				· ·		
	to	F	Form of examinat	tion					Dura scop	ntion o De		-	nting fo le grad	
	la to III	b V	Vritten exam or						120	min.	1	00%		
		c	oral examination						<u>3</u> 0-4	5 min.				

7	Academic achievement / qualified participation: none
8	Requirements for participation in examinations:
9	Requirements for the awarding of credit points: Credit points are awarded if the final module examination or the final module examination is passed.
10	Weighting for overall grade: The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs: none
12	Module coordinator: Prof. Dr. Guido Grundmeier / Junior Prof. Dr. Hans-Georg Steinrück
13	Other notes: none
14	Recommended reading: I: Current review articles on the changing topics are provided by the lecturers before the respective lecture. II: C. H. Hamann, W. Vielstich: <i>Elektrochemie, Wiley-VCH</i> ; W. Schmickler, E. Santos: <i>Interfacial Electrochemistry</i> , Springer K. Oldham, J. Myland, A. Bond: <i>Electrochemical Science and Technology: Fundamentals and Applications</i> , Wiley.

Proje	ect based cou	rse											
•	lule number:	Workload (h): 240	LP: 8	Sem 3.	ester of	study:	Rot : WS	ation	Durat (in se		Lang e: en	guag	P/WP: P
1	Module str	ucture: urse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Group (TN)	o size
		rent Topics of Mate	erials Scienc	e	S P	30 75		60 75		P P		approx up to a	
2	Elective op	tions within the m	nodule:										
3	Participation	on requirements:											
4	Contents:					. <i>,</i> .			 -	<i></i>			
	Contents: Collaboratio responsible familiarizing themselves	on on current rese for both the topic themselves with the with the necessary	e and the such the topic of a experimentation	upervisi a narrov	ion. Stud vly defin	dents sl ed ques	hould tion th	practis hrough	se scie	ntific w	ork by	y inde	pendent
4 5	Contents: Collaboration responsible familiarizing themselves Learning on I: Students and a pos	for both the topic themselves with the topic themselves with the topic terms and the topic terms and the topic terms and the topic terms are the topic terms and the topic terms are topic ter	e and the sum he topic of a experimentation ences: esearch topic solving the	upervisi a narrov al meth c in an c	ion. Stud vly define ods large oral prese	dents sl ed ques ely indep entation	hould tion th pende	practis hrough ently. should	include	ntific w ire rese	ork by arch a	y inder and far	pendenti niliarizin
	Contents: Collaboration responsible familiarizing themselves Learning of I: Students and a post interdisciplin II: Students interdisciplin By preparin	for both the topic themselves with the with the necessary utcomes / compet present a current re- sible approach to nary audience in an s work on a smal nary manner by par g a report, student	e and the sum the topic of a experimentation ences: esearch topic solving the issue. I project tag ticipating in s acquire th	upervisi a narrov <u>al meth</u> c in an c proble sk usin an inter e ability	ion. Stud vly defin ods large oral prese m. In d ng scient disciplin y to critic	dents sl ed ques ely inder entation oing so tific met ary proje cally ana	hould tion th pende . This , they thods. ect. alyze	practis hrough ently. should y acqu . They measu	include include ire the acquir	ntific w ire rese e the cu compe re the a	rrent setence	state of to in	pendenti niliarizin researc terest a prk in a
	Contents: Collaboration responsible familiarizing themselves Learning of I: Students and a post interdisciplin II: Students interdisciplin By preparing present scie	for both the topic themselves with the with the necessary utcomes / compet present a current re- sible approach to hary audience in an s work on a smal hary manner by par	e and the sum the topic of a experimentation ences: esearch topic solving the issue. I project tag ticipating in s acquire th	upervisi a narrov <u>al meth</u> c in an c proble sk usin an inter e ability	ion. Stud vly defin ods large oral prese m. In d ng scient disciplin y to critic	dents sl ed ques ely inder entation oing so tific met ary proje cally ana	hould tion th pende . This , they thods. ect. alyze	practis hrough ently. should y acqu . They measu	include include ire the acquir	ntific w ire rese e the cu compe re the a	rrent setence	state of to in	researc terest a
5	Contents: Collaboration responsible familiarizing themselves Learning of I: Students and a post interdiscipling II: Students interdiscipling By preparing present sciese	for both the topic themselves with the with the necessary utcomes / compet present a current re- sible approach to nary audience in an a work on a smal nary manner by par g a report, student entific facts in writin	c and the sum he topic of a experimentation experimentation experimentation experimentation experimentation solving the solving the issue. I project tas ticipating in a acquire th g. By workin	upervisi a narrov al meth c in an c proble sk usin an inter e ability g in sm	ion. Stud vly defin ods large oral prese m. In d ng scient rdisciplin y to critic all group	dents sl ed ques ely indep entation oing so tific met ary proje cally ana os, they l	hould tion the pende . This , they thods. ect. alyze learn	practis hrough ently. should y acqu . They measu to work dule par	include include ire the acquir rement in a te	ntific w ire rese e the cu compe re the cata a aam.	arrent s etence ability nd tes s (MTI Neigh	y indep and far state of to in to wo st resul P)	oreseard terest a ork in a ts and t
5	Contents: Collaboration responsible familiarizing themselves Learning of I: Students and a post interdiscipling II: Students interdiscipling By preparing present scies Examination	for both the topic themselves with the with the necessary utcomes / compet present a current re- sible approach to nary audience in an a work on a small nary manner by par g a report, student entific facts in writin on performance: dule examination (N	c and the sum he topic of a experimentation experimentation experimentation experimentation experimentation solving the solving the issue. I project tas ticipating in a acquire th g. By workin	upervisi a narrov al meth c in an c proble sk usin an inter e ability g in sm	ion. Stud vly defin ods large oral prese m. In d ng scient rdisciplin y to critic all group	dents sl ed ques ely indep entation oing so tific met ary proje cally ana os, they l	hould tion the pende . This , they thods. ect. alyze learn	practis hrough ently. should y acqu . They measu to work dule par sco	include include ire the acquir rement in a te	e the cu compe re the cu compe re the a data a am.	arrent s etence ability nd tes s (MTI Neigh	y indep and far state of to in to wo st resul P) nting fo	researce terest a ork in a its and t
5	Contents: Collaboration responsible familiarizing themselves Learning of I: Students and a post interdiscipling II: Students interdiscipling By preparing present sciese Examination	for both the topic themselves with the with the necessary utcomes / compet present a current re- sible approach to hary audience in an a work on a small hary manner by par g a report, student entific facts in writin on performance: dule examination (N Form of examina	c and the sum he topic of a experimentation experimentation experimentation experimentation experimentation solving the solving the issue. I project tas ticipating in a acquire th g. By workin	upervisi a narrov al meth c in an c proble sk usin an inter e ability g in sm	ion. Stud vly defin ods large oral prese m. In d ng scient rdisciplin y to critic all group	dents sl ed ques ely indep entation oing so tific met ary proje cally ana os, they l	hould tion the pende . This , they thods. ect. alyze learn	practis hrough ently. should y acqu . They measu to work dule par sco 30-4 Max	include include ire the acquir rement in a te t exam ation o pe 5 min imum th 50	e the cu compe re the cu compe re the a adda a am.	rrent s etence ability nd tes s (MTI Neigh modul	y indep and far state of to in to wo st resul P) nting fo le grac	researc terest a ork in a lts and t

	none
9	Requirements for the awarding of credit points:
	Credit points are awarded when the module examinations have been passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Guido Grundmeier / Prof. Dr. Jörg Lindner
13	Other notes:
	none
14	Recommended reading:
	Individual recommendations according to the chosen subject area (mainly articles from peer reviewed journals).

Mas	ter Thesis												
Mast	ter Thesis			_	_	_	_	_	_	_		_	_
Mod 9	ule numb	er: Workload (h): 900	LP: 30	Semo	ester of	study:	Rota : SS	ation	Durat (in se		Langua e: en	•	P/WP:
1	Module	structure:			-								
		Course			Teac hing form	Conta time (Self-s (h)	tudy	Statu: (P/WF		oup s I)	size
		Master thesis			Р	300		420		Р	1		
		Oral defense			S	30		150		Ρ	1		
2	Elective none	options within the n	odule:										
3	-	ation requirements: on of all modules wit ps.	h the except	ion of	up to 12	missing	g cred	it point	s, insc	ofar as t	these do	not r	elate to
4	Content	S:											
	As a rule	, the topic can be free	ly selected fr	rom the	e projects	offered	by th	e partio	cipating	, subjec	t areas.		
5	By comp from a fie through with Eng	g outcomes / competed leting the Master's the eld of chemistry under practical work and inc lish-language speciali d creativity. Their abilit	sis, students ^r supervision lependent lite st literature.	and si erature By woi	ummarize researc rking on	e this in h. They their ow	writin expar /n proj	ig. The nd thei ject, th	y expa r foreig ey dev	nd their In langu elop inc	methodo iage skills lependen	logic s by v ce, p	al skills working
6	Examina	ation performance:	-										
	[] Final r	nodule examination (N	/IAP) [] Modi	ule exa	mination	(MP) [x	(] Mod	ule par	t exam	ination	s (MTP)		
	to	Form of examina	tion					Dura sco	ation o pe		Neighting nodule g	•	
	1	Master thesis						50-1	00 pag	jes 8	30%		
		Oral defense						30-4	5 min.		20%		
7		Oral defense	lified partic	ipation	1:			30-4	<u>5 min.</u>		20%		
7 8	Academ none			·				30-4	<u>5 min.</u>		20%		
	Academ none Require none Require	ic achievement / qua	on in examin ng of credit	nations	5 :	e oral de	afense				20%		

	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Guido Grundmeier / Prof. Dr. Jörg Lindner
13	Other notes:
	none
14	Recommended reading:
	Individual recommendations according to the chosen subject area.

	anced Ele	ectron	Microscopy										
Mod 10	ule num	ber:	Workload (h): 180	LP: 6	Sem 1. o.	ester of 3.	study:	Rotatio : WS		ration sem.):	Lan e: en	guag	P/WP: WP
1	Modul	e struc	cture:										
		Cour	Se			Teac hing form	Conta time (lf-study	/ Statu (P/WI		Grouț (TN)	o size
	а	Micro elect	oscopy and spectr	oscopy with		V	30	60		Р		appro	x. 120
	b	Micro elect	oscopy and spectr	oscopy with		Ü	30	60		Ρ		up to 3	30
2	Electiv none	e opti	ons within the m	odule:									
3		-	n requirements: nowledge of the re	eal structure	of crys	stalline so	olids and	l quantur	n mecha	anics is re	comm	nended	
	 Ele Ele Ima Ele Ele Kin Co Co 	ctron-c ctron r aging r ctron c ctron-s emation nvention ntrast f ergy di	on of materials or optical componen nicroscopic prepa nethods and cont diffraction solid-state interac c and dynamic the onal electron micr transmission and spersive X-ray sp energy loss spect	ts and beam aration methor rast types tion eory of electro oscopy and high resolution roscopy EEL	on diffr lattice of EDX .S in TE	in (scann action defects EM and S	ning) trai		electro	on microso	copes	(S)TEM	Л
	• Sp		copy of inter- and tered transmissio			•							
ō	 Specific Specific Specific	ergy-fil		n electron m		•							

		ntation skills by presenting solutions to problems as to work in a team by working on problems in small		
6		tion performance:	(D) [] Modulo port overnineti	
	to	nodule examination (MAP) [] Module examination (I Form of examination	Duration or scope	Weighting for the module grade
	a) and b)	Written exam or Oral examination	90 min. or 30- 45 min.	100%
7	Academi none	c achievement / qualified participation:		
8	Prerequis	sites for participation in examinations:		
9	-	nents for the awarding of credit points: nts are awarded if the final module examination is p	assed.	
10	•	g for overall grade: Ile is weighted with the number of credit points (fact	or: 1).	
11	Use of th M.Sc. Phy	e module in other degree programs: ysics		
12		o ordinator: Jörg Lindner		
13	Other not	tes:		
14		ended reading: ams, C. B. Carter, <i>Transmission Electron Microscop</i>	by, A Textbook for Materials S	Science. Springer

	Beam An	alysis of Materials		T						T		
11			Semo 1. or	emester of study: or 3.		Rotatio : WS		Duration (in sem.): 1		Languag e: en		
1	Module	e structure: Course		Teac hing form	Conta time (lf-stud	y Statu (P/WF		Group size (TN)		
	a b c	Ion Beam Analysis of Ion Beam Analysis of Ion Beam Analysis of		V P S	15 30 30 60 15 30			Р Р Р		approx. 120 up to 8 up to 30		
2	Elective options within the module: none											
3	Participation requirements:											
	modific Ion Sol Tra Ele Ion Dop App	ation, in particular: sources, ion optics, ac eraction of ionizing radi id-state thin-film analys ce element analysis us ment detection using p -solid-state interaction, bing of semiconductors plication of particle acc nostructuring with ion b	tes, ion optics, accelerator principles on of ionizing radiation with biological organisms and radiation protection te thin-film analysis using Rutherford backscattering spectroscopy (RBS) ement analysis using nuclear reaction analysis (NRA) detection using particle-induced X-rays (PIXE) -state interaction, ion ranges, defect formation of semiconductors by means of ion implantation on of particle accelerators in astrophysics, geophysics, nuclear physics and medical physics ucturing with ion beams in and analysis of samples using the particle accelerators available at RUBION as part of projects related									
	b: Prod to the le	ecture material.		, ,		etical ba	ckground					
5	b: Prod to the le c: Pres	ecture material.	iental results	, ,		etical ba	ckground					

6	Examin	camination performance:										
	[] Final	Final module examination (MAP) [] Module examination (MP) [x] Module part examinations (MTP)										
	to	to Form of examination Duration or Weighting for module grade										
	b)	Project report	approx. 30 pages	50%								
	c)	Lecture	approx. 30 min.	50%								
7	Academic achievement / qualified participation:											
	none											
8	Require	ements for participation in examinations:										
	none											
9	Require	ements for the awarding of credit points:										
	Credit p	Credit points are awarded when the module examinations have been passed.										
10	Weighti	ing for overall grade:										
	The mo	The module is weighted with the number of credit points (factor: 1).										
11	Use of the module in other degree programs:											
	M.Sc. Physics											
12	Module	coordinator:										
	Prof. Dr. Jörg Lindner											
13	Other n	Other notes:										
	none											
14	Recom	mended reading:										
	M. Nastasi, J. W. Mayer, Y. Wang Ion Beam Analysis: Fundamentals and Applications, CRC Press											

Time	e resolve	ed Spo	ectroscopy											
Time	e resolve	d Spe	ctroscopy											
Mod 12				Semo	or 3.		Rotat : WS	RotationDura:(in setWS1		-	Languag e: en	P/WP: WP		
1	Module structure:													
	Course					Teac hing form	Conta time (Self-study (h)		Status (P/WP		Group size (TN)	
	Ι	Time resolved Spectroscopy					30	(60		Р	арр	approx. 120	
		Tech	ications on Synch nniques in Time re ctroscopy			S 30			30		Ρ	up f	up to 30	
2	Elective options within the module:													
3	Participation requirements: none; basic knowledge of quantum mechanics and spectroscopy is recommended													
4	Conter	nts:												
	 I: Theoretical principles of various spectroscopic methods that allow high time resolution in the investigation o materials and processes at interfaces. Selected applications in the field of materials chemistry and process technology. II: Various X-ray scattering methods and X-ray spectroscopy methods. One- to two-day excursion to the PETRA II synchrotron in Hamburg. 										nd process			
5	Learni	ng ou	tcomes / compet	ences:										
	 I: Students have knowledge of the theoretical principles and applications of methods for investigating dynamic processes in materials or chemical compounds and at material interfaces on the basis of spectroscopic methods. II: Students have knowledge of how a synchrotron and synchrotron X-ray methods work. They can apply them to questions in materials science and assess which problems are suitable for certain measurement methods. 													
6	Exami	natior	n performance:											
	[x] Final module examination (MAP) [] Module examination (MP) [] Module part examinations (MTP)													
	to	I	Form of examina	tion					Duration o scope			Veighting nodule gr	hting for the Ile grade	
	I) and II)		Written exam or oral examination							min. or 5 min.	1	100%		
7	Academic achievement / qualified participation: none													
8	Requirements for participation in examinations:													

	none
9	Requirements for the awarding of credit points:
	Credit points are awarded if the final module examination is passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	N. N. (Lecturers of Physical Chemistry), JunProf. Dr. Hans-Georg Steinrück
13	Other notes:
	none
14	Recommended reading:
	1:
	T. Weinacht, Brett J. Pearson, Time-Resolved Spectroscopy: An Experimental Perspective, CRC press 2019
	Current review articles on this topic will be provided by the lecturers before the respective lecture.
	II:
	D. McMorrow, J. Als-Nielsen, Elements of modern X-ray physics. John Wiley & Sons 2011
	P. Willmott, An introduction to synchrotron radiation: techniques and applications. John Wiley & Sons 2019
	W. H. De Jeu, Basic X-ray scattering for soft matter, Oxford University Press 2016
	B. K. Agarwal, X-ray spectroscopy: an introduction, Vol. 15. Springer 2013
	G. Bunker, Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy, Cambridge University Press 2010
	F. de Groot, A. Kotani, Core level spectroscopy of solids, CRC Press, Taylor & Francis Group 2008

Surfa	ace and Ir	terface Analysis									
Mod 13	ule numb	ber: Workload (h 150): LP : 5	Sem 2.	ester of	study:	Rotation : SS	Durat (in se	-	Languag e: en	P/WP: WP
1	Module	structure:									
		Course			Teac hing form	Conta time (study	Status (P/WP		p size
		Surface and Interfa Analysis	ce Spectrosco	pic	V	30	60		Ρ	appro	x. 120
		Surface and Interfa Analysis	ce Spectrosco	pic	Ü	15	45		Ρ	up to	30
2	Elective none	e options within the	e module:								
3	Particip none	ation requirement	5:								
	ellipsom and UV analysis	spectroscopy of m letry), electron and photoelectron spec methods, surface-s g microscopy, in-site	ion spectrosco ctroscopy, ion sensitive X-ray	py of in scatteri scatter	iterfaces ing); adv ing and 2	and thir anced a X-ray sp	n films (app application of ectroscopy	ication of spectro methods	of Auge oscopic s, atom	r spectrosco c methods (ic force and	opy, X-ra combine scannin
5	Students and inte In detail Sele Criti Dev	g outcomes / com s acquire knowledge rfaces in materials r , these are ection of the appropri cal evaluation of the elopment of measur lication of such spece	e of the most co esearch. iate method fo measurement rement strategi	r chara t results es acco	cterizing ording to	different	t materials	the mate	erials to		
ô		ation performance									
	[x] Final	module examinatio	n (MAP) [] Mo	dule ex	aminatio	n (MP) [] Module pa	art exami	inations	s (MTP)	
	to	Form of exami	nation					ration or		Veighting for nodule grad	
	a) ar		r				120) min.	1	00 %	
	b)	Oral examination	n				30	min.			

8	Requirements for participation in examinations:
	none
9	Requirements for the awarding of credit points:
	Credit points are awarded if the final module examination is passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Junior Professor Dr. Hans-Georg Steinrück / Dr. Teresa de los Arcos
13	Other notes:
	none
14	Recommended reading:
	J. M. Hollas, Modern Spectroscopy, John Wiley & Sons 2004.
	G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, VCH 1985
	D. Briggs and M. P. Seah, Practical Surface Analysis I and II, John Wiley & Sons 1990
	W. Suetaka, Surface Infrared and Raman spectroscopy -methods and applications, Plenum Press 1995
	J. Als Nielsen and D. McMorrow, Elements of modern X ray physics, John Wiley & Sons, New York, USA 2011
	B. D. Cullity, S. R. Stock, Elements of X ray Diffraction, Pearson, Harlow 2014
	D. S. Sivia, Elementary scattering theory: For X ray and neutron users, Oxford University Press, New York, USA 2011
	Keith, Foster, Spectroelectrochemistry, in Handbook of Electrochemical Energy
	Fauster, Thomas, et al. "Surface Physics." Surface Physics, De Gruyter Oldenbourg 2019

Ator	nistic Dyr	namics	of Materials & Ar	tificial Intellig	jence i	n Materia	als Scier	nce						
Mod 14	lule num	ber:	Workload (h): 180	LP: 6	Sem (1. or	ester of 3.	study:	Rotatio : WS	on	Durat (in se 1		Lan e: en	guag	P/WP: WP
1	Modul	e stru Cou				Teac hing form	Conta time (elf-st	udy	Status (P/WP	-	Group (TN)	o size
	la Ib II	Atom	nistic Dynamics of nistic Dynamics of cial Intelligence in nce	Materials		V Ü V	30 15 15	60 30 30)		P P P		approx up to 3 approx	30
2 3	none Partici	patior	ons within the m requirements:											
4	 Base Gib sta fun Intr pot Mo Cla Sup Cla 	me bas sic con obs' vin tes; th ctions ra- and ential lecula ussic M pervise ussifica	sic concepts of cla ncepts of statistica tual totals; measu nermodynamic qu d intermolecular i of external fields. r Dynamics (MD): fonte Carlo simula ed, unsupervised a ation and regressio	al mechanics urement, tim antities from nteraction p Aims, tasks, tions and reinforce	s: Stati e and n the r otentia metho	stics in pensembl adial dis ls: class	phase s e avera tribution ical inte	pace; di ges; the functio	stribu rmod n; tra	ution fu Iynami anspor	unctions c quant t quant	s; Liou tities f tities	uville's from th from c	theorem the sum of the
5	I: The propert Studen enable and co	aim of ies of ts lear s the tr rrelatio	tcomes / competent of this course is t atoms and molecu on the basics of co reatment of many- on functions. are introduced to m	o illustrate I iles and thei mputer simu body system	r struct Ilation, ns by ca	ure. in partic alculating	ular molo g statistic	ecular d <u>y</u> cal varia	ynam bles s	iics an such a	d Monte s state s	e Carl sums,	lo meth , pair di	ods. Thi stributio

6	Examinat	tion performance:		
	[] Final m	odule examination (MAP) [] Module examination (MP) [x] Module part examina	tions (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	la and	Written exam or	90-120 min. or	66,5%
	lb	oral examination	30-45 min.	
	П	Written exam or	60-90 min. or	33,5%
		oral examination	30-45 min.	
7	Academi	c achievement / qualified participation:		
	none			
8	Requirem	nents for participation in examinations:		
	none			
9	Requirem	nents for the awarding of credit points:		
	Credit poi	nts are awarded when the module examinations have be	een passed.	
10	Weightin	g for overall grade:		
	The modu	le is weighted with the number of credit points (factor: 1).	
11	Use of th	e module in other degree programs:		
	none			
12	Module c	oordinator:		
	Dr. Hossa	am Elgabarty		
13	Other not	tes:		
	none			
14	Recomm	ended reading:		
	M. Tucker	rman, Statistical Mechanics: Theory and Molecular Simu	lation, Oxford Universit	y Press.
		n, D. J. Tildesley, Computer Simulation of Liquids, Oxfor	•	
	D. Marx a	nd J. Hutter, Ab Initio Molecular Dynamics, Cambridge U	Jniversity Press.	

Con	nputatio	nal Sp	ectroscopy											
Con	putation	al Spe	ctroscopy											
Мос	lule num	nber:	Workload (h):	LP:	Sem	ester of	study:	Rot	ation	Dura		Lang	uag	P/WP:
15			180	6	2.			: SS		(in se 1	em.):	e: en		WP
1	Modul	e stru	cture:		I									
		Cou	rse			Teac hing form	Conta time (Self-s (h)	study	Status (P/WF		Grouµ (TN)	o size
	а	Com	putational Spectro	oscopy		V	30		60		Р	á	appro	x. 120
	b	Com	putational Spectro	oscopy		Ü	30		60		Р	ι	up to 3	30
2	Electiv none	ve opti	ions within the m	odule:										
3		ipatior	n requirements:											
	 Fo the Lin inf Co 	ormulat eory, <i>c</i> near ar frared a	golden rule, linear tion and calculatio onstrained density and non-linear optic and Raman specture e application to exa	n in the con / functional f al spectroso oscopy ample syste	text of c theory, copy, cc ms, bot	density fu wave fur pre-level h finite s	inctional action-ba	l theo ased r scopy	ry: time method v, X-ray	e-deper s absorp	ndent de	ensity fi	unctio resoi	nal nance,
5		,	surfaces, layered tcomes / compet		tructure	es)								
J	Studer spectro experii	nts sh oscopi mental	ould be able to c material properti measurement res	understand es and be a									•	,
	 are col kno de cal eff are 	n ident e awar mparat ow the scriptic n selec ort and e able	ify and analyze m e that modern spe tive values, e basic quantum r on of materials and ct an adequate lev d accuracy) and ap to discuss the the esearch questions	ectroscopic mechanical d the predict rel of approx oply this to s eoretical res	experim strategi ion of th imation elected ults obj	hents car ies and t heir spec for give problem tained in	n often o technica stroscopi n atomis ns,	only b Il con ic pro stic sti	cepts t perties ructure	hat are in the s (takir	e neces compute ng into a	sary fo er, account	or the t comp	atomistic outationa

6	Examinati	on performance:		
	[x] Final m	odule examination (MAP) [] Module examination (MP) [] Modu	le part examination	ons (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	a) and	Written exam or	120-180 min.	100%
	b)	Oral examination	30-45 min.	
7	Academic	achievement / qualified participation:		
	none			
8	Requirem	ents for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poin	ts are awarded if the final module examination is passed.		
10	Weighting	for overall grade:		
	The modul	e is weighted with the number of credit points (factor: 1).		
11	Use of the	module in other degree programs:		
	M.Sc. Phys	sics		
12	Module co	oordinator:		
	Dr. Uwe G	erstmann / Prof. Dr. Arno Schindlmayr		
13	Other note	25:		
	none			
14	Recomme	nded reading:		
	J. Grunent	perg, Computational Spectroscopy: Methods, Experiments and	Applications, Wile	ey-VCH
	P. Jensen,	P. R. Bunker: Computational Molecular Spectroscopy, Wiley-	/CH	
	S. Wilson,	G. H. F. Diercksen, Methods in Computational Molecular Phys	ics, Springer	
		M. Bühl, V. G. Malkin, Calculation of NMR and EPR parameter	•	
		s, D. Abramavicius, Thomás Mancal, <i>Molecular Excitation Dy</i> <i>roscopy,</i> Wiley-VCH	namics and Relax	xation, Quantum Theory

Sim	ulation of	Materials at the	Meso- and Ma	icroscale	•								
Finit	e element i	nodeling		I							I		
Mod 16	lule numbe	er: Workload 180	(h): LP: 6	Semo	ester of	study:	Rota : SS	ation	Durat (in se 1		Lang e: en	juag	P/WP: WP
1		structure: Course			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Grouµ (TN)	o size
		EM in Materials EM in Materials			V Ü	30 15		90 45		P P		approx up to 3	
2	none	options within t											
3	Participa none	tion requireme	nts:										
4	 One- Appli Imple 	el equations of el and multi-dimen cations of FEM in mentation in MA	sional formulat n pre- and post TLAB: One-din	ion of the -processii	constitut ng with A	tive equa \baqus (ations CAE		id non-	linear is	sotropic	c harde	ening
5	Students tasks usi evaluatin Students They are	outcomes / co can explain calc ng the finite eler g components w will be able to en also able to deal be able to indo	ulation method nent method (F ith small deforr xplain the relev with forming p	EM). The nations ar ant relations rocesses	ey are al nd apply onships f and mat	so able them in or speci erial beł	to nar a targ ific cal navior	me the leted m culatio using c	most i nanner. n exam comput	mportar nples in er-aide	nt mate materi d simul	erial m ials m lation.	echanics Student
6		tion performan	ce:										
	[x] Final r to	Form of examinat	, ,,,	lodule exa	amination	n (MP) [] Mod	1	ation o	or N	s (MTP Weight module	ting fo	
	a) and b)	Written exam Oral examina						90-1	20 min 80 min.		100 %	-	
7	Academ none	c achievement	/ qualified par	ticipation	1:								
8	Prerequi none	sites for partici	pation in exan	ninations	:								

9	Requirements for the awarding of credit points:
	Credit points are awarded if the final module examination is passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	M.Sc. Mechanical Engineering, M.Sc. Industrial Engineering (Mechanical Engineering)
12	Module coordinator:
	Prof. Dr. Rolf Mahnken
13	Other notes:
	none
14	Recommended reading:
	J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Springer New York 1998
	N. Ottosen, M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier 2005

	ntronics											
Spir	tronics											
Moc 17	lule nun	nber:	Workload (h): 180	LP : 6	Seme 2.	ester of :	study:	Rotation : SS		tion em.):	Langua e: en	g P/WP: WP
1	Modu	e stru	cture:									
		Cou	rse			Teac hing form	Conta time (-study	Statu (P/WF		oup size I)
	а	Spin	tronics			V	30	60		Р	app	orox. 120
	b	Spin	tronics			Ü	30	60		Р	up	to 30
2	none		ions within the m	odule:								
3	Partic none	ipatior	n requirements:									
	m • Sp • Sp • W • Pa • Ac	atrix, B bin dyn bectros riting a assive	principles of the q loch sphere amics and Rabi fo copy of spins: NM ind reading qubits components in ma	ormula, spin IR, EPR, EN (spin injectio agneto-electi	relaxati IDOR, E on and ronics: (ion and d EDMR, S spectros	lephasir TM-EPf copy)	ng R				, .
	I ● Fi	Indame	omponents: Spin f									
5			entals of spin-base	ed quantum								
5	Learn Studer	i ng ou hts sho cribe s	entals of spin-basi tcomes / competent uld be able to und pin-based devices	ed quantum ences: lerstand bas	informa	ation epts of s		-		•		to use the

6	Examinati	on performance:		
	[x] Final m	odule examination (MAP) [] Module examination (MP) [] Modu	ule part examinatio	ons (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	a) and	Written exam or	120-180 min.	100 %
	b)	Oral examination	30-45 min.	
7	Academic	achievement / qualified participation:		
	none			
8	Prerequis	ites for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poir	ts are awarded if the final module examination is passed.		
10	Weighting	for overall grade:		
	The modul	e is weighted with the number of credit points (factor: 1).		
11	Use of the	module in other degree programs:		
	M.Sc. Phy	sics		
12	Module co	oordinator:		
	Prof. Dr. U	we Gerstmann		
13	Other not	es:		
	none			
14	Recomme	nded reading:		
	T. Schäpe	rs, Semiconductor Spintronics, De Gruyter Textbook		
	T. Blachov	vicz. A. Erdmann, Spintronics: Theory, Modeling, Devices, Grad	duate Texts in Cor	ndensed Matter
	S. Bandyo	padhyay, M. Cahay, Introduction to Spintronics, CRC Press		
		D. Gatteschi, EPR of Exchange Coupled Systems, Dover Boo	•	
		chi, R. Sessoli, Jacques Villain, <i>Molecular Nanomagnets,</i> M iversity Press	esoscopic Physic	s and Nanotechnology,
	Awschalor Springer	n, Loss, Samarth, Semiconductor Spintronics and Quantum Co	<i>mputation,</i> NanoS	cience and Technology,
	W. Schere	r, Mathematics of Quantum Computing: An Introduction, Spring	ger	

Part	icles and C	omposites											
18	lule numb	er: Workload (h 150): LP : 5	Sem 1. or	ester of 3.	study:	Rot : WS	tation	Durat (in se		Lan e: en	nguag	P/WP: WP
1		structure: Course			Teac hing form	Conta time (Self-s (h)	study	Status (P/WF		Group (TN)	o size
	b	Particle synthesis Particle synthesis Seminar lecture			V Ü Ü	30 15 5		45 30 25		P P P		appro up to up to	
2	Elective none	options within th	e module:					<u>.</u>					
3	Participa none	tion requirement	S:										
	1												
	Ostv • Pop PBM • Gas read • Liqu	phase processes	deling (basics for particle sy es for particle	of PBM ynthesis	, kernels 6 (key fe	s for rele eatures,	evant flam	process e proce	ses of p	plasma	synth a proc	nesis, s cesses,	olution c hot-wa
5	Ostv Popu PBM Gas reac Liqu proc Learning Stuc and occu Stuc sens Stuc sens Stuc sens	vald ripening) Ilation balance mo) phase processes tors) d phase process	deling (basics for particle sy es for particle crystal form) petences: ementary proc his knowledge help of this kn ester the basic hese methods lerstand the m ticular, student	of PBM ynthesis synthe esses o e to vari owledg metho for part nost imp	, kernels (key fe esis (ess of particle ous proc e. ds of po icle synt ortant pr nalyze th	e synthe cesses a pulation hesis pro- rocesses	evant flam eature esis, u and to bala ocess s of p opme	process e proce es, pre understa o analy: nce mo ses. particle s	ses of pesses, cipitation and the ze and odeling synthes	plasma plasma on proc e releva unders and are sis. The	synth a prod cesses ant teo stand e able ey are	nesis, si cesses, s, crysi chnical the pho e to cla e able to	olution of hot-wa tallization literature enomena assify the p analyze
	Ostv Pop PBM Gas reac Liqu proc Learning Stuc and occu Stuc sens Stuc sens Stuc sens Examina	vald ripening) vald ripening) valation balance mo phase processes tors) d phase processes esses, influence or j outcomes / com ents master the e are able to apply rring there with the ents know and ma ible application of ents know and un e processes. In para ess parameters an tion performance	deling (basics for particle sy es for particle crystal form) betences: ementary proc his knowledge help of this kn ister the basic hese methods lerstand the m ticular, student d optimize the	of PBM ynthesis synthe esses of to vari owledg for part iost imp is can a process	, kernels (key fe esis (ess of particle ous proc e. ds of po icle synt portant pi nalyze th s design	e for rele eatures, eential fe e synthe cesses a pulation hesis pro rocesses ne develo accordin	evant flam eature esis, u and to bala ocess s of p opme ngly.	process e proce es, pre understa o analy: nce mo ses. particle s ent of pr	ses of pesses, cipitation and the ze and odeling synthes oduct p	plasma plasma on proc e releva unders and are sis. The propertie	synth a prod cesses ant teo stand e able ey are es as	cesses, s, cryst chnical the pho e to cla e able to a funct	olution of hot-wa tallization literature enomena assify the p analyze
5	Ostv Pop PBM Gas reac Liqu proc Learning Stuc and occu Stuc sens Stuc sens Stuc sens Examina	vald ripening) vald ripening) valation balance mo phase processes tors) d phase processes esses, influence or j outcomes / com ents master the e are able to apply rring there with the ents know and ma ible application of ents know and un e processes. In par ess parameters an	deling (basics for particle sy es for particle crystal form) Detences: ementary proc his knowledge help of this kn ister the basic hese methods lerstand the m ticular, student d optimize the p : (MAP) [x] Mod	of PBM ynthesis synthe esses of to vari owledg for part iost imp is can a process	, kernels (key fe esis (ess of particle ous proc e. ds of po icle synt portant pi nalyze th s design	e for rele eatures, eential fe e synthe cesses a pulation hesis pro rocesses ne develo accordin	evant flam eature esis, u and to bala ocess s of p opme ngly.	process e proce es, pre understa o analy: nce mo ses. particle s ent of pr dule pa	ses of p esses, cipitatic and the ze and odeling synthes oduct p rt exam ation o	plasma plasma on proc e releva unders and ard sis. The propertie	synth a prod eesses ant teo stand e able es as s (MT Weigl	cesses, s, cryst chnical the pho e to cla e able to a funct	olution of hot-wa tallizatio literature enomena assify the o analyz ion of the or the

7	Academi	c achievement / qualified participation:		
	to	Shape	Duration or scope	SL / QT
	с	Lecture on an exemplary topic / process from the field of particle synthesis	30 min.	SL
8	Prerequis	sites for participation in examinations:		
	The prere	quisite for participation in the module examination is passing the	e coursework.	
9	Requiren	nents for the awarding of credit points:		
	Credit poi	nts are awarded if the final module examination is passed.		
10	Weightin	g for overall grade:		
	The modu	le is weighted with the number of credit points (factor: 1).		
11	Use of th	e module in other degree programs:		
	none			
12	Module c	oordinator:		
	Prof. DrI	ng. Hans-Joachim Schmid		
13	Other no	es:		
	none			
14	Recomm	ended reading:		
	T. T. Koda	as, M. J. Hampden-Smith, Aerosol-Processing of Materials, Wile	ey-VCH, 1999	
	A. Mersm	ann (ed.), Crystallization Technology Handbook, CRC Press, 20	001	

Add	itive mar	nufact	turing											
Add	itive manu	ufactu	ring											
Mod 19	lule num	ber:	Workload (h): 150	LP: 5	Sem 2.	ester of	study:	Rota : SS	ation	Dura (in se		Lan e: en	guag	P/WP: WP
1	Module	e stru	cture:	I						L		I		
		Cou	rse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Grouj (TN)	o size
	а	Addi	tive manufacturing]		V	30		60		Р		appro	x. 120
	b	Addi	tive manufacturing)		Ü	15		45		Р		up to	30
2	Electiv	e opti	ions within the m	odule:										
	none													
3	Partici	patior	n requirements:											
	none													
5	- O Pol - B - P - M - C - B - P - M - C - Me - B - P - M - C - Ele	vervie lymer asics rocess ateria ompo sed Do asics rocess ateria ompo tal las asics rocess ateria ompo tal compo	nent properties & eposition Modeling s chain ls nent properties & ser melting s chain ls nent properties & beam melting	oortant additi quality assu g / Fused Fil quality assu quality assu	rance ament rance			esses						
3		-	tcomes / compet basically able to o		arious	additive	manufa	cturing		eese h	aced or	diffo	rent cri	toria
	Studen Sinterin They kr	ts hav ıg, Fu now th	ve a deeper unde sed Deposition M ne physical princip	rstanding of odeling / Fu les and can	f the m ised Fil apply tl	ost impo ament F hem.	rtant ac abricatio	ditive on, Me	manut etal Las	facturir ser Me	ig proce Iting, El	esses ectror	: Polyn n Bean	ner Lase n Melting
	applica	bility f	ow the specific str or given problems ved in each case.	-										

	e.g. by pre	cises, students apply what they have learned in the lesenting them on the blackboard. In this way, they pra senting them scientific facts appropriately.		
6		ion performance:		
	[x] Final m	odule examination (MAP) [] Module examination (N	IP) [] Module part examinat Duration or scope	tions (MTP) Weighting for the module grade
	a) and b)	Written exam or oral examination	90-120 min. 45-60 min.	100%
7	Academic none	e achievement / qualified participation:		
8	Requirem none	ents for participation in examinations:		
9		ents for the awarding of credit points: nts are awarded if the final module examination is pa	assed.	
10	-	y for overall grade: le is weighted with the number of credit points (facto	or: 1).	
11	Use of the none	e module in other degree programs:		
12		o ordinator: ng. Hans-Joachim Schmid		
13	Other not	es:		
14		ended reading: I, Selective laser sintering (SLS) with plastics, Hanse	er Verlag	

Sust	ainable	Elect	rochemistry											
Sust	ainable	Electro	ochemistry											
Mod 20	ule num	ber:	Workload (h): 180	LP: 6	Sem 1. or	ester of : 3.	study:	Rot : WS	ation	Dura (in se		Lar e: en	nguag	P/WP: WP
1	Modu	e stru	cture:											
		Cou	rse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WF		Grouj (TN)	o size
	Ι	Corr	osion Science and	l Engineerin	g	V	30		60		Р		appro	x. 120
	Ш		ent Topics of Enei Storage	gy Conversi	ion	V	30		60		Р		appro	x. 120
2	Electiv none	ve opt	ions within the m	odule:										
3		•	n requirements: of electrochemica	l thermodyn	amics a	and kinet	ics are r	recom	nmende	ed				
4	Evans corros polyma guideli II: Elea and m	neral c diagra ion cra er/meta nes for ctroche naterial	orrosion principles ams; uniform con acking; hydrogen- al interfaces; corro r corrosion protect emical energy stor ls, thermodynami- stry, characterizat	rosion; galv induced da sion of impla ion-complian age and cor c principles	anic co mage; ant mat nt desig nversio , kineti	orrosion; intercrys terials; cc gn. n: history ccs, elect	localize stalline prrosion and su trode re	ed co corros prote ustaina eaction	rrosion; a sion; a ction m ability, f	(pittin tmosph leasure types a bcesses	g, crevi neric co es; appli and app s in the	ice c prrosi ed co	orrosior on; cor orrosion ons, cor	n); stress rosion at analysis; nponents
5	Learn	ing ou	tcomes / compet	ences:										
	proces they ha control II: Stud advand	eses in ave a b l of cor dents h ced un r with	have advanced kr various corrosive proad overview of v rosion kinetics of a nave in-depth know inderstanding of th various basic and	media. This various corro alloys in med vledge of su e underlying	s includ osion pr dical te stainat g mech	es homo rotection chnology ble electro anisms a	geneou technolo ochemic and proo	s and ogies cal ene	localiz in the fi ergy sto s and	ed corr ield of o prage a their pl	rosion p construc and conv ractical	vroces tion i versic appli	sses. In materia on. They cation.	addition, s and the y have an They are

6	Examinati	on performance:		
	[x] Final m	odule examination (MAP) [] Module examination (MP) [] Modu	ule part examination	ons (MTP)
	to	Form of examination	Duration or	Weighting for the
			scope	module grade
	I and II	Written exam or	120 min. or	100%
		Oral examination	30-45 min.	
7	Academic	achievement / qualified participation:		
	none			
8	Requirem	ents for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poin	ts are awarded if the final module examination is passed.		
10	Weighting	for overall grade:		
	The modul	e is weighted with the number of credit points (factor: 1).		
11	Use of the	module in other degree programs:		
	none			
12	Module co	oordinator:		
	Prof. Dr. G	uido Grundmeier / Junior Prof. Dr. Hans-Georg Steinrück / Jun	ior Prof. Dr. Nieve	es Lopez Salas
13	Other note	es:		
	none			
14	Recomme	nded literature		
	l:			
	W. Schmic	kler, E. Santos: Interfacial Electrochemistry, Springer		
	K. Oldham	, J. Myland, A. Bond: Electrochemical Science and Technology	/: Fundamentals a	and Applications, Wiley
	P. Pedefer	ri: "Corrosion Science and Engineering", Springer 2018		
	H. Kaesch	e: "Corrosion of Metals: Physicochemical Principles and Curren	nt Problems, Sprir	nger
	II:			
	K. W. Bear	d: Linden's handbook of batteries		
	R. A. Hugg	ins: Advanced Batteries		
	R. Job: Ele	ectrochemical energy storage		
	E. Worch:	Drinking water treatment: an introduction		
	A. J. Bard,	L. R. Faulkner, H. S. White: Electrochemical methods: fundam	nentals and applic	ations

Bion	naterials													
Mod 21	lule numl	ber:	Workload (h): 150	LP: 5	Sem 2.	ester of	study:	Rot : SS	ation	Durat (in se		Langua e: en	ag	P/WP: WP
1	Module	e stru	cture:											
		Cou	rse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		•	size
	а	Bioin	terfaces and Nan	obiomaterial	S	V	30		60		Р	ар	prox	. 120
	b	Bioin	terfaces and Nan	obiomaterial	S	S	15		45		Р	up	to 3	0
2	Elective none	e opti	ions within the m	odule:										
3	Particip none	oatior	n requirements:											
	la: prot protein monola	misfo yers, s	tructure, membrar olding and aggre structural DNA na opics in the fields	egation, anti notechnolog	imicrob ıy, DNA	ial surfa nanostr	ices, Di uctures	NA a at inte	and RN erfaces	IA stru , DNA-	icture, based r	self-asse nachines	embl and	ed DN/ I robots.
	la: prot protein monola lb: Curr protein	ein st misfo yers, s rent to patter	olding and aggre	egation, anti notechnolog of artificial folding and	imicrob ıy, DNA membr aggreg	ial surfa nanostr ane syst gation, a	aces, Di uctures ems, pro ntimicrol	NA a at inte otein bial s	and RN erfaces adsorp urfaces	IA stru , DNA- tion on , self-a	icture, based r surface	self-asse nachines es and n led DNA	embl and anop	ed DN/ I robots. particles
5	la: prot protein monola lb: Curr protein structur Learnir	rein st misfo yers, s rent to patter ral DN	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet	egation, anti notechnolog of artificial folding and v, DNA nano ences:	imicrob ly, DNA membr aggreg structu	ial surfa nanostr ane syst gation, a res at int	aces, Di auctures ems, pro ntimicrol erfaces,	NA a at into otein bial s , DNA	and RN erfaces adsorp urfaces -based	IA stru , DNA- tion on , self-a machin	icture, based r surface assembl nes and	self-asse nachines es and n led DNA I robots.	and anop mor	ed DN/ I robots. Darticles nolayers
5	la: prot protein monola lb: Curr protein structur Learnir la: Stud have an potentia lb: Stud	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents	olding and aggrestructural DNA natopics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know anced understand lications in materiatican independent	egation, anti- notechnolog of artificial of folding and v, DNA nano ences: wledge of the ding of biom als research ly familiarize	imicrob y, DNA membra aggreg structu e intera nolecula , senso e thema	ial surfa ane syst gation, a res at int action of l ar adsor r techno selves w	tices, Di uctures ems, pro- ntimicrol erfaces, biomolec ption, ag logy and rith com	NA a at into otein bial s DNA cules ggreg I nano plex	and RN erfaces adsorp urfaces based with bio pation a otechno issues	IA stru , DNA- tion on , self-a machin logical nd self logy. and ne	and art f-assemble and art f-assemble ew subj	self-asse nachines es and n led DNA I robots. ificial inte ibly and ect areas	embl and anop mor erfac the	ed DN/ I robots. particles nolayers es. The resulting
5	la: prot protein monola lb: Curr protein structur la: Stud have an potentia lb: Stud process	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know anced understand lications in materia	egation, anti notechnolog of artificial folding and r, DNA nano ences: wledge of the ding of biom als research ly familiarize results, critic	e intera nolecula , senso e thema cally qu	ial surfa ane syst gation, a res at int action of l ar adsor r techno selves w uestion p	aces, Di uctures ems, pro ntimicrol erfaces, piomolec ption, ag logy and vith com ublishec	NA a at into otein bial s DNA cules ggreg I nano plex	and RN erfaces adsorp urfaces based with bio pation a otechno issues	IA stru , DNA- tion on , self-a machin logical nd self logy. and ne	and art f-assemble and art f-assemble ew subj	self-asse nachines es and n led DNA I robots. ificial inte ibly and ect areas	embl and anop mor erfac the	ed DN/ I robots. particles nolayers es. The resulting
-	la: prot protein monola lb: Curr protein structur la: Stud have an potentia lb: Stud process results a Examin	ein st misfo yers, s rent to patter al DN dents h adv al appl dents s and and fin	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know ranced understand lications in materia can independent present data and ndings from current performance:	egation, anti notechnolog of artificial folding and <i>i</i> , DNA nano ences: wledge of the ding of biom als research ily familiarize results, critic nt research t	e intera nolecula , senso e thems cally qu	ial surfa ane syst ane syst ation, a res at int action of l ar adsor or technol selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bio pation a otechno issues ults and	IA stru , DNA- tion on , self-a machin nd self logy. and ne conclu	and art f-assembl assembl and art f-assem ew subj sions a	self-asse nachines es and n led DNA l robots. ificial inte ibly and ect areas nd comm	embl and anop mor erfac the	ed DNA I robots particles nolayers es. The resultin
-	la: prot protein monola lb: Curr protein structur Learnir la: Stud have an potentia lb: Stud process results a Examir [] Final	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and and fin modu	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know anced understand lications in materia can independent present data and ndings from current n performance: ule examination (N	egation, anti- notechnolog of artificial folding and α , DNA nano ences: wledge of the ding of biom als research ing results, critic nt research t	e intera nolecula , senso e thems cally qu	ial surfa ane syst ane syst ation, a res at int action of l ar adsor or technol selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bio pation a otechno issues ilts and dule par	IA stru , DNA- tion on , self-a machin ological nd self logy. and ne conclu	inations	self-asse nachines es and n led DNA I robots. ificial inte ably and ect areas nd comm s (MTP)	embl and anop mor erfac the s, se nunic	ed DN I robots particles nolayers es. The resultin electivel cate new
-	la: prot protein monola lb: Curr protein structur la: Stud have an potentia lb: Stud process results a Examin	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and and fin modu	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know ranced understand lications in materia can independent present data and ndings from current performance:	egation, anti- notechnolog of artificial folding and α , DNA nano ences: wledge of the ding of biom als research ing results, critic nt research t	e intera nolecula , senso e thems cally qu	ial surfa ane syst ane syst ation, a res at int action of l ar adsor or technol selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bio pation a otechno issues ults and dule par	IA stru , DNA- tion on , self-a machin logical nd self logy. and ne conclu	inations interiment in	self-asse nachines es and n led DNA l robots. ificial inte ibly and ect areas nd comm	embl and anop mor erfac the s, se nunic	ed DN/ I robots. particles nolayers es. The resulting electivel cate new
-	la: prot protein monola lb: Curr protein structur Learnir la: Stud have an potentia lb: Stud process results a Examir [] Final	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and and fin nation F	olding and aggre structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know anced understand lications in materia can independent present data and ndings from current n performance: ule examination (N	egation, anti- notechnolog of artificial folding and α , DNA nano ences: wledge of the ding of biom als research ing results, critic nt research t	e intera nolecula , senso e thems cally qu	ial surfa ane syst ane syst ation, a res at int action of l ar adsor or technol selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bio pation a ptechno issues ilts and dule pai bura sco	IA stru , DNA- tion on , self-a machin logical nd self logy. and ne conclu	interiors and art f-assembly isions a and art frassembly isons a	self-asse nachines es and n led DNA I robots. ificial inte ibly and ect areas nd comm s (MTP) Weightin	embl and anop mor erfac the s, se nunic	ed DNA I robots particles nolayers es. The resultin electivel cate new
-	la: prot protein monola lb: Curr protein structur Learnir la: Stud have an potentia lb: Stud process results a Examir [] Final to	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and and fin modu F	olding and aggrestructural DNA national points in the fields rning, protein miss (A nanotechnology) (A nano	egation, anti- notechnolog of artificial folding and α , DNA nano ences: wledge of the ding of biom als research ing results, critic nt research t	e intera nolecula , senso e thems cally qu	ial surfa ane syst ane syst ation, a res at int action of l ar adsor or technol selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bic pation a otechno issues ilts and dule par sco 60 n	IA stru , DNA- tion on , self-a machin logical nd self logy. and ne conclu	inations inations	self-asse nachines es and n led DNA I robots. ificial inte ably and ect areas nd comm s (MTP) Weightin nodule g	embl and anop mor erfac the s, se nunic	ed DN. I robots particles nolayers es. The resultin electivel cate new
5 6 7	la: prot protein monola lb: Curr protein structur la: Stud have an potentia lb: Stud process results a Examir [] Final to la	ein st misfo yers, s rent to patter al DN ng out lents h n adv al appl dents s and and fin nation F E	olding and aggress structural DNA na opics in the fields rning, protein mis A nanotechnology tcomes / compet have in-depth know anced understand lications in materia can independent present data and ndings from curren performance: ule examination (M Form of examination Exam	egation, anti- notechnolog of artificial of folding and v, DNA nano ences: wledge of the ding of biom als research ly familiarize results, critic nt research t MAP) [] Mod tion	imicrob y, DNA membra aggreg structu e intera nolecula , senso e thema cally qu to a bro ule exa	ial surfa ane syst gation, a res at int action of I ar adsor r techno selves w uestion p ad audie	biomolec ption, aq logy and with com ublishec	NA a at into otein bial s DNA cules ggreg d nanc ggreg d nanc plex d resu	and RN erfaces adsorp urfaces -based with bic pation a otechno issues ilts and dule par sco 60 n	IA stru , DNA- tion on , self-a machin ological nd self logy. and ne conclu	inations inations	self-asse nachines es and n led DNA I robots. ificial inte ably and ect areas nd comm s (MTP) Neightin nodule <u>c</u> 70%	embl and anop mor erfac the s, se nunic	ed DNA I robots particles nolayers es. The resultin electivel cate new

	none
9	Requirements for the awarding of credit points:
	Credit points are awarded when the module examinations have been passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Guido Grundmeier / PD Dr. Adrian Keller
13	Other notes:
	none
14	Recommended reading:
	H. Lodish et al, Molecular Cell Biology, Palgrave Macmillan Fifth Edition 2004
	B. D. Ratner et al, eds, Biomaterials Science - An Introduction to Materials in Medicine, Academic Press 1996
	D. S. Goodsell, Bionanotechnology - Lessons from Nature, Wiley-Liss, Inc., 2004
	T. A. Waigh, Applied Biophysics - A Molecular Approach for Physical Scientists, John Wiley & Sons Ltd 2007
	C. R. Calladine et al, Understanding DNA. The Molecule and How It Works, Academic Pr Inc 2004
	M. Malmsteen, Biopolymers at Interfaces, Second Edition, Marcel Dekker Inc. 2003
	A. D. Bates et al, DNA Topology, OUP Oxford 2005

	ctional	Materi	als											
Fun	ctional I	Material	S											
Moc 22	dule nu	mber:	Workload (h): 180	LP: 6	Ser stu	-		Rotat WS	ion:	Duratio (in sen		Lang en	juage:	P/WP: WP
1	Modu	le stru	cture:											
		Cour	se			Teaching form		ntact e (h)	Self (h)	-study	Stat (P/W		Group (TN)	size
	la	•	ics and Applicatior conductor- Hetero			V	30		30		Ρ		approx	k. 120
	lb	•	ics and Applicatior conductor- Hetero			Ü	30		30		Ρ		up to 3	30
		Susta	ainable Polymer So	cience		V	30		30		Ρ		approx	k. 120
3	none;	knowle	a requirements: dge of solid state	and semicor	nduct	or physics is	s reco	ommeno	ded					
1	fu • E • C • N II: Funct	Fundam unctions Electroni Optical p Aaterial ional pc	entals of low-dime s,) properties of senic properties of semic systems, manufact plymers (e.g. biode cles, application e	miconductor conductor he cturing metho gradable, w	• heter eteros ods, c vater-s	rostructures tructures components soluble), sha	ipe m	lemory	polym	ners, sma	art pol	ymers	, polyele	ectrolytes
5	l:	C	tcomes / compete		of serr	niconductor	heter	ostructi	ures v	vith the a	aspect	ts of m	anufact	uring an

6	Examinati	on performance:		
	[] Final mo	odule examination (MAP) [] Module examination (MP) [x] Module part examinat	ions (MTP)
	to	Form of examination	Duration or	Weighting for the
			scope	module grade
	1	Written exam or	120-180 min.	75%
		Oral examination	30-45 min.	
	П	Written exam or	90-120 min.	25%
		Oral examination	30-45 min	
7	Academic	achievement / qualified participation:		
	none			
8	Requirem	ents for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poir	its are awarded when the module examinations have be	een passed.	
10	Weighting	for overall grade:		
	The modul	e is weighted with the number of credit points (factor: 1)).	
11	Use of the	e module in other degree programs:		
	none			
12	Module co	pordinator:		
	Prof. Dr. D	irk Reuter / Prof. Dr. Donat As / Prof. Dr. Dirk Kuckling		
13	Other not	es:		
	none			
14	Recomme	nded reading:		
	l:			
	M. Grundn	nann, <i>The Physics of Semiconductors</i> , Springer 2 nd Ed.	Heidelberg, 2010	
	O. Manasr	eh, Introduction to Nanomaterials and devices, Wiley, 2	011	
	S. M. Sze,	K. K. Ng, Physics of Semiconductor Devices, Wiley, 3^{rd}	Ed., 2007	
	J. Singh, F	Physics of Semiconductors and their Heterostructures, N	1cGraw Hill, 1995	
	U. W. Poh	l, Epitaxy of Semiconductors, Springer Heidelberg, 2013	3	
	II:			
	Y. Gnanou	, M. Fontanille, Organic and Physical Chemistry of Poly	mers, Wiley 2008	
	J. R. Fried	, Polymer Science and Technology, Prentice Hall 2007		
	A. Seidel (Ed.), Characterization and Analysis of Polymers, Wiley 2	2008	
	Q. Li (Ed.)	, Intelligent Stimuli-Responsive Materials, Wiley 2013.		

Prioto	onic Nanos	tructures											
Mod 23	lule numb	r: Workload (h): 180	LP: 6	Sen stud 1. o	•		Rotat WS	ion:	Duration (in ser	-	Lanç en	guage:	P/WP: WP
1	Module s	ructure: purse			Teaching		ntact		-study	State		Group) size
		otonic Nanostructur otonic Nanostructur			form V Ü	time 30 30	e (h)	(h) 60 60		(P/W P P	/P)	(TN) approx up to 3	
2	none	ptions within the m	odule:										
	none												
	 Contents Light-of ma Photoreson in perphoto Plasm 	natter interaction (Ma erials, polarization fie nic nanostructures tors I: micropillar res odic media, symme ic crystals onic nanostructures aterials)	eld, dielectric (one-dimens sonators, opt tries and ph	c funct sional tical re notonic	tion of insula periodicity: esonators II cs, photonic	ators, : Bra : micr c crys	semico gg ref rodisks stal me	onduc lectors and r mbrai	tors and s, transi ing reso nes, opti	metal fer ma nators ical re	ls) atrix a s, elect esonate	algorithn romagn ors III: (n, optica etic field defects i

	to	Form of examination	Duration or scope	Weighting for the module grade
	a) and b)	Written exam or	120-180 min 30-45 min	100 %
-		Oral examination	JU-45 IIIII	
7	none	c achievement / qualified participation:		
8	Requirer none	ents for participation in examinations:		
9		nents for the awarding of credit points:		
	Credit poi	nts are awarded if the final module examination is passed.		
10	Weighting	g for overall grade:		
	The modu	le is weighted with the number of credit points (factor: 1).		
11	Use of the	e module in other degree programs:		
	M.Sc. Opt	oelectronics and Photonics, M.Sc. Physics		
12	Module c	oordinator:		
	Prof. Dr. 0	Cedrik Meier / Prof. Dr. Thomas Zentgraf		
13	Other not	es:		
	none			
14	Recomme	ended reading:		
	L. Novotn	y, B. Hecht, Principles of Nano-Optics, Cambridge University	y Press, New York	
	S. Gapon	enko, H. V. Demir, Applied Nanophotonics, Cambridge Univ	ersity Press, New Y	ork
	S. Meier,	Plasmonics - Fundamentals and Applications, Springer, Nev	v York	

	ro Electro	mecl	hanical Systems											
Micr	o Electron	necha	anical Systems											
Moc 24	lule numb	er:	Workload (h): 180	LP: 6	Semo	ester of 3.	study:	Rot : WS	ation	Durat (in se		Lan e: en	iguag	P/WP: WP
1	Module	stru	cture:									1		
		Cou	rse			Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Grouj (TN)	o size
	а	Micro	o Electromechanic	cal Systems		V	30		60		Р		appro	x. 120
	b	Micro	o Electromechanic	cal Systems		Ü	30		60		Р		up to	30
2	Elective none	opti	ions within the m	odule:										
3	Particip none	atior	n requirements:											
			nuo. i ressure, a		rotatio			•	ion so					d surface
5	Tasks to Learnin Student systems	dee g ou s are usin	s technology pen the knowledg tcomes / compet able to describe g the model equat s for given tasks.	e acquired ir ences: the productio	n the le	n rate, cture are icrosyste	flow, in given c ems. The	out for	⁻ volunta n calcu	nsors, ary con late the	valves, npletion	relay	ys, act	uators in
5	Tasks to Learnin Student systems microsy	dee g ou s are usin stems	pen the knowledg tcomes / compet able to describe g the model equat	e acquired ir ences: the productio	n the le	n rate, cture are icrosyste	flow, in given c ems. The	out for	⁻ volunta n calcu	nsors, ary con late the	valves, npletion	relay	ys, act	uators in
	Tasks to Learnin Student systems microsy Examin	dee g ou s are usin stems ation	pen the knowledg tcomes / compet able to describe g the model equat s for given tasks.	e acquired ir ences: the productions and are	n the le on of m able to	n rate, cture are icrosyste explain a	flow, in given c ems. The applicati	out for ey car	⁻ volunta n calcu enarios	nsors, ary con late the for the	valves, npletion e output micros	relay	ys, act als of th ns or fin	uators in
	Tasks to Learnin Student systems microsy Examin	dee g ou s are usin stems ation mod	pen the knowledg tcomes / compet able to describe g the model equat s for given tasks.	e acquired ir ences: the productio ions and are MAP) [] Moc	n the le on of m able to	n rate, cture are icrosyste explain a	flow, in given c ems. The applicati	out for ey car	⁻ volunta n calcu enarios	nsors, ary con late the for the rt exam ation o	valves, npletion e output microsy ninations	relay signa ysterr s (MT Veigl	ys, act als of th ns or fin	uators in ne sensor d suitable
	Tasks to Learnin Student systems microsy Examin [x] Final	g ou g ou s are usin stems ation mod	pen the knowledg tcomes / compet able to describe i g the model equat s for given tasks. performance: ule examination (I	e acquired ir ences: the productio ions and are MAP) [] Moc	n the le on of m able to	n rate, cture are icrosyste explain a	flow, in given c ems. The applicati	out for ey car	r volunta n calcu enarios dule par	nsors, ary con late the for the rt exam ation o pe	valves, npletion e output microsy ninations r V r	relay signa ysterr s (MT Veigl	ys, act als of th ns or fin P) hting fo	uators in ne sensor d suitable or the
	Tasks to Learnin Student systems microsy Examin [x] Final to a) and b)	a dee g ou s are usin stems ation mod	pen the knowledg tcomes / compet able to describe g the model equat s for given tasks. performance: ule examination (I Form of examina	e acquired ir ences: the productio ions and are MAP) [] Moo tion	n the le	n rate, cture are icrosyste explain a aminatior	flow, in given c ems. The applicati	out for ey car	r volunta n calcu enarios dule par bur sco	nsors, ary con late the for the rt exam ation o pe	valves, npletion e output microsy ninations r V r	relay : : signa ystem s (MT Weigl modu	ys, act als of th ns or fin P) hting fo	uators in ne sensor d suitable
6	Tasks to Learnin Student systems microsy Examin [x] Final to a) and b) Acaden none	e dee g ou s are usin stems ation mod F E	pen the knowledg tcomes / compet able to describe g the model equat s for given tasks. n performance: ule examination (I Form of examina	e acquired ir ences: the productio ions and are MAP) [] Moo tion	n the le on of m able to dule exa	n rate, cture are icrosyste explain a amination	flow, in given c ems. The applicati	out for ey car	r volunta n calcu enarios dule par bur sco	nsors, ary con late the for the rt exam ation o pe	valves, npletion e output microsy ninations r V r	relay : : signa ystem s (MT Weigl modu	ys, act als of th ns or fin P) hting fo	uators in ne sensor d suitable or the
6 7	Tasks to Learnin Student systems microsy Examin [x] Final to a) and b) Acaden none Require none Require	dee g ou s are usin stems ation mod f f f iic ac men men	pen the knowledg tcomes / compet able to describe i g the model equat s for given tasks. n performance: ule examination (I Form of examina Exam	e acquired ir ences: the productio ions and are MAP) [] Moc tion lified partic on in examining of credit	ipation	n rate, cture are icrosyste explain a amination amination a: ::	flow, in e given c ems. The application n (MP) [ey car ion sc] Moc	r volunta n calcu enarios dule par bur sco	nsors, ary con late the for the rt exam ation o pe	valves, npletion e output microsy ninations r V r	relay : : signa ystem s (MT Weigl modu	ys, act als of th ns or fin P) hting fo	uators in ne sensor d suitable

	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	M.Sc. Electrical Systems Engineering
12	Module coordinator:
	Prof. Dr. Ulrich Hilleringmann or N. N. (lecturers in electrical engineering)
13	Other notes:
	none
14	Recommended reading:
	Tai-Ran Hsu, MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering, 2008
	L. Chang, Foundations of MEMS, 2012

Sem	niconduct	or Ep	itaxy											
Sem	niconducto	r Epit	аху											
Module number:Workload (h):LP:Ser2518062.						ester of	ter of study: Ro : SS		(in se		ration L sem.): e e		iguag	P/WP: WP
1	Module	struc	cture:											
	Co		Course			Teac Conta hing time			Self-study (h)		Status (P/WP)		Grouj (TN)	o size
	а	Semi	conductor Epitax	/		V	30		60		Р		appro	x. 120
	b	Semi	conductor Epitax	/		Ü	30		60		Р		up to	30
2	Elective none	e opti	ons within the m	odule:										
3			requirements: nowledge of solid	state physic	cs and s	semicono	ductor p	hysics	s is reco	ommer	nded			
	Elas Tra Thermon Sta Cry Atomisti Sur Kino Seli Methods Mol Met	stic pr nsfers dynar tes of stal g c asp face s etic pr f-orga s of se ecula cal org erizat	entals of crystal si roperties of hetero mics of layer grow equilibrium rowth ects of layer grow structure rocesses during la inized nanostructu emiconductor epit r beam epitaxy (N ganic vapor phase ion methods nalysis methods (f	ostructures th ayer growth ures axy MBE) e epitaxy (M0	OCVD)									
5	Students characte models. Participa acquired	s ma: erizati ants le d in th	ster the basic co on. They have a earn to work on p he lecture. In doi thematically if nec	ncepts of s n understar practical prol ng so, stud	nding in blems i ents sh	cluding n the fiel nould rec	the mat d of ser	hema nicon proble	tical fo ductor ems, re	rmulati epitaxy elate th	ion of tl / and to nem to	he ph appl the le	y the k ecture,	facts and

6	Examinat	ion performance:		
	[x] Final m	odule examination (MAP) [] Module examination (MP) [] Mod	ule part examinati	ons (MTP)
	to	Form of examination	Duration or scope	Weighting for the module grade
	a) and	Written exam or	120-180 min.	100%
	b)	Oral examination	30-45 min.	
7	Academic	c achievement / qualified participation:		
	none			
8	Requirem	ents for participation in examinations:		
	none			
9	Requirem	ents for the awarding of credit points:		
	Credit poir	nts are awarded if the final module examination is passed.		
10	Weighting	g for overall grade:		
	The modu	le is weighted with the number of credit points (factor: 1).		
11	Use of the	e module in other degree programs:		
	M.Sc. Phy	rsics		
12	Module c	oordinator:		
	Prof. Dr. D	0 Dirk Reuter / Prof. Dr. Donat As		
13	Other not	es:		
	none			
14	Recomme	ended reading:		
	U. W. Poh	I, Epitaxy of Semiconductors, Springer Heidelberg 2013		

Serr	niconduct	or Tee	chnology											
Sem	niconducto	or Proc	essing											
Moc 26	lule numi	oer:	Workload (h): 180	Seme 2.	ester of	study:	tudy: Rotat : SS		ation Dura (in se 1		Languag e: en	P/WP: WP		
1	Module structure:													
		Cours	se			Teac hing form	Conta time (Self-study (h)		s Gro ?) (TN)	up size	
	а	Semi	conductor Techno	ology		V	30		60		Р	app	rox. 120	
	b	Semi	conductor Techno	ology		Ü	30		60		Р	up t	o 30	
2	Elective none	e optio	ons within the m	odule:										
3	Particip none	ation	requirements:											
5	Crystal pulling, oxidation, photolithography, etching techniques, doping processes, layer deposition, contacting cleaning, MOS processes are discussed in detail with regard to implementation, modeling and system technolog Tasks to deepen the knowledge acquired in the lecture are given out for voluntary completion. Learning outcomes / competences: Students are able to explain the production of silicon wafers and their processing through to the integration of CN components. They can combine process steps into an overall process and create specific structures in							n of CMOS						
	semiconductor material. Students are able to combine the process steps they have learned to integrate different components and ac skills in the processing of semiconductor materials and the transfer to alternative materials.								and acquire					
6	Examin	ation	performance:											
	[x] Final to		ile examination (Norm of examination)	,	dule exa	aminatior	n (MP) [] Mod	1	ation o	or N	s (MTP) Neighting nodule gra		
	a) and b)	E	xam						60 n	-		100%	~~~	
7	Acader none	nic ac	hievement / qua	lified partion	cipation	1:								
8	Require none	ement	s for participation	on in exam	inations	5:								
	1													

	Cradit points are awarded if the final module eveningtion is perced
	Credit points are awarded if the final module examination is passed.
10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	M.Sc. Electrical Systems Engineering
12	Module coordinator:
	Prof. Dr. Ulrich Hilleringmann or N. N. (lecturers in electrical engineering)
13	Other notes:
	none
14	Recommended reading:
	U. Hilleringmann, Silicon Semiconductor Technology, Springer 2023

	d-State Ma		Is Chemistry Workload (h): 180	LP : 6	Seme 2.	ester of	study:	:	ation	Durat (in se		Lan e:	guag	P/WP: WP
	<u> </u>							SS		1		en		
1	Module	stru Cou				Teac hing form	Conta time (Self-s (h)	tudy	Status (P/WP		Grouj (TN)	o size
	а	Inorg	ganic Materials Ch	emistry		V	30		90		Р		appro	x. 120
	b	Inorg	ganic Materials Ch	emistry		Ü	15		45		Ρ		up to 3	30
2	Elective none	e opti	ions within the m	odule:										
3	•		n requirements: nowledge of chen	nical synthes	sis and	solid sta	te chem	nistry i	is recor	nmend	ed			
5	biomine	rals,	eramics, special r analytical methods tcomes / compet	s (e.g. X-ray		I synthe	sis, sel	ected	mater	al clas	ses (e.			· •
5	biomine Learnin The stud mas e recc e know e know	rals, a g ou dents ater ba ognize w how w thro w thro	analytical method tcomes / compet asic concepts of c e structure/propert v product propertion	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp ractice how t	diffract thesis a ips becifical o apply	I synthe ion, phys ind chara ly adjust	esis, sel sisorptio acterizat ed durin	ected on, the tion of	l materi ermal ar f inorga hthesis	ial clas nalysis) nic fun	ctional r	.g. po	ials.	naterials
	biomine Learnin The stud • mas • recc • knov • knov • lear	rals, a g ou dents ter ba ognize w how w how w thro n to c	analytical method tcomes / compet asic concepts of c e structure/propertion w product propertion ough laboratory pre- tritically evaluate contents	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp ractice how t	diffract thesis a ips becifical o apply	I synthe ion, phys ind chara ly adjust	esis, sel sisorptio acterizat ed durin	ected on, the tion of	l materi ermal ar f inorga hthesis	ial clas nalysis) nic fun	ctional r	.g. po	ials.	naterials
	biomine Learnin The stud mas recc knov knov lear Examin	rals, a g ou dents ter ba ognize w how w thro n to c ation	analytical method tcomes / compet asic concepts of c e structure/propertion w product propertion bugh laboratory pr critically evaluate con a performance:	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp actice how to priginal litera	diffract thesis a ips becifical o apply ture.	I synthe ion, phys and chara ly adjust synthes	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga nthesis	al clas nalysis) nic fun on met	ctional r	g. po mater selec	ials.	naterials
	biomine Learnin The stud mas recc knov knov lear Examin	rals, a g ou dents ater ba ognize w how w thro n to c ation mod	analytical method tcomes / compet asic concepts of c e structure/propertion w product propertion ough laboratory pre- tritically evaluate contents	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp actice how t original litera	diffract thesis a ips becifical o apply ture.	I synthe ion, phys and chara ly adjust synthes	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga othesis oterizatio	ial clas nalysis) nic fun on meti	ctional r hods to	g. po mater selec s (MT Veigt	ials.	oblems
	biomine Learnin The stud mas recc knov knov lear Examin [x] Final	rals, a gou dents ter ba ognize w how w thro n to c ation mod	analytical method tcomes / compet asic concepts of c e structure/propert v product propertion bugh laboratory pr ritically evaluate con performance: ule examination (I	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp actice how t original litera	diffract thesis a ips becifical o apply ture.	I synthe ion, phys and chara ly adjust synthes	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga athesis cterizatio	nic fun nic fun nic fun nic fun	inations r	g. po mater selec s (MT Veigt	ials. eted pro	bblems
	biomine Learnin The stud • mas • recc • knov • knov • lear Examin [x] Final to	rals, a g ou g ou dents dents dents dents dents dents dents w how w three mod ation mod for a fo	analytical method tcomes / compet asic concepts of c e structure/propertion bugh laboratory pro- ritically evaluate con performance: ule examination (I Form of examina	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp actice how t original litera	diffract thesis a ips becifical o apply ture.	I synthe ion, phys and chara ly adjust synthes	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga othesis terization dule par burga	nic fun nic fun on met t exam ation o pe nin.	inations r	.g. po mater selec <u>s (MT</u> Veigh nodu	ials. eted pro	oblems
6	biomine Learnin The stud mas recc knov knov lear Examin [x] Final to a) and b)	rals, ; g ou dents ter ba ognize w how w thro n to c ation mod f f f , (analytical method tcomes / compet asic concepts of c e structure/propert v product propertion bugh laboratory pr ritically evaluate of n performance: ule examination (I Form of examina Written exam or	s (e.g. X-ray ences: hemical synt ty relationshi es can be sp ractice how to priginal litera MAP) [] Moo tion	diffract thesis a ps becifical o apply ture.	I synthe	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga othesis oterization dule par sco 60 n	nic fun nic fun on met t exam ation o pe nin.	inations r	.g. po mater selec <u>s (MT</u> Veigh nodu	ials. eted pro	bblems
5 6 7 8	biomine Learnin The stud mas recc knov knov lear Examin [x] Final to a) and b) Academ none	rals, ; g ou dents ter ba gnize w how w thro ation mod f f i i i i i i i i i i i i i i i i i	analytical method tcomes / compet asic concepts of c e structure/propertion bugh laboratory pro- tritically evaluate con- performance: ule examination (I Form of examination Dral examination	s (e.g. X-ray ences: hemical synt by relationshi es can be sp actice how t briginal literat MAP) [] Moo tion	diffract thesis a ips becifical o apply ture. dule exa	I synthe	esis, sel sisorptio acterizat ed durin is and c	ected on, the tion of ng syn harac	f inorga othesis oterization dule par sco 60 n	nic fun nic fun on met t exam ation o pe nin.	inations r	.g. po mater selec <u>s (MT</u> Veigh nodu	ials. eted pro	oblems

10	Weighting for overall grade:
	The module is weighted with the number of credit points (factor: 1).
11	Use of the module in other degree programs:
	none
12	Module coordinator:
	Prof. Dr. Michael Tiemann
13	Other notes:
	none
14	Recommended reading:
	L. E. Smart, E. A. Moore: Solid State Chemistry;
	U. Schubert, N. Hüsing: Synthesis of Inorganic Materials