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The interaction between two quadratic soliton-like beams was investigated for beams
launched parallel to one another, and at small crossing angles. The experiments were
performed in titanium in-diffused lithium niobate slab waveguides near a Type I phase-
matching condition for second harmonic generation (SHG). Only beams at the funda-
mental frequency were launched and the second harmonic required for quadratic soliton
formation was generated upon propagation into the waveguide. The results of the in-
teraction were found to depend on the relative phase between the input fundamental
beams, the net phase mismatch for SHG and on the beam crossing angle. Good
agreement with numerical simulations of the different interactions was found. In general,
the results of the interactions were similar to those found in saturable Kerr-like media.

1. Introduction
Generically spatial solitons are beams which propagate without spreading (di�raction) in
one or more transverse beam dimensions due to the existence of some self-focusing
mechanism [1±3]. There has been a proliferation of such spatial solitons demonstrated,
primarily over the last 5±10 years, including solitons in Kerr, saturable Kerr, photore-
fractive and quadratically non-linear media [4±13]. Most popular by far have been solitons
based on non-linear mechanisms which lead to an optically induced local increase or
decrease in the refractive index [4±11]. The arresting of spatial di�raction by some non-
linear self-focusing mechanism has been investigated in both one dimension (1D, beams in
slab waveguides) and two dimensions (2D, in bulk media). In analogy to temporal solitons
in glass ®bres (Kerr media), the earliest experiments utilized Kerr (Dn�I� � n2I , where I is
the local intensity) and saturable Kerr (Dn�I� ! Dnsat as I !1) non-linear media to
demonstrate both bright and dark spatial solitons [4±9]. About ®ve years ago it was
proposed that the photorefractive e�ect in electro-optic media could be used to form
spatial solitons and indeed a large number of such solitons have now been reported in both
1D and 2D [10, 11].
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A di�erent type of spatial soliton was proposed in the 1970s by Karamzin and Su-
khorukov [14, 15]. The self-focusing action required to counteract di�raction was pro-
vided by the strong interaction between waves at two or three di�erent frequencies due to
the second order non-linearity v�2�. The coupled waves form a multi-component `qua-
dratic' soliton, with all of the frequency components travelling together [14±23]. The
theoretical aspects of such quadratic solitons have been investigated intensively in the last
®ve years, and many of their properties including their multifrequency structure, stability,
etc. have been understood [14±23]. These solitons have been observed in both 1D (Ti:in-
di�used LiNbO3 slab waveguides) and 2D (bulk KTP crystals), in both Type I and II
phase-matching geometries [12, 13]. Furthermore, many of the soliton properties including
the connection with modulational instabilities, beam steering, relative strength of the
interacting waves etc. have been studied experimentally [24±27].

Faced now with this large diversity of solitons, the question is what properties do they
have in common besides propagation without di�raction spreading [1±3]. Interactions and
collisions are e�ects where there is some diversity in soliton properties [28±32]. It has been
known for some time now that single polarization solitons in Kerr media always pass
through each other with some lateral de¯ection, independent of the details of the inter-
action geometry. (Only under very special circumstances, two orthogonally polarized Kerr
solitons colliding at small angles can fuse together to produce a dual polarization stable
soliton called a Manakov soliton [33].) On the other hand, it has been clearly established
that other types of spatial solitons which rely on index changes for trapping, for example
photorefractive solitons, solitons in saturable media etc., can fuse together under appro-
priate interaction conditions [31, 32]. The collision behaviour is determined by the type of
soliton. Solitons which are modelled as solutions of integrable equations do not fuse in a
collision while the non-conservation of the soliton number in an interaction is a property
of solutions of non-integrable systems [1±3]. In order to distinguish soliton solutions of
both systems the self-trapped beams in non-integrable systems are frequently (and more
precisely) called solitary or soliton-like waves.

The multifrequency nature of quadratic solitary waves makes them quite unique in the
optical soliton family [12±27, 34]. For example, the properties of the solitons depend
strongly on the phase mismatch. For progressively larger positive phase mismatch, the
harmonic component becomes progressively smaller and the solitons resemble Kerr soli-
tons (integrable system) [20, 21]. On the other hand, near phase matching and for negative
phase mismatch, the quadratic soliton properties are quite di�erent (non-integrable sys-
tem). Thus the results of their interactions would be expected to depend on the phase
mismatch, and the features of interactions of both soliton types can be studied with
quadratic solitons. Numerical calculations have established for the Type I case that
quadratic solitons can penetrate each other or fuse when they interact, and that their
collisional properties depend on the relative phase between the solitons [17, 35±38]. We
have experimentally investigated the interaction of quadratic soliton-like beams in planar
LiNbO3 waveguides under di�erent Type I phase-matching conditions [39]. In our case,
we launched only the fundamental component and relied on the usual second harmonic
generation (SHG) process to produce the harmonic component of the right phase needed
for beam locking into a quadratic soliton. As a result an interaction starts even before the
soliton is completely formed which in¯uences to some extent our results. Some of the
interesting results have already been published in summary form in letter format and here
we give more of the details and more complete data.
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This paper is structured as follows. The next section deals with some of the relevant
properties of quadratic spatial solitons and our excitation conditions. The details of the
experiment and sample are presented in Section 3. Results for the launching of parallel
fundamental beams are discussed in Section 4, in the limits of both large and small phase-
mismatch. The last experimental section deals with the collisions of solitons launched in
crossing geometries. The main features of this work are summarized in Section 6.

2. Theoretical considerations
In general, numerical techniques are needed to estimate the properties of quadratic soli-
tons for arbitrary values of the phase mismatch. Many of the fundamental properties of
quadratic solitons, especially in the simplest 1D case with Type I phase-matching are now
well established [34]. When spatial di�raction is included, the SHG coupled mode equa-
tions describe the fundamental and harmonic components, how they evolve with distance,
and in the steady state limit they give the stationary quadratic solitons. Consider a slab
waveguide (1D) with a geometry corresponding to that used experimentally, i.e. propa-
gation along the x-axis in the x±z plane so that the guided wave con®nement occurs along
the y-axis. For the simplest 1D case of Type I phase matching, the z (di�raction direction)
and x (propagation direction) dependence of the interacting fundamental and harmonic
®elds can be written respectively as:

E1�~r; t�� 1
2 a1�x; z� e1�y� exp�i�xt ÿ k1x�� � cc E2�~r; t� � 1

2 a2�x; z� e2�y� exp�i�2xt ÿ k2x��� cc

�1�
where the subscript 1 identi®es parameters at the fundamental frequency x, and the
subscript 2 refers to the second harmonic �2x�. The complex amplitudes ai�x; z� can
change due to spatial di�raction and/or the energy exchange due to the coupling between
the fundamental and harmonic ®elds which occurs during harmonic generation. The
corresponding coupled mode equations are:

ÿ 2ik1
@

@x
a1�x; z� � @2

@z2
a1�x; z� � ÿ2k1Ca�1�x; z�a2�x; z� exp�iDkx�

ÿ 2ik2
@

@x
a2�x; z� � @2

@z2
a2�x; z� � ÿ2k2Ca2

1�x; z� exp�ÿiDkx�
�2�

Here Dk � 2k1 ÿ k2 is the linear wavevector mismatch (and DkL the phase mismatch) and
C � xK�2�2v�2�=4p0, the non-linear coupling coe�cient, is proportional to the second
order susceptibility v�2� for the appropriate material symmetry class and ®eld geometry. It
includes the `overlap integral' K�2� of the fundamental and harmonic guided wave ®elds.
Note that walk-o� between the two beams is absent for propagation in the present case,
i.e. propagation and ®eld polarization along the principal optical axes of a crystal.

Stationary solutions, i.e. ones in which the spatial pro®le and peak amplitude of the
fundamental and harmonic components do not change with propagation distance, are
obtained by setting the @=@x derivatives as pure imaginary constants. Among the whole
family of solitons there is one speci®c value of the phase mismatch DkL for which an exact
analytical solution is possible, and this predicts ®elds whose transverse pro®les (along the
z-axis) both vary as sech2�s��s / z� �14; 15; 17�. There is another limit in which an ap-
proximate analytical ®eld distribution is known. That is, when DkL!1 the fundamental
®eld closely resembles a Kerr soliton because the second harmonic ®eld contribution
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becomes vanishingly small, i.e. a1 / sech�s� and a2 / sech2�s�with ja1j2 � ja2j2 �40; 41�.
This makes it clear that the ®eld structure of the soliton depends strongly on the phase
mismatch, and hence it is expected that the nature of soliton interaction will also depend
on the phase mismatch DkL.

The interaction between two quadratic solitons was investigated with numerical tech-
niques to simulate the behaviour for various geometries, relative fundamental phase dif-
ferences D/ at the input, and phase mismatches �DkL�. It proves convenient to model the
interaction with a coupled mode theory for spatial Fourier spectra which allows the non-
uniform wavevector distribution in the sample (discussed later) and the wavevector
spectrum associated with focusing along the di�raction coordinate (z) to be handled
conveniently and with minimal approximations. The z-dependence of the electric ®eld
amplitude Êi � ei�y�ai�x; z�exp�ÿibix� at every point x along the waveguide is expanded as
spatial Fourier integrals in the form Êi�x; y; z� � �ei�y�=2p�

R
dbz Ai�x; bz� exp�ibzz�. In this

formalism, the up- and down-conversion processes are described by the Fourier trans-
formed coupled mode equations of the form [42]

d

dx
A1�bz� � ib1xA1�bz� � ÿi

x1K�2�2v�2�b1

8pp0b1x

Z
db0z A2�bz ÿ b0z�A�1�ÿb0z�

d

dx
A2�bz� � ib2xA2�bz� � ÿi

x1K�2�2v�2�b2

8pp0b2x

Z
db0z A1�bz ÿ b0z�A1�b0z�

�3�

Here the normalized modal electric and magnetic ®eld distributions are given by ei�y� and
hi�y� respectively and i � 1, 2 identify the fundamental and harmonic beams. bz is the
spatial angular frequency, the bix � �b2

i ÿ b2
iz�1=2 are the x-components of the mode

propagation constants bi; and p0 is the normalized mode power per unit ®lm width
�Wmÿ1�. K�2� � R dy e21�y�e�2�y� is the overlap integral which takes into account the dif-
ferent transverse electric ®eld pro®les of the interacting guided modes.

The results of the simulations based on Equations 3 are summarized in the collage of
Figs. 1±4. Note that in this case the stationary soliton is launched numerically, i.e. the
input contains both frequency components with ®eld pro®les, amplitudes and phases
appropriate to a quadratic soliton [43]. For inputs launched parallel to one another and
zero phase di�erence �D/ � 0�, the interaction is attractive. Far from phase matching
(DkL � 19p, Fig. 1) where the quadratic solitons resemble Kerr solitons (second harmonic
power <3% of the total power), the interaction in its early stages of evolution is very
similar to that for Kerr solitons [30]. The solitons periodically coalesce and separate
preserving the number of solitons as two. However, the spatial period between successive
beam collapses, becomes progressively smaller with distance and eventually the beams fuse
(not shown in Fig. 1) because ®nally the interacting quadratic solitons are only a good
approximation to, but not truly, solutions of an integrable system. Close to phase
matching (DkL � 1:36p) the violation of the conservation law for the soliton number in
the interaction of quadratic solitons is detectable already in the ®rst stage of the inter-
action. The beams fuse immediately, and then the peak intensity and spatial width oscillate
periodically with distance [36]. The beams shed energy and the oscillations damp out with
distance, eventually yielding a stationary soliton. Note that the excess radiation emitted to
the side is larger the smaller the value of DkL, i.e. the closer to phase matching. For all
other relative phase angles the interaction is repulsive after a D/-dependent propagation
distance with the trend to larger radiative losses with decreasing positive phase mismatch

R. Schiek et al.

864



in each case. Finally, away from D/ � 0 or p, one soliton grows at the expense of the
other with the power exchange increasing with decreasing phase mismatch.

The numerical results for the crossing geometries, shown in Figures 3 and 4, are
qualitatively similar to the parallel launch case with respect to large versus small phase-
mismatch, power exchange, trends in radiation losses, etc. The repulsive beam de¯ection

Figure 2 Interaction between two stationary quadratic solitons launched parallel to each other for

DkL � 1:36p �L � 47 mm�. The initial relative phase between the solitons is (a) 0, (b) p=2, (c) p and (d) 3p=2.

Figure 1 Interaction between two stationary quadratic solitons launched parallel to each other for

DkL � 19p �L � 47 mm�. The initial relative phase between the solitons is (a) 0, (b) p=2, (c) p and (d) 3p=2.
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with negligible energy transfer for a large phase mismatch resembles a Kerr soliton
crossing.

The attractive crossing with energy exchange and the fusion for small D/ are char-
acteristic for quadratic solitons at a smaller phase mismatch.

Figure 3 Interaction between two stationary quadratic solitons launched at a crossing angle of 0:4� for

DkL � 19p �L � 47 mm�. The initial relative phase between the solitons is (a) 0, (b) p=2, (c) p and (d) 3p=2.

Figure 4 Interaction between two stationary quadratic solitons launched at a crossing angle of 0:4� for

DkL � 1:36p �L � 47 mm�. The initial relative phase between the solitons is (a) 0, (b) p=2, (c) p and (d) 3p=2.
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3. Experimental aspects
We have previously reported the generation of 1D quadratic solitons propagating along
the x-axis of Y-cut, planar, Ti:in-di�used LiNbO3 waveguides near the phase-matching
conditions for Type I SHG at 1320 nm [12]. For this geometry, v�2� � e0�ÿ5:6 pmVÿ1�.
The in-di�usion of a 55 nm thick titanium layer through the Y-cut surface at 1060�C for
9 h yielded a low loss one-dimensional waveguide which guides one TM mode (y-polar-
ized) at k1 � 1320 nm and three second harmonic TE modes (z-polarized) at
k2 � 660 nm. The change in the refractive index pro®le mirrors the Ti concentration
which decays with distance into the sample. This depth dependence of the refractive index
provided the guided mode con®nement along the y-axis. Losses of 0.17 and 0:35 dB cmÿ1

were found for the TM0�x� and TE�2x� modes respectively. The end faces of the
L � 47mm long sample were polished for end-®re coupling with the output surface tilted
at 4:5� to prevent longitudinal cavity resonances. The details of the waveguide fabrication,
characterization etc. can be found in [44]. The same sample was used in this work.

The apparatus used for exciting the quadratic solitons and observing the results of their
interactions is shown in Fig. 5. The measurements were done with a train of pulses with
90 ps FWHM (full width at half maximum) and a repetition rate of 500 Hz, using a
Nd:YAG Q-switched, mode-locked pulsed laser (76 MHz) and an electro-optic single
pulse extractor. The intensity pro®le measurements of the waveguide output were aver-
aged over many shots with a camera and were corrected for the (very weak) background
light (measured separately) due to leakage of the Q-switched, mode-locked pulse envelope
through the pulse slicer. There are two separate arms for the input beams, one for each
soliton. A combination of optical elements was used to generate two separate, equi-power
beams, one of which was delayed relative to the other to produce a well-de®ned relative
phase di�erence at the sample input. Although this allows a great deal of control over each
input, it also means that the input pulses need to be carefully synchronized in time.
Cylindrical lenses were used to focus elliptically shaped beams with a horizontal spot size
of 70 lm FWHM onto the sample input facet. The output from the planar sample (ap-
proximately three di�raction lengths long) was focused onto a vidicon camera for display
and analysis.

In order to generate spatial solitary waves via the cascaded non-linearity, SHG was
implemented from the TM0�x� to the TE1�2x� mode which is phase matched around
335:5�C for our material, geometry and wavelength. This mode combination optimizes the
overlap integral in these in-di�used waveguides. The mutual beam trapping occurs in the

Figure 5 Experimental set-up for the in-

vestigation of quadratic soliton interactions in

1D.
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plane of the waveguide, i.e. along the z-axis. For phase-matching purposes the crystal was
placed in an oven with temperature controlled to a stability of �25 mK. The resulting
sample temperature distribution is nearly uniform in the centre of the waveguide, but
drops a few degrees near the oven windows, i.e. the resulting wavevector mismatch varies
with distance along the waveguide [45]. This leads to a very asymmetric SHG (and fun-
damental depletion) response, as shown in Fig. 6 [46]. In this work the solitons were
generated both far from phase matching as well as close to phase matching.

Fortunately the low fundamental depletion region for T < 335:2�C corresponds to a
large positive phase mismatch allowing that limit to be explored experimentally very well.
Although the complex wavevector mismatch distribution complicated the investigation of
the quadratic soliton collisions, the solitons were still easily excited with less than 20%
fundamental depletion at a positive phase mismatch up to about DkL ' 6p at
T � 335:2�C (as measured at the centre of the oven). An example of the output beam
pro®les for DkL ' 10p at T � 334:9�C is shown in Fig. 7 in which the beam pro®le is
unchanged to within10% for input powers above 1 kW (up to our maximum available
power of 8 kW). Because the SH component of the solitons is small (<10% ) relative to the
fundamental for this large a detuning, the quadratic solitons resembled Kerr solitons
based on v�3�.

The experiments close to phase matching were performed in the range
ÿ2:6p < DkL < 2:6p of the low power phase mismatch which corresponds to the tem-

Figure 6 The fundamental beam throughput versus sample temperature as measured in the middle of the

waveguide for a peak input power of PIN � 1:5 kW.
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perature range from 335.9 to 335:5�C. In this range the soliton-like beam contains
� 50% of the harmonic component and the depletion of the fundamental is signi®cant.
It falls in a region where the harmonic content (and the e�ective focusing non-linearity)
is very sensitive to temperature and wavevector distribution. Operating close to phase
match and in the negative phase-matching region, the low power phase-matching con-
ditions are seriously detuned by non-linear phase shifts, and the exact form of the
solitons becomes even more sensitive to the experimental conditions [46]. This extreme
sensitivity of the results of the interactions was actually observed experimentally, i.e.
small changes in the conditions (particularly temperature) produced large changes in the
output beams observed. Our lack of knowledge of the exact wavevector non-uniformity
prevented us from performing very well ®tting simulations for comparison to experiment
in this region.

In our experiments, the harmonic components of the quadratic solitons are generated
from the input fundamental frequency beams during propagation of the fundamental into
the waveguide. It is now well established that this approach leads asymptotically with
propagation distance to quadratic solitons [12, 13, 40, 47, 48]. In the soliton's evolu-
tionary stage this leads to radiation-like ®elds which, with the phase coherence length
used, result in periodic oscillations of the intensity which decay with distance. The smaller
the harmonic ®eld component associated with the soliton, or the closer the input pa-
rameters are to a stationary soliton, the smaller the oscillations and the better the input

Figure 7 Power dependence of the output beam (intensity) pro®le of the fundamental for DkL ' 10p, Tem-

perature T � 334:9�C.
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®eld approximates a quadratic soliton. Simulations showing two examples of the evolution
of a quadratic soliton from the launch of only a fundamental Gaussian input spot are
shown in Fig. 8. The simulations take into account the details of the experimental con-
ditions, like temperature pro®le, double refraction, walk-o�, losses, pulsed input etc. Due
to the non-uniform wavevector mismatch pro®le along the waveguide and the waveguide
losses the oscillations are smoothed out. However, it is obvious that the lack of second
harmonic seeding initiates strong oscillating perturbations in the solitons for decreasing
phase mismatch.

Because our sample is too short for the solitons near phase matching to evolve into the
stationary ®nal state, it is these soliton-like, not yet stationary, quadratic soliton beams
that we use in our experiments.

4. Interactions between parallel beams
In the experiments, two y-polarized (TM modes) fundamental beams, each 70 lm FWHM
wide with a peak input power of 1.9 kW, were launched parallel to each other at a centre-
to-centre separation of 110 lm. The transverse (along the z-axis) pro®les of the input and
output beams when each input was excited individually are shown in Fig. 9. Beam dif-
fraction occurs at large phase mismatch at T � 331�C whereas for increasing cascaded
non-linearity (near phase matching) the solitons are formed. The beam widths and shapes
of the input and output beams are the same for the Kerr-like quadratic solitons at
T � 334:8�C. The missing energy in the fundamental output at T � 335:7�C was con-
verted into the second harmonic component of the quadratic soliton. The interaction is
initiated by the overlap of the tails of the soliton-like beams as they evolve. The experi-
mental results and the corresponding simulations at DkL ' 10p �T � 334:9�C� are shown
in Fig. 10. The main features of Kerr-like quadratic soliton interactions far from phase
match were observed. For example, the repulsion is evident for p=2 < D/ < 3p=2, as well
as the power exchange between the solitons. For example, a 20% increase in the peak
separation was obtained for D/ � p. Our sample was not long enough to observe the

Figure 8 Simulated spatial evolution towards a quadratic soliton when only the fundamental is excited at the

input (a) T � 334:8�C;DkL ' 11p;PIN � 1:9 kW, (b) T � 335:45�C;DkL ' 3:2p;PIN � 1:9 kW. The dia-

grams show the time averaged power in the fundamental and the second harmonic along the propagation.
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soliton repulsion for a phase di�erence in the range 0 < jD/j < p=2 for which repulsion is
expected only after a longer propagation distance. For D/ � 0 the simulations show that
the output corresponds to the ®rst merging of the beams and therefore that is also con-
sistent with the interactions between in-phase stationary solitons. Numerical simulations
of the soliton interaction in our waveguide show results very similar to those presented in
Fig. 1, with only minor changes due to the SHG near the input. The theoretical interaction
results in this large phase-mismatch region can be perfectly approximated with simulations
of Kerr soliton interactions.

Closer to phase match, for T � 335:7�C, it is clear from the experimental results and the
corresponding simulations in Fig. 11 that the interaction result is not as well developed as
found previously for DkL ' 10p, although the principal behaviour remains the same. The
closer the second harmonic generation is to phase matching, the larger the harmonic
component needed for a quadratic soliton and the longer the propagation distance into the
sample required to generate su�cient harmonic when only the fundamental beam is laun-
ched. The beams oscillate strongly in intensity and the resulting interference pattern mod-
ulates the soliton interaction. The other notable di�erence compared to the DkL ' 10p case
is the large amount of radiation ®elds present. Our samples are too short to verify that the
solitons near phase matching fuse after the ®rst (and observed) merging while the solitons at
T � 334:9�C should repulse again. It is interesting that the strong SHG oscillations due to
the missing second harmonic seeding in our beams only modulate the soliton interaction but
do not destroy the principal behaviour of the interaction. Compare for example the simu-
lation results of the soliton repulsion with and without seeding in Fig. 12 and 2.

Although the agreement with the simulations is reasonable, there are some interesting
di�erences between the simulations and the experimental data. As shown in [49], for
fundamental beam launching conditions, the detailed nature of the output depends
critically on the beam separation at the input. Furthermore, our simulations have shown
that the output of the interaction is very sensitive to the details of the temperature (and
hence wavevector mismatch) pro®le along the propagation axis. We have not yet mea-
sured this pro®le directly and only estimate it from the SHG tuning curves which were
taken by ramping the temperature with a speed of 36Khÿ1 [12]. However, the soliton
experiments were done at ®xed oven temperatures at which the temperature, and hence
the wavevector mismatch distribution, deviates from our estimates. Another uncertainty
arises from the fact that the input beams may be slightly focused or defocused when
entering the waveguide. Temperature and laser power ¯uctuations in¯uence the relative

Figure 9 Transverse beam pro®les at the input and the output for the two fundamental beams (launched

separately) for different temperatures and phase mismatch. The peak input power in one arm is 1.9 kW.
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Figure 10 Beam pro®les at the waveguide output for two fundamental beams launched in parallel with

different relative phase angles. The detuning from phase match is DkL ' 10p at T � 334:9�C. The dotted

lines show the output beams when they are launched separately (experiment: left hand side, theory: right hand

side).
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strength and position of the output beams. A non-perfect temporal overlap of the pulses
yields beam interaction patterns with reduced contrast between the principal features.
Finally, the crystal input face may not be cut exactly orthogonal to the x-axis which
would introduce the asymmetries observed experimentally. We have seen evidence for
this problem in previous experiments [12]. All of the above mentioned uncertainties
associated with our experimental accuracy alone modify the results only by a few per
cent. However, together they cause the di�erences between the experimental and the
theoretical results.

Figure 11 Beam pro®les at the waveguide output for two fundamental beams launched in parallel with

different relative phase angles. The detuning from phase match is DkL ' ÿ0:2p at a temperature of 335:7�C.

The dotted lines show the output beams when they are launched separately (experiment: left hand side,

theory: right hand side).
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5. Interactions between beams launched to cross inside the sample
In the second geometry, the two fundamental beams, initially separated by 100 lm, were
launched at a collision angle inside the crystal of 0:4� in order to investigate the collision of
two crossing solitons. Again, the behaviour at di�erent values of the phase mismatch was
studied. The results of the experiments and the corresponding simulations are shown in
Figs. 13±15.

Based on the simulations, the crossing angle was chosen so that the beams would fuse
for DkL < 3p, but pass through each other for DkL ' 10p. Figure 13 shows the output
beam pro®les at large phase mismatch �T � 335:0�C;DkL ' 9p�. For D/ � 0 the two
beams passed through each other and are separating at the end of the sample. The wings of
the solitons are indicative of some radiation generated during the interaction. In the case
of out-of-phase �D/ � p� launching, similar behaviour was observed although the
background seems reduced. Furthermore, for D/ � p=2 or 3p=2, a small energy transfer
between the solitons was observed. For all initial phase di�erences D/ the output beams
attract each other. The attraction is stronger in the in-phase case. The results were in
excellent agreement with the numerical simulations for this large phase-mismatch case.
They resemble Kerr soliton crossings except for the energy exchange and the existence of
soliton attraction instead of repulsion obtained with Kerr solitons. This occurs because we
could not operate far enough from phase matching to have true Kerr-like solitons and we
observed already the tendency to attract and ®nally fuse in the crossing which will be
discussed next.

For small phase mismatch, i.e. DkL ' 2:6p at 335:5�C, the experimental results are in
good agreement with the simulations. For D/ � 0, the two beams fuse and narrow into a
single soliton of higher peak intensity than the `input' solitons. It is clear that for all
relative phase angles, a great deal of the incident electromagnetic energy is radiated away,
partially underlying the soliton beams and complicating the interaction. At a further
reduced phase mismatch of ÿ2:4p at 335:9�C the crossing behaviour shown in Fig. 15 did
not principally change from that shown in Fig. 14 and only the power in the fundamental
is reduced due to stronger SHG.

6. Summary
The interactions between quadratic soliton-like beams have been investigated for Type I
SHG phase matching in planar LiNbO3 waveguides (one-dimensional case). Two geom-
etries were studied, one in which the beams were launched parallel to one another, and the
second at relative angles chosen so that the beams would `cross' before the middle of the
sample. In addition, experiments were performed for di�erent values of phase mismatch
for the SHG interaction, between DkL ' 10p and ÿ2p. Overall, the results agreed well

Figure 12 Simulation of the observed soliton

repulsion of two parallel launched beams in

phase at T � 335:7�C without second har-

monic seeding �DkL � ÿ0:2p�.
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Figure 13 Output beam pro®les for the two soliton interaction in the cross launching case (relative angle of

0:4�) for the large net phase mismatch of DkL ' 9p and different relative phase angles between the two input

beams. The dotted lines show the output beams when they are launched separately (experiment: left hand

side, theory: right hand side).
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Figure 14 Output beam pro®les for the two soliton interaction in the cross launching case (relative angle of

0:4�) for the small net phase mismatch of DkL ' 2:6p and different relative phase angles between the two input

beams. The dotted lines show the output beams when they are launched separately (experiment: left hand

side, theory: right hand side).
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with simulations based on the experimental parameters. The agreement was better at the
larger phase mismatches than the smaller ones, due to an increasing sensitivity of the
interaction product to the spatial distribution of the wavevector mismatch for decreasing
DkL. In these experiments only the fundamental beam was launched at the input so that
the interactions were between quasi-quadratic solitons in the sense that the input beam
had not yet fully evolved into a stationary soliton. Nevertheless the overall behaviour
observed resembled very closely that calculated for interactions involving stationary sol-
itons.

Figure 15 Measured output beam pro®les for the two soliton interaction in the cross launching case (relative

angle 0:4�� for the small net phase mismatch of DkL ' ÿ 2:4p and different relative phase angles between the

two input beams. The dotted lines show the output beams when they are launched separately.

TABLE I Comparison of soliton interaction behaviour for quadratic solitons, Kerr solitons and solitons in

saturable Kerr media for different relative phases D/ between the solitons. The only interaction condition for

which the integrable nature of the Kerr solitons leads to a unique result not shared by quadratic or saturable

Kerr solitons is indicated by bold typeface in the second column

Material D/ = 0 D/ = p D/ = p/2

Case I: parallel launching

v�2�DkL large periodic collapse repulsion repulsion + power exchange

® fusion

DkL small fusion repulsion repulsion + power exchange

Kerr v�3� periodic collapse repulsion repulsion + power exchange

no fusion

Saturable v�3� periodic collapse repulsion repulsion + power exchange

® fusion

Case II: launch at small crossing angle for v�2� º parallel launch

Case III: launch at large crossing angle

v�2� or saturable v�3� repulsive de¯ection repulsive de¯ection repulsive de¯ection +

power exchange

Kerr v�3� repulsive de¯ection repulsive de¯ection repulsive de¯ection
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In the introduction it was questioned whether the interactions and collisions between
quadratic solitons would resemble those known for other forms of spatial solitons. A
comparison is summarized in Table I. It is clear that interactions between quadratic
solitons resemble closely those in saturable Kerr media [31, 32]. This might have been
expected because quadratic solitons are not solutions of integrable systems, a property
they share with saturable media.
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