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ABSTRACT Using an FM-mode-locked Ti:Er:LiNbO3 wave-
guide laser as the fundamental source, wavelength conversion
by cascaded χ(2) : χ(2)-difference frequency generation with
a conversion efficiency of up to +3 (−4.6) dB was demonstrated
at a pulse repetition rate of about 2 (10) GHz. In addition, multi-
channel conversion was demonstrated with a fully packaged
wavelength converter using a continuous fundamental source.

PACS 42.65 Ky; 42.65.W; 42.72 Ai; 42.82.Cr

1 Introduction

Wavelength conversion in wavelength-division-
multiplexed (WDM) and time-division-multiplexed (TDM)
optical networks is a key technology of future high bit-rate
transport systems. Wavelength conversion offers a higher
flexibility in traffic management and a dynamic reconfig-
uration of the optical network. In recent years, difference-
frequency converters based on periodically poled LiNbO3

(PPLN) waveguides have attracted considerable interest.
They fulfill numerous requirements for ideal wavelength con-
verters for telecommunications, such as strict transparency,
independence of bit rate and data format, and low cross-talk.
They offer a high conversion efficiency without attenuation
of the signal, adding only negligible noise from spontaneous
fluorescence. In addition, the wavelength conversion band-
width is broad, and it is possible to cascade many converters.
The simultaneous conversion of many wavelength channels,
spectral inversion and parametric amplification are also at-
tractive properties of difference-frequency converters. The
demonstration of second-harmonic generation (SHG) of un-
precedented efficiency in PPLN waveguides [1, 2] allowed
the possibility of combining SHG and difference frequency
generation (DFG) in a single device or even in the same
waveguide or structure [3]. In such a cascaded-DFG (cDFG)
device, a strong fundamental wave at λf is used to generate
a pump wave at λp = λf/2 by frequency doubling. Simultan-
eously the pump wave interacts with a signal wave at λs to
generate an idler wave at λi with λ−1

i = λ−1
p −λ−1

s = 2λ−1
f −
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λ−1
s . In the following we report the first demonstration of

cDFG with +3 (−4.6) dB conversion efficiency at a pulse
repetition rate of ∼2 (∼10) GHz.

2 Fabrication and characterisation

Two different PPLN waveguides (samples Str332
and Pb133z) were fabricated by in-diffusion (7.5 h at 1060 ◦C)
in an argon inert gas atmosphere and 1 h post-diffusion at
the same temperature in oxygen to re-oxidize the material
of 7-µm-wide and 98-nm-thick Ti-stripes into the −Z-face
of a 0.5-mm-thick LiNbO3 substrate (Fig. 1). We found that
subsequent electric field poling was not possible due to a shal-
low domain-inverted layer on the +Z-face. Therefore, we
had to remove that layer by careful grinding. As domain in-
version always starts on the +Z-face [4], it is advantageous
to have the waveguides on that face of the sample. Taking
these considerations into account, we performed as the next
fabrication step a homogeneous polarisation reversal of the
whole sample. Thereafter, the microdomain structure with
a Λ = 17 (Λ = 16.6) µm period was fabricated by using the
electric field poling method with the structured photoresist
on the +Z-side. The length of the PPLN waveguides was
about 78 (86) mm. After polishing the waveguide end-faces,
we characterized its properties by several means. To reveal
the domain pattern quality, we selectively etched a part of
the sample surface using concentrated HF:HNO3 acid (see
Fig. 2).

A near-infrared camera was used to confirm that the
waveguide is single mode in the spectral region of interest
(around λ = 1.55 µm). The waveguide loss was determined
to be 0.15 (0.14) dB cm−1 at 1.523 µm wavelength. We as-
sume that the loss at about 780 nm wavelength, i.e. at the
pump wavelength for DFG, is about 0.3 dB cm−1. To investi-
gate the nonlinear performance of the waveguide we carried
out single-pass SHG experiments using a wavelength-tunable
external cavity laser (tuning range 1500–1580 nm). As a re-
sult, a normalized device efficiency of 570 (500) % W−1 was
measured, corresponding to a length-normalized efficiency of
9.4 (6.8) % W−1 cm−2.

To achieve phase-matching for frequency doubling of the
fundamental radiation at a wavelength of 1562 (1556) nm, we
had to adjust the device temperature to 100 (188) ◦C. Figure
3 shows the SHG phase-match curve. From the full width at
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FIGURE 1 Fabrication steps to obtain periodically poled Ti:LiNbO3
(PPLN) waveguides. a Definition of a titanium stripe on the −Z-face. b In-
diffusion of titanium at high temperatures. During in-diffusion a domain-
inverted layer merges with the +Z-face. c Removal of the domain-inverted
layer by grinding. d Inversion of the spontaneous polarisation of the whole
sample. e Photolithographical definition of a photoresist grating. f Periodic
electric field poling with liquid electrodes

FIGURE 2 Photograph of a selectively etched PPLN sample with
a titanium-in-diffused waveguide
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FIGURE 3 Measured second-harmonic generation (SHG) phase-match
curve of the periodically poled waveguide

half maximum (Str332: ∆λ3 dB = 0.19 nm; Pb133z: ∆λ3 dB =
0.2 nm) an effective interaction length of 62 (59) mm was
evaluated. From the device efficiency we conclude that the
nonlinear waveguide attains 86 (82) % of the ideal effective
nonlinearity (deff, ideal = 2/π ·d33 = 12.1 pm V−1) [5].

FIGURE 4 Experimental setup used to investigate cw cDFG

3 Experimental setups
3.1 cDFG with a cw fundamental laser source

Figure 4 shows the setup used to investigate cDFG.
Sample Str332 was used as the nonlinear frequency converter.
The fundamental laser source for the frequency-doubling pro-
cess was a tunable semiconductor laser (external cavity laser:
ECL1). We used a second external cavity laser (ECL2) for
a signal laser. The pre-amplified fundamental and (unam-
plified) signal radiation were superimposed in a single fibre
using a 50/50 fibre-optic coupler. By using a high-power,
erbium-doped fibre amplifier (HP-EDFA) we boosted the
total incident power to 320 mW with a fundamental-to-signal
power ratio of 16 dB (fundamental power = 213.7 mW; sig-
nal power = 5.3 mW; amplified spontaneous emission [ASE]
power = 101 mW). Despite the pre-amplification of the fun-
damental source, a significant amount of ASE was superim-
posed to the boosted fundamental and signal radiation. To
avoid the photorefractive effect (optically induced changes
in the index of refraction result in a reduction in the con-
version efficiency of the device), we operated the frequency
converter at temperatures much higher than 100 ◦C. The am-
plification bandwidth of the EDFA limited the maximum op-
eration temperature to 200 ◦C as the resulting phase-matching
wavelength for SHG shifted to 1577 nm.

3.2 Multichannel conversion with a cw fundamental
laser source

Figure 5 shows the experimental setup used to in-
vestigate multichannel conversion in a cDFG scheme (sam-

FIGURE 5 Experimental setup used to investigate multichannel conver-
sion. ECL1 is used as the fundamental laser source. The other lasers are tuned
to four different ITU wavelengths 200 GHz apart
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FIGURE 6 Schematic of the cDFG experiment with a pulsed fundamental
wave and a cw signal

ple Pb133z). One fundamental source (external cavity laser:
ECL1) and four signal laser sources at International Telecom-
munication Union (ITU) wavelengths were used to perform
the experiment. One of the signal lasers was a fibre-amplifier-
boosted, mode-locked fibre laser with a 10 GHz repetition
rate. A 16-channel arrayed waveguide grating (AWG; chan-
nel spacing = 200 GHz) was used to multiplex the different
channels. The insertion loss of the AWG is about 3 dB. The
single-ended output of the multiplexer was connected to the
fibre pigtailed and packaged frequency converter, which was
operated at about 190 ◦C to avoid photorefractive damage.
Most of the ASE of the EDFA was blocked by the multiplexer
due to its narrow-band spectral transmission characteristic of
about 0.7 nm (FWHM) and low cross-talk (< −28 dB).

3.3 cDFG with a pulsed fundamental laser source

Figure 6 shows the setup for cDFG in a pulsed
mode. We again used the nonlinear waveguide of sample
Str332 operated at a sample temperature of 100 ◦C. The
fundamental source was a mode-locked integrated optical
Ti:Er:LiNbO3 laser (1562 nm center wavelength) [6] with
a repetition rate of 1.8973 GHz (second-harmonic mode-
locking) and 9.93 GHz (tenth-harmonic mode-locking). Using
an optical autocorrelator, a pulse width of 12.4 (6) ps was
measured, leading to a pulse duty cycle of ∼16 (∼12.3) dB.
With an optical spectrum analyzer of 0.1 nm resolution,
a spectral width (FWHM) of 0.35 (0.65) nm was determined.
This leads to a time-bandwidth product of 0.52 (0.48), slightly
exceeding the transform limit for Gaussian pulses. The mode-
locked fundamental source was boosted to an average incident
power of 88 mW using a 2 W HP-EDFA. Phase-matching
was achieved at a temperature of 100 ◦C. The SHG pulses
are about a factor of

√
2 shorter, thus leading to a duty cycle

of −17.5 (−13.8) dB for the 12.4 (6)-ps-long fundamental
pulses. An external cavity laser operated at 1557 nm was used
as the signal source. Fundamental and signal radiation were
combined with a 90/10 fibre-optic coupler.

4 Experimental results
4.1 cDFG with a cw fundamental laser source

In cw operation of the all-optical wavelength con-
verter, we measured a ratio of −6.1 dB for the output levels
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FIGURE 7 Measured optical spectrum in cw operation of the fundamental
and signal waves

of signal and idler power (Fig. 7); this agrees well with a cal-
culated efficiency of −6.2 dB, if we assume a 80% coupling
efficiency for the sample. Due to operation at 200 ◦C the signal
and idler output power was very stable as a function of time,
without any fluctuations induced by photorefractive effects.
Due to the fairly long fundamental wavelength necessary to
obtain phase-matching at 200 ◦C, it was not possible to com-
pletely saturate the HP-EDFA, leading to an increased amount
of ASE especially towards shorter wavelengths.

4.2 Multichannel conversion with a cw fundamental
laser source

The result for simultaneous conversion of four dif-
ferent ITU wavelengths is shown in Fig. 8. The incident fun-
damental power was boosted to 175 mW. A very stable con-
version efficiency of −10 dB for each channel was observed
for at least 2 h. Instabilities on a longer timescale were mainly
due to a slow change in the polarisation state at the output of
our EDFA (no polarization-maintaining amplifier). The meas-
ured optical signal-to-noise ratio (OSNR) of the converted
signal (idler) ranged between 17 and 21 dB for a 0.5 nm reso-
lution bandwidth of the optical spectrum analyzer, depending
on the distance of the converted channel from the fundamental
line. A further improvement is possible by increasing the sig-
nal input power. An increase in the input power of one channel
from 0 up to +10 dBm did not cause any measurable degra-
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FIGURE 8 Experimental result for multichannel cDFG
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dation of the conversion efficiency for all four channels. The
observed improvement of the OSNR was also 10 dB. Some re-
sidual noise in the spectrum was due to the unblocked ASE
from the fibre amplifiers.

4.3 cDFG with a mode-locked fundamental laser source
at a repetition rate of ∼ 2 GHz

Figure 9 shows the measured spectral and power
characteristics of our frequency converter; for pulsed pump-
ing an average converted idler power 14.5 dB below the
transmitted signal power was measured. Considering the
idler pulse duty cycle of −17.5 dB, this leads to a peak
conversion efficiency of +3 dB. The estimated peak power
of the converted pulses is 1.9 mW. It should be mentioned
that the conversion efficiency of +3 dB simultaneously

FIGURE 9 Optical spectrum of the pulsed fundamental and idler wave at
a repetition rate of 2 GHz and with a cw signal wave

FIGURE 10 Result with a pulsed fundamental laser source at a repetition
rate of 10 GHz

means an optical parametric amplification of the signal of
+3 dB.

4.4 cDFG with a mode-locked fundamental laser source
at a repetition rate of 10 GHz

Due to the broader fundamental spectrum of about
0.65 nm and some photorefractive damage due to the larger
pump duty cycle (−13.8 dB), it was not possible to achieve
a conversion efficiency > 0 dB (Fig. 10). On the other hand,
the measured efficiency of > −4.6 dB is to our knowledge the
best result reported to date at such a high repetition frequency.

5 Summary and conclusions

We demonstrated for the first time nonlinear opti-
cal wavelength conversion with an efficiency of +3 (−4.6) dB
at a repetition rate of 2 (10) GHz using cascaded differ-
ence frequency generation in a periodically poled Ti:LiNbO3

waveguide. We also demonstrated multi-channel wavelength
conversion without any reduction of the conversion efficiency
by the other wavelength channels. In the future the perform-
ance of our frequency converters will be improved. A de-
vice with 935 % W−1 second-harmonic conversion efficiency
has been reported [7, 8] and waveguides of significantly
reduced photorefractive sensitivity, such as stoichiometric
Mg:LiNbO3 [9] and 5 mol % MgO:LiNbO3, are being investi-
gated. On the modelling side, numerical simulations that take
the group velocity dispersion between pump, signal, and idler
pulses into account are underway.
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