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Abstract
We report a numerical and experimental investigation on the generation of
spatial self-narrowed beams with short temporal pulsed excitation in
quadratic film waveguides. The impact of temporal group-velocity
mismatch between the quadratic multiple interacting signals is shown. We
accurately studied the spatial, temporal and spectral signals dynamics versus
pulse power and phase mismatch. We show that spatial self-trapping can be
induced even if the pump pulse duration is significantly shorter than the
group delay mismatch between interacting waves for large enough positive
phase mismatches.
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1. Introduction

Cascaded χ(2):χ(2) parametric interactions of high intensity
light beams in materials with quadratic nonlinearities offer a
rich variety of phenomena [1]. In particular, they can yield
strong nonlinear refraction effects at relatively low power
levels. Thus second-order cascading processes have gained
relevance similar to that of their third-order counterparts for
use in switching devices that rely on large optically induced
nonlinear phase changes. Even though this subject has been
investigated since the early 1970s [2], only recently has it
been revisited and applied to all-optical signal processing
with the purpose of overcoming the limits of χ(3) materials
(see [3–6] and references therein). Interest in this field has
been maintained by the fascinating range of new phenomena
encountered and their potential applications, such as soliton
propagation, all-optical switching and logic for ultrafast signal
processing devices.

Multicolour spatial soliton formation mediated by the
cascading of quadratic nonlinearities has been demonstrated
experimentally in a variety of geometries (see [7–13] and
references therein). In this case spatial solitons are formed
by the mutual trapping of the waves parametrically interacting
in the nonlinear medium. Solitons exist in particular in
the process of second-harmonic generation (SHG) that is
addressed here (see [11, 13] for reviews and [12–18] for
the properties and excitation conditions of the simplest
families), where multidimensional soliton families exist above
a threshold light intensity for all values of the phase mismatch
between the fundamental frequency (FF) and the second-
harmonic (SH) waves.

Spatial solitons are non-diffracting, self-trapped beams
formed with continuous-wave light signals. However, in
practice potential applications of the self-trapped beams to
ultrafast photonic devices require picosecond excitation. With
such short pulses one might expect serious difficulties in
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the generation of a multicolour spatially self-trapped beam
near phase matching, due to the temporal group velocity
mismatch (GVM) between FF and SH waves and to their strong
interaction and mutual dragging near phase matching [19, 20].
The minimum pulse width is of paramount relevance as it will
give the limit of the processing speed of the envisaged all-
optical devices.

In this paper, we report a numerical and experimental
investigation on the generation of spatial self-trapped
beams with picosecond temporal pulsed excitation in
periodically poled Ti-in-diffused lithium niobate (Ti:PPLN)
slab waveguides, with only the FF wave at 1548 nm in
input. The impact of temporal GVM on the evolution of
quadratically interacting waves is described in this paper. We
accurately studied the spatial, temporal and spectral signals
dynamics versus pulse power and phase mismatch. We
show that spatial self-narrowing can be induced for large
positive phase mismatch and above a threshold intensity even
if the pump pulse duration is shorter than the group delay
mismatch between interacting FF and SH waves. We show
temporal GVM compensation in a spatial self-trapped regime.
Temporal and spectral behaviours that accompany spatial
trapped propagation are highlighted.

2. Experimental set-up

The experiments were performed with a 58 mm long (L) and
10 mm wide planar waveguide fabricated in a z-cut LiNbO3

substrate by in-diffusion of a 70 nm thick, vacuum-deposited
Ti layer at 1060 ◦C. An uniform micro-domain structure of
periodicity � = 16.9 µm (duty cycle 0.5) has been generated
after waveguide fabrication by electric-field-assisted poling.
The sample was inserted in a temperature stabilized oven to
allow operation at elevated temperatures (T = 110–180 ◦C);
in this way, photorefractive effects (‘optical damage’) could
be minimized. Moreover, temperature tuning of the phase-
matching conditions in the PPLN region became possible. An
all-fibre laser system was used as the source of 4 ps pulses
(FWHM in intensity) at 1548 nm (FF) with a peak power of a
few kilowatts at 20 MHz repetition rate.

The spectral bandwidth of the input beam is 1.7 nm which
represents 5.3 times the spectral acceptance bandwidth of the
PPLN. The thickness of the waveguide permits the propagation
of a single TM0 mode of 4 µm width at the FF; several TM
modes are supported at the SH, but only the TM0 of 3 µm width
is efficiently pumped by the TM0 at the FF. The laser beam was
shaped in a highly elliptical spot, nearly Gaussian in profile,
with a FWHM in intensity of 76 µm along the non-guided
dimension and 3.9 µm along the perpendicular direction. The
beam was polarized parallel to the z axis of the PPLN for
access to the material’s largest quadratic nonlinear coefficient
χ(2)

zzz = 54 pm V−1 (2d33). The spatial beam profiles were
recorded by scanning a magnified image of the pattern with
a photodiode. Temporal characterizations were monitored
by a background-free non-collinear auto-correlator and by a
background-free non-collinear cross-correlator.

3. Numerical model

We model the electric fields E1 and E2 at ω0 (FF) and 2ω0 (SH),
respectively, with ω0 = 2π/λ0 and λ0 = 1548 nm free space

wavelength, propagating in the y direction, as

E1(x, y, z, t) = 1
2 [m1(z)a1(x, y, t)

× exp(−j(βω0 y + ω0t)) + c.c.]

E2(x, y, z, t) = 1
2 [m2(z)a2(x, y, t)

× exp(−j(β2ω0 y + 2ω0t)) + c.c.]

(1)

where m1(z) and m2(z) are the mode profiles in the guided
dimension, a1(x, y, t) and a2(x, y, t) are the slowly varying
envelopes, that obey the nonlinear coupled equations [1]:
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where β represents the propagation constant, β ′ is the group
velocity, β ′′ is the inverse group-velocity dispersion, n is the
refractive index, �k = 2βω0 − β2ω0 + KS is the effective
mismatch, where KS = 2π/� and χ(2) = 2/πχ(2)

zzz is the
nonlinear coefficient.

To model the pulse propagation, two different numerical
tools have been used. A standard finite difference vectorial
mode solver was employed to determine the linear propagation
properties in the slab waveguide, i.e. the mode profiles, the
effective index, the propagation constant, the inverse group
velocity and the inverse group velocity dispersion [21–23]. In
the case at hand the crystal length corresponds to 3.2 times the
FF diffraction length and up to 4.8 times the walk-off length
between FF and SH; the dispersive terms can be neglected.
The phase-mismatch temperature dependence corresponds
approximately to 1π ◦C−1. Finally, using a finite difference
beam propagation technique, we solved the nonlinear coupled
equations (equations (2)).

4. Spatial characterization

Experiments and numerical simulations were carried out
varying the input pulse power and phase-mismatch conditions
via the temperature of the sample, keeping fixed the temporal
and spatial widths of the FF injected pulse. First we
measured the spatial profiles of the FF output beam, along
the free propagation direction versus the injected intensity
at different phase mismatches. Regardless of the phase-
mismatch conditions, at the low intensity regime, the FF
beam broadened because of diffraction inside the crystal. In
the quasi-linear regime the output beam profile had a width
wox = 246 µm which corresponds to the diffracted input
beam (wox = 76 µm) after 58 mm of propagation along
the waveguide (figure 1). At large enough phase-mismatch
values (�kL > 9π), at the high-intensity regime, the nonlinear
self-focusing effect balances the effect of diffraction, thus
causing the formation of a spatially FF self-narrowed beam
(figure 2). Typical dependences of the output spatial profile
width on the injected intensity, at different fixed positive
phase-mismatch conditions, are reported in figure 3. In the
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(a) (b)

Figure 1. Spatial profile of the FF beam, integrated in time, at the input (dotted curve) and output (full curve) in the quasi-linear regime.
(a) Numerical simulations and (b) experimental data. The inset shows the numerical FF beam evolution in the (x, y) plane. Here the phase
mismatch is �kL = 18π (T = 142 ◦C) and the input intensity is I = 1 MW cm−2.

(a) (b)

Figure 2. Spatial profile of the FF beam, integrated in time, at the input (dotted curve) and output (full curve) in the nonlinear self-trapped
regime. (a) Numerical simulations and (b) experimental data. The inset shows the numerical FF beam evolution in the (x, y) plane. Here the
phase mismatch is �kL = 18π (T = 142 ◦C) and the input intensity is I = 66 MW cm−2.

(a) (b)

Figure 3. FWHM in intensity of the output FF beam versus injected input intensity for different phase-mismatch conditions
(or temperatures). (a) Numerical simulations: full curve, �kL = 9π ; dotted curve, �kL = 30π ; chain curve, input width. (b) Experimental
data: circles, T = 151 ◦C (�kL = 9π ); crosses, T = 130 ◦C (�kL = 30π ); chain curve, input width.

limit of the available power (590 W), it was not possible
to observe self-focusing effects at negative phase-mismatch
values and in close vicinity of perfect phase-matching �kL =
0 (T = 160 ◦C). Spatial trapping started to appear at a sample
temperature of 151 ◦ C (�kL ∼ 9π) and was maintained,
with a linear increase of the intensity threshold, down to
T = 114 ◦C (�kL ∼ 46π). This trend is illustrated in figure 4
and is consistent with the fact that, in the limit of large �k, the
effective Kerr nonlinearity is proportional to �k−1. Thus, at
such limit the intensity needed to compensate the diffraction
scales linearly with the wavevector mismatch.

It is clearly demonstrated that self-narrowed beams have
been generated at large mismatch despite temporal walk-off
and short-pulse excitation. Thus group-velocity mismatch can
prevent spatial trapping at negative phase mismatch and near
phase matching, but trapping does occur at a large enough
positive phase mismatch, in full agreement with the predictions
reported in [19].

5. Temporal characterization

The temporal behaviours of the signals have also been
analysed. In the experiments temporal characterizations were
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(a) (b)

Figure 4. Input FF intensity threshold for the generation of self-trapped beams versus phase mismatch (temperature). (a) Numerical
simulations, (b) experimental data.

(a) (b)

Figure 5. Quasi-linear regime. (a) Calculated FF pulse profiles at the input (dotted curve) and output (full curve). (b) Calculated FF (full
curve) and SH (broken curve) pulses at output. The temporal slices of the signals are for x = 0. The insets show the numerical FF (a) and SH
(b) temporal evolution in the (t, y) plane. Here the phase mismatch is �kL = 18π (T = 142 ◦C) and the input intensity is I = 1 MW cm−2.

monitored by a background-free SHG non-collinear auto-
correlator. A cross-correlator technique was also used to
provide information on the relative temporal distributions of
the signals. The cross-correlation measurement is based on a
background-free auto-correlator. Both the pulses at the FF and
the SH are launched on the two arms of the correlator; a BBO
crystal is oriented for non-collinear sum frequency generation
of the FF and SH waves; a spatial filter and a colour glass filter
select the sum frequency wave before detection.

In particular we focused on the temporal characterization
of pulses versus the injected intensity at positive phase
mismatches, i.e. under conditions where spatial self-narrowing
is achievable. In the low-intensity regime, when the nonlinear
effect does not balance the FF spatial diffraction, we note
that the calculated FF and SH output pulses do not overlap
in time and do not lock together (figure 5); the FF and SH
pulses generated in the early stage of propagation behave
quasi-linearly, experience different group velocities and do not
remain temporally overlapped. Only a small contribution at
the SH overlap in time. This property has also been revealed
experimentally during the measurement of cross-correlation
traces between the pulses at FF and at SH. In figure 6 we show
typical experimental and numerical cross-correlation traces
at output, for the same input intensity and phase mismatch
of figure 5. The main outer peaks testify the existence of
a strong contribution at SH separated from the FF wave by
20 ps on the temporal axis. This time delay corresponds
to the delay experienced by a SH pulse, generated in the

early stage of the FF wave propagation, that walks off from
the FF pulse because of the linear GVM. The 20 ps delay
corresponds to the temporal walk off (δt ∼ 3.3 ps cm−1)
accumulated after 58 mm of propagation along the waveguide.
The central contribution in the cross-correlation traces denotes
that a small part at the SH remains almost overlapped in time
with the FF pulse. The calculated output FF temporal intensity
envelope does not reveal any distortion or modulation at the
intensity regime displayed (figure 5). Significant distortions
were observed in the simulations at higher input intensities.
In figure 7 we compare the intensities of the measured and
simulated autocorrelation traces of the FF at input and output.

Typical FF and SH output temporal envelopes, in the high-
intensity regime, when the nonlinear focusing effect balances
the FF spatial diffraction, are reported in figure 8. In figure 9
we show experimental and numerical cross-correlation traces
at output, for the same input intensity and phase mismatch of
figure 8. Despite a strong walk-off, the output pulse at the FF
and a consistent contribution at the SH overlap in time and lock
together, thus providing an appreciable self-focusing effect
by cascading. Only a small part of the SH pulse undergoes
the GVM influence completely. At positive phase mismatch
and in the high-intensity regime a nonlinear compensation of
the temporal GVM became possible. The temporal GVM
compensation, and thus the temporal overlapping between the
two beams, is a crucial condition for an effective focusing
cascading interaction. The simulations of the experimental
conditions show that the FF output pulses exhibit a small
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(a) (b)

Figure 6. Quasi-linear regime. Cross-correlation trace in intensity of the FF and SH signals at output. (a) Numerical simulation,
(b) experimental data. Here the phase mismatch is �kL = 18π (T = 142 ◦C) and the input intensity is I = 1 MW cm−2.

(a) (b)

Figure 7. Quasi-linear regime. Autocorrelation traces in intensity of the FF at the input (dotted curve) and output (full curve).
(a) Numerical simulation, (b) experimental data. Here �kL = 18π (T = 142 ◦C) and the input intensity is I = 1 MW cm−2.

(a) (b)

Figure 8. Spatial self-trapped regime. (a) Calculated FF pulse profiles at the input (dotted curve) and output (full curve). (b) Calculated FF
(full curve) and SH (broken curve) pulses at output. The temporal slices of the signals are achieved for x = 0. The insets show the
numerical FF (a) and SH (b) temporal evolution in the (t, y) plane. Here the phase mismatch is �kL = 18π (T = 142 ◦C) and the input
intensity is I = 66 MW cm−2.

temporal steepening effect of the trailing edge, an effect
consistent with the spectra recorded experimentally (figure 8).
On physical grounds, such pulse steepening is due to the
asymmetrical, intensity-dependent nonlinear dragging that the
walking-off SH pulse imprints on the FF pulse. Such cross-
induced FF pulse steepening is made mathematically apparent,
for example, by considering the higher-order corrections to
the usual Kerr-like cascading limit (see [24]). In figure 10
we compare the intensities of the measured and simulated

autocorrelation traces of the FF at input and output. We stress
that the autocorrelation process masks the pulse asymmetry
and that the durations of the input and output pulses are
approximately equal.

6. Spectral characterization

The spectral behaviours of the signals have also been anal-
ysed. We measured the spectral profiles of the pulses at the FF
and the SH versus the injected intensity and at different phase
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(a) (b)

Figure 9. Spatial self-trapped regime. The cross-correlation trace in intensity of the FF and SH signals at output is shown. (a) Numerical
simulation, (b) experimental data. Here the phase mismatch is �kL = 18π (T = 142 ◦C) and the input intensity is I = 66 MW cm−2.

(a) (b)

Figure 10. Spatial self-trapped regime. Autocorrelation traces in intensity of the FF at the input (dotted curve) and output (full curve) are
shown. (a) Numerical simulation, (b) experimental data. Here �kL = 18π (T = 142 ◦C) and the input intensity is I = 66 MW cm−2.

(a) (b)

Figure 11. Spatial self-trapped regime. Pulse spectra of the FF beam at the input (dotted curve) and output (full curve). Here
�kL = 18π (T = 142 ◦C) and the input intensity is I = 120 MW cm−2.

mismatches, focusing attention on the spatial trapping regime.
The self-phase-modulation effect may involve spectral distor-
tions; contrary to what happened in the quasi-continuous wave
experiments, strong spectral changes were expected because
the input pulse’s spectrum can be significantly broader than the
SH-generated spectral acceptance of the sample. Moreover, at
high input powers, spectral broadening of the FF, which was
due to self-phase modulation through cascading, was expected
and clearly observed. Consequently, because of intra-spectral
SH generation in the presence of the GVM, the spectra of FF
and SH are modified asymmetrically, in agreement with the
steepening effect discussed above. Figures 11 and 12 show

typical spectral distortions of the FF and the SH after a two-fold
expansion of the SH coordinates. Note the FF spectral broad-
ening together with a wavelength shift of both the FF and SH
peaks are a result of asymmetry of the phase-matching SHG
condition on the wide FF spectra. Both the spectral broadening
and the frequency shift of the FF and SH peaks depend consis-
tently on the injected FF intensity and on the phase-mismatch
conditions. Typical evolution of the peak spectral wavelength
at the FF and the SH, versus input intensity and at a fixed pos-
itive phase mismatch, is shown in figure 13. We note a weak
evolution of the peak wavelength at the FF, while at the SH a
shift took place for a given intensity threshold that corresponds
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(a) (b)

Figure 12. Spatial self-trapped regime. Output pulse spectra at the FF (broken curve) and the SH (full curve) after two-fold expansion of the
SH scale. Here �kL = 18π (T = 142 ◦C) and the input intensity is I = 120 MW cm−2.

(a) (b)

Figure 13. Peak wavelength, at the FF and the SH after a two-fold expansion of the SH scale, versus incident intensity at fixed phase
mismatch (or temperature). (a) Numerical simulations: full curve, FF signal; broken curve, SH wave. (b) Experimental data: circles, FF
signal; crosses, SH wave. Here �kL = 18π (T = 142 ◦C).

(a) (b)

Figure 14. Peak wavelength, at the FF and the SH after a two-fold expansion of the SH scale, versus phase mismatch (or temperature) at
fixed input intensity. (a) Numerical simulations: full curve, FF signal; broken curve, SH wave. (b) Experimental data: circles, FF signal;
crosses, SH wave. Here I = 140 MW cm−2.

to the spatial narrowing threshold. The typical dependence of
the peak spectral wavelength versus phase mismatch, at the
high intensity regime, is shown in figure 14. Notice that the
peak spectral wavelength for the SH decreases almost mono-
tonically with increasing mismatch until a threshold, which
approximately coincides with the upper threshold for spatial
trapping (compare with figure 4), is reached.

Finally, we notice that all the temporal spectra, and related
quantities shown above correspond to the space-integrated
data. Also, it is worth stressing that, in the region where spatial
trapping occurs, the corresponding spatial spectra (not shown
here) feature the clean shape expected from trapped beams.

7. Conclusion

We investigated numerically and experimentally the generation
of spatial self-narrowed beams with 4 ps temporal pulsed
excitation at 1548 nm (FF). The pump pulse duration is
significantly shorter than the 20 ps temporal walk-off between
interacting FF and SH waves. The experiments were
performed in a film Ti:PPLN waveguide, with only the FF
at input. We succeeded in exciting FF spatially self-trapped
beams for a sufficiently large positive phase mismatch and
above an input intensity threshold. The lowest intensity
threshold measured was 45 MW cm−2 at a phase mismatch
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�kL of 9π and with an input beam width of 76 µm; a linear
increase of the intensity threshold on the phase mismatch was
quantified. No significant temporal distortion of the FF input
pulse envelope was observed during nonlinear spatial self-
trapped propagation in the input intensity regime explored. A
pulse steepening effect was predicted to occur on the FF signal,
an effect consistent with the spectra acquired experimentally.
We showed that linear temporal walk-off between the waves
at FF and SH can be compensated for in the nonlinear regime.
The temporal GVM compensation, and thus the temporal
overlapping between the two beams, is a crucial condition for
an efficient focusing cascading interaction. Broadening and
slightly asymmetrical spectral modulations of the FF pulse,
which are attributed to cross-induced pulse steepening, were
observed together with the spatially narrowed propagation.
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