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Observation of Discrete Quadratic Solitons
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Discrete solitons with two frequency components mutually locked by a quadratic nonlinearity have
been observed for the first time. Optical experiments have been performed in arrays of coupled channel
waveguides with tunable cascaded quadratic nonlinearity. The tunability was the prerequisite that
soliton species with different topology could be identified in the same array. Moreover, soliton stability
has been experimentally probed. Good agreement with theoretical predictions was found.
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Within the last decade nonlinear localization phe-
nomena in lattices have attracted a steadily growing
interest, and their existence has been predicted in a
wide range of physical settings. The diversity of these
phenomena and their richness compared to those in con-
tinuous systems stems essentially from the mutual inter-
play of the peculiar transport properties (diffusion,
diffraction, dispersion, tunneling) with the specific non-
linearity of the lattice. In particular, the differences to
continuous systems are significant if the lattice topology
is such that the excitation dynamics may be described by
the linear interaction of many nonlinear, but fairly simple
unit cells. In this particular case the lattice is frequently
termed a discrete system. Consequently, the respective
localized structures are called discrete breathers or dis-
crete solitons. Their wave vectors are situated in the semi-
infinite gaps surrounding the eigenvalue bands of linear
solutions. It is now well understood that solitons in vari-
ous discrete systems (excitations in molecular chains [1],
in Bose-Einstein condensates [2], light in waveguide
arrays [3], etc.) share common features. Thus it is appro-
priate to experimentally study them in an accessible
physical environment. Optical settings such as one- and
two-dimensional arrays of coupled channel waveguides
meet the requirements of easy handling, excitation, and
visualization (see for an overview Ref. [4] and references
therein). To date the experimental studies are restricted to
frequency degenerate effects in media with Kerr, photo-
refractive, and orientational nonlinearities where various
discrete solitons associated with diverse linear diffraction
properties have been observed [5–8]. But because the very
interplay between these linear transport phenomena and
the nonlinearity governs the localization process, it is
challenging to study localization phenomena for other
more diverse nonlinearities. In this respect quadratic
nonlinearities deserve particular attention because the
interaction process involves two or three components at
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different frequencies and new degrees of freedom enter
the dynamical process.

Different kinds of quadratic discrete solitons have been
theoretically predicted to exist [9,10]. Just as for other
nonlinearities it is convenient to study them in an optical
environment, e.g., in an array of coupled single mode
channel waveguides in a crystal with a strong second-
order nonlinearity. Their continuous counterparts, i.e.,
multicolored or quadratic spatial solitons, have already
been experimentally verified. It was shown that the wave-
vector mismatch �� � 2��!� � ��2!� between the par-
ticipating waves is a crucial parameter, which determines
the features of the respective soliton family [11]. The size
and the sign of this mismatch govern the character of
nonlinear phase modulation [12] which, together with the
linear diffraction properties, controls the localization
process.

In the array light is guided by the individual channels
and spreads laterally by evanescent field coupling between
adjacent channels. This gives rise to so-called ‘‘discrete
diffraction’’ whose properties are radically different from
diffraction in continuous media. Because of the periodic
cosinelike shape of the diffraction relation, i.e., the varia-
tion of the longitudinal wave-vector component with the
transverse one, diffraction can be managed ranging from
normal, to zero, to anomalous diffraction [13,14]. Resting
linear solutions with all waveguides excited in phase
(unstaggered excitation) appear in the center of the
Brillouin zone. Similar to continuous media, they expe-
rience normal diffraction. Resting antiphase solutions
(staggered excitation) exist at the edges of the Brillouin
zone, where diffraction is anomalous. This diffraction
management can be easily achieved by varying the phase
difference between modes in adjacent waveguides with a
slight inclination of the input beam of a few degrees. To
avoid coupling to linear waves, soliton solutions exist
only with wave vectors outside the linear eigenvalue
band and require thus positive (negative) nonlinear phase
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FIG. 1. Spatial pulse energy profile of the two nonlinearly
coupled frequency components of an unstaggered odd discrete
soliton (��L � 140�, Lc � 15:7 mm, FW input peak power
of 500 W). Dotted lines and open circles show the low-power
FW diffracted beam, and solid lines and circles show the
soliton. Circles identify theoretical data.
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modulation in the center (at the edges) of the Brillouin
zone.

Here we report the first observation of these different
kinds of discrete quadratic solitons. We prove that soliton
topology changes if the nonlinear phase modulation
changes sign achieved by changing the sign of the
wave-vector mismatch. We observe in-phase (or unstag-
gered) solitons for ��> 0, whereas they appear as out-
of-phase (or staggered) species for ��< 0. If the combi-
nation of phase modulation and diffraction is inappropri-
ate for soliton formation, for example, in-phase excitation
and ��< 0, nonlinearly reinforced delocalization was
observed as well [15].

The different soliton types can be further classified by
their symmetry.‘‘Even’’ solitons have the same power in
two adjacent waveguides in the soliton center such that
the maximum power is centered virtually between two
guides. In contrast the maximum power of ‘‘odd’’solitons
is centered at a guide [9,10]. While odd solitons are
theoretically predicted to be stable, their even counter-
parts are predicted to be unstable. These stability prop-
erties have also been verified in our experiments. In
general, all experimental observations were in good
agreement with the theoretical predictions.

Four waveguide arrays, each consisting of 101 coupled
channel waveguides with propagation along the X axis,
were fabricated on a L � 7 cm long Z-cut lithium niobate
crystal by titanium in diffusion. TM00-mode waveguide
losses were 0:2 dB=cm for the fundamental wave (FW) at

 � 1550 nm and 0:4 dB=cm for its second harmonic
(SH). Center-to-center channel separations of d � 16,
15, 14.5, and 14 �m resulted in different coupling
strengths and thus interchannel half-beat coupling
lengths Lc � 25:5, 15.74, 12.16, and 9.53 mm, respec-
tively, for the FW TM00 mode, determined from the out-
put intensity distribution for a single waveguide
excitation [14]. A peculiarity of our array is that because
of the stronger SH confinement the evanescent coupling
between SH TM00 modes vanishes. The observed excel-
lent linear diffraction patterns of the FW indicated al-
most ideal arrays with both uniform channels and channel
spacing. The sample was periodically poled with a period
of 16:75 m by electric field poling to achieve phase
matching between the TM00 modes for SH generation at
elevated temperatures in the range of 220 �C. The re-
quired wave-vector mismatch can be adjusted by varying
the sample temperature T. In our experiments the relation
between the phase mismatch ��L and sample tempera-
ture T was measured to be ��L � 8:1�234� T��C��.

For the experimental investigation of quadratic discrete
solitons we used a fiber laser producing a 5-MHz train of
bandwidth limited 9-ps-long pulses at a wavelength of
1557.3 nm. The pulses were stretched in a chirped fiber
grating, amplified in a large area core fiber amplifier, and
then recompressed in a bulk grating compressor to give
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4 kW of peak power in nearly transform limited pulses
7.5 ps long. The recompressed pulses were spatially re-
shaped into elliptical beams 28 to 62 �m wide (full width
at half maximum) and 3:5 �m high and focused onto the
polished front facet of the waveguide array. With this
setup we could launch the FW into the TM00 modes of
the array waveguides with an overlap of 50% to 60%. We
excited different arrays with Gaussian shaped FW input
beams of different widths resembling closely the shape of
the solitons. The SH was not seeded, and we relied on the
generation of the appropriate SH soliton component dur-
ing the propagation in the array. To reduce the average
power in the waveguides we used a 1:10 chopper. The
sample was heated in an oven both to minimize photore-
fractive effects and to adjust the wave-vector mismatch
with temperature T. The output of the array was observed
with separate cameras for the FW and the SH, and quan-
tified by measuring temporally averaged output inten-
sities and total powers.

Theoretical simulations provide insight into the soli-
ton’s propagation behavior. With our short pulse excita-
tion, the spatiotemporal evolution of the mode amplitudes
un (FW) and �n (SH) may be described by the well-
established time-dependent coupled mode equations [16]
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where c, �, and � are the linear coupling constant (Lc �
�=2c), the group velocity mismatch, and the effective
quadratic nonlinear coefficient, respectively. For our
pulse lengths, the group velocity dispersion can be ne-
glected. Discrete solitons are stationary solutions of
113902-2



FIG. 2. (a) Soliton peak power versus ��L for arrays with
different coupling lengths Lc. (b) FWoutput beam width versus
the ratio FW input peak power=��L for different ��L.

FIG. 3. (a) Simulated evolution of the transverse energy (time
integrated) spatial profile of beams excited by a FW input
(��L � 140�, Lc � 15:7 mm, FW input peak power of
442 W). (b) Spatiotemporal output distribution of the simula-
tion in (a).

FIG. 4. (a) Nonlinear reinforced beam broadening for in-
phase excitation (��L � �50�, Lc � 12:16 mm, FW input
peak power of 1.4 kW). (b) Staggered soliton profile (��L �
�16�, Lc � 15:7 mm, input peak power of 150 W). Solid and
empty circles identify the high- and low-power theoretical
data, respectively.
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Eq. (1) [9,10]. The experimental findings were double-
checked by solving this full set of Eqs. (1).

We started our experiments with the combination of
positive ��L and normal diffraction, i.e., expecting to
observe unstaggered solitons. Hence we focused the FW
input beam untilted onto the sample, i.e., with a phase
front parallel to the input facet, and the beam maximum
centered at a waveguide.We increased the input power and
observed a narrowing of FW and SH output beams until
the width of the FWoutput equaled the width of the input
beam. Figure 1 shows typical measured and simulated
output intensity profiles for both wavelength components
for an odd unstaggered soliton. The low-power FW dif-
fraction pattern is also shown for comparison.

In order to obtain a more complete insight into the
physics of soliton formation the experiments were re-
peated for several positive values of ��L (and thus
positive nonlinear phase shift) and in different arrays
with varying coupling. As expected from theoretical
predictions, Fig. 2(a) (left side) confirms that the powers
needed for soliton formation increased with the coupling
strength and ��L. The latter result is a clear indication of
the quadratic nature of the nonlinear process, i.e., non-
linear phase modulation decreases with increasing ��L.
In Fig. 2(b) the measured beam width as a function of
input power divided by ��L is plotted. It reproduces the
theory well up to power levels equal to the soliton power.
However, for powers well beyond the soliton power we
observed delocalization and patterning effects not repro-
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duced by our theoretical model. They might be due to
remaining photorefraction, nonlinear induced absorp-
tion, and longitudinal sample inhomogeneities. These
effects are expected to come into play for very high input
powers and are not included in our theoretical modeling.

In Fig. 3(a) the evolution of the FW and the SH energy
distribution of one pulse clearly indicates soliton behavior
since the energy profile does not change significantly
during the propagation. Moreover, the generation of the
SH part of the soliton shortly after the input can be
observed. The waveguide losses, although very small,
are responsible for the power loss during the propagation.
Furthermore, the simulations help to interpret the mea-
113902-3



FIG. 5. Time sequence of FW output energies, sampled at
intervals of 200 ms, from waveguides in the soliton center
(Lc � 15:7 mm, ��L � 140�). (a) Stable output for odd soli-
ton excitation. (b) Unstable output for even excitation.
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sured temporally averaged SH profiles, which in principle
developed a complex temporal structure due to walk-off
effects caused by unequal FWand SH group velocities. In
general, most of the SH temporally overlaps the FW and
represents the soliton’s SH component. A second SH
(radiation) pulse trails the soliton by the 24 ps walk-off
time in a 7-cm-long sample. However, the calculated
spatiotemporal distribution at the output, shown in
Fig. 3(b), indicates soliton propagation for the mutually
locked FW and SH. The spatial narrowing of the FW in
the pulse center is evident. Although the soliton’s SH
component increases closer to phase matching, the SH
radiation that has temporally walked away from the soli-
ton increases even faster. Therefore an increasing part of
the measured, temporally averaged, SH output no longer
belongs to the soliton and a reliable SH soliton profile
measurement is not clear for j��Lj< 20� with 7.5-ps-
long pulses in our sample.

Next we investigated the beam evolution for a negative
wave-vector mismatch and in-phase (unstaggered) as
well as antiphase (staggered) excitation. The results are
displayed in Fig. 4. As theory predicts, for unstaggered
excitation we observed delocalization reinforced by non-
linearity [see Fig. 4(a)] because negative phase modula-
tion reinforces normal diffraction. Bright soliton
formation can be expected only for a staggered excitation
at the edges of the Brillouin zone where diffraction is
anomalous. The excitation with the required phase differ-
ence of � between modes in adjacent waveguides was
realized by appropriately tilting the input beam by �3
degrees. We observed the formation of odd staggered
solitons with a typical FW profile shown in Fig. 4(b).
The displayed nonideal low-power linear diffraction pat-
tern is caused by our simple antiphase excitation setup
with a tilted beam and the corresponding aberrations. The
power for staggered soliton formation versus phase mis-
match is shown on the right-hand side of Fig. 2(a).

Finally, the stability of the excited discrete solitons has
been probed. Theory predicts that staggered as well as
unstaggered odd solitons are stable, whereas the even
ones are unstable. In agreement with this prediction we
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found that very careful transverse beam alignment, with
the input beam maximum centered on a channel, was
necessary to obtain stationary output pictures of the
soliton profiles. For example, different time frames in
Fig. 5(a), taken at intervals of 200 ms, show stable powers
in the three central waveguides of an odd unstaggered
soliton (��> 0). When the input maximum was cen-
tered between two waveguides, a strongly flickering out-
put as documented in the time frames of Fig. 5(b) was
observed. The output profile’s maximum jumped between
the two waveguides adjacent to the input beam’s maxi-
mum; i.e., the excitation tried to evolve into either of the
two neighboring odd solitons. The observed instability
was presumably seeded by small fluctuations in the point-
ing direction of the input beam due to vibrations in the
optical mounts, etc. For staggered solitons (��< 0) a
similar stability behavior has been observed.

In summary, we have presented the first experimental
proof of both staggered and unstaggered stable discrete
quadratic soliton propagation. Both soliton types have
been excited in the same sample by merely changing
the excitation conditions as beam tilt and wave-vector
mismatch. Increased beam broadening was also measured
for both the staggered and unstaggered excitations when
the mismatch and thus the sign of phase modulation were
chosen to reinforce instead of to cancel discrete
diffraction.

This research was supported in Europe by the
European Commission under Contract No. IST-2000-
26005 ‘‘ROSA,’’ and in the United States by the
National Science Foundation and an Army MURI on
‘‘Solitonic Gateless Computing.’’
[1] A. S. Davydov, J. Theor. Biol. 38, 559 (1973).
[2] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353

(2001).
[3] D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794

(1988).
[4] D. N. Christodoulides, F. Lederer, and Y. Silberberg,

Nature (London) 424, 817 (2003).
[5] H. S. Eisenberg et al., Phys. Rev. Lett. 81, 3383 (1998).
[6] J.W. Fleischer et al., Nature (London) 422, 147 (2003).
[7] D. Neshev et al., Opt. Lett. 28, 710 (2003).
[8] A. Fratalocchi et al., Opt. Lett. 29, 1530 (2004).
[9] T. Peschel, U. Peschel, and F. Lederer, Phys. Rev. E 57,

1127 (1998).
[10] S. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Rev.

E 57, 2344 (1998).
[11] R. Schiek et al., Opt. Lett. 29, 596 (2004).
[12] G. I. Stegeman et al., Opt. Lett. 18, 13 (1993).
[13] H. S. Eisenberg et al., Phys. Rev. Lett. 85, 1863 (2000).
[14] T. Pertsch et al., Phys. Rev. Lett. 88, 093901 (2002).
[15] R. Morandotti et al., Phys. Rev. Lett. 86, 3296 (2001).
[16] T. Pertsch, U. Peschel, and F. Lederer, Opt. Lett. 28, 102

(2003).
113902-4


