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Abstract:  Parametric gain associated with discrete modulational instability 
due to the second order nonlinearity χ(2)(-2ω;ω,ω) was investigated 
experimentally in periodically poled lithium niobate arrays of weakly 
coupled channel waveguides for conditions of both positive and negative 
phase-mismatch for second harmonic generation.  
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1. Introduction 

The most fundamental consequence of propagating high intensity, plane waves beams in bulk 
optically nonlinear media is that filamentation due to any amplitude or phase noise present on 
the beam occurs for media with an effective self-focusing nonlinearity but not in media with 
negative (defocusing) nonlinearities [1,2].  Such phenomena have been observed in a variety 
of continuous nonlinear optical media, the behavior having many universal properties because 
diffraction has only one sign in continuous media [3-5]. 

The nonlinear behavior of beams in discrete media consisting of arrays of weakly coupled 
channel waveguides has been of recent interest in cubic, quadratic and photorefractive media 
[6-8]. A large variety of discrete solitons has been predicted, and many have been observed 
experimentally [9]. One of the reasons for this proliferation of spatial solitons when compared 
to that found in continuous media is that the one-dimensional dispersion relation linking the 
longitudinal (kx) and transverse (ky, Bloch) wavevectors where x is the channel direction, is 
sinusoidal in nature so that the diffraction coefficient D = d2kx/dky

2 can be either normal 
(negative as in continuous media) or anomalous (positive with no analog in continuous 
media). For a self-focusing nonlinearity, filamentation is expected to occur for regions of 
normal diffraction and to be absent for regions of anomalous diffraction [10]. This diversity of 
behavior forbidden in continuous media has been reported recently in 1D arrays of AlGaAs 
channel waveguides which exhibit self-focusing Kerr nonlinearities [11]. However, there have 
been no experiments on filamentation reported for self-defocusing nonlinearities in discrete 
media, nor in quadratically nonlinear media whose nonlinearity can be either focusing or 
defocusing.  

Quadratically nonlinear media play a unique role in soliton science because their solitons 
consist of all the frequency components, two or three, which are strongly coupled in a 
parametric interaction based on quadratic nonlinearities [12]. Discrete quadratic solitons 
associated with second harmonic generation (SHG) have been observed in arrays of 
periodically poled lithium niobate waveguides [8]. In those arrays, not only can the sign of 
diffraction for the fundamental beam be changed by varying the propagation direction (ky) 
across the array, but also the sign of the effective focusing or defocusing nonlinearity by 
varying the phase-mismatch condition for the parametric interaction [13]. Therefore, although 
filamentation also occurs for normal incidence in quadratic media with a self-focusing 
nonlinearity (positive wavevector mismatch), in contrast to the AlGaAs case, filamentation 
should be eliminated by simply tuning the wavevector-mismatch to negative values. Here we 
demonstrate for normal incidence onto quadratically nonlinear waveguide arrays the existence 
of parametric gain associated with modulational instability for self-focusing nonlinearities, 
and its absence in the defocusing case. 

2. Experimental details 

The sample consisted of waveguide arrays containing 101 guides fabricated on 70mm long Z-
cut LiNbO3 wafers by diffusing 7μm wide Ti stripes of 90nm thickness into the substrate for 
8.5 hours at 1060°C [8]. Waveguides with losses of 0.2dB/cm for the FW and 0.4dB/cm for 
the SH were obtained. For efficient SHG phase-matching between the FW (1550nm) TM00 
and the SH (775nm) TM00 waveguide modes at ~200°C, a uniform QPM grating (ferroelectric 
domain structure) of 16.75μm periodicity was written in the sample by electric field poling. 
The center-to-center spacing d between the array’s channels was 15μm. The phase-matching 
condition was tuned by varying the wavelength of an OPG/OPA from 1547 to 1565nm. The 
bandwidth of the OPG/OPA was 0.4nm, larger than the SHG bandwidth of 0.25nm measured 
in individual “witness” channels surrounding the associated the array. The arrays were housed 
in an oven and heated to temperatures of 200°C in order to avoid photorefractive damage. The 
combination of sample length and number of channels in an array limited the angular range of 
propagation that could be followed at the output end of the 7cm long sample without 
reflections occurring at the array boundaries. 
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Fig. 1. Geometry of the wide, high intensity fundamental beam interacting with a PPLN array 
near its phase-matching condition for second harmonic generation. 

The light-sample geometry of interest is shown in Fig. 1. The broad input fundamental beam 
whose wavelength was varied from 1547 to 1565 nm was obtained from an EKSPLA 
OPG/OPA pumped by an EKSPLA Nd:YAG laser producing 15ps pulses with energies up to 
200μJ with energy stability of ±15%. A lens train was used to produce a highly elliptical beam 
approximately Gaussian in shape in two dimensions with a planar wavefront at the sample’s 
input facet. The beam dimensions were 350μm x 3.5μm along the 1D array and in the 
dimension orthogonal to the surface respectively. The beam’s full width at half-maximum 
covered 23 channels at the input. In this setting, 1μJ pulse corresponds to a peak power of 
2.3kW and peak intensity of 13GW/cm2 in the middle channel. Provision was also provided 
for tilting the input beam by small angles (a few degrees) around an axis orthogonal to the 
surface normal in order to vary the relative input phase kyd between adjacent channels.  

The two key parameters which govern discrete diffraction are the propagation distance 
required for complete transfer between two coupled, but otherwise isolated channels, i.e. the 
coupling length LC, and the general form of the dispersion (kx versus ky). They were measured 
for the fundamental beam at room temperature. By monitoring the centroid of the output 
fundamental beam as a function of the relative phase angle kyd at which the input beam is 
launched, the angular dependence of dkx/dky was measured. The results are shown in Fig. 2. 
Clearly the diffraction coefficient (∝ d2kx/dky

2) has zeros in this sample at kyd=±π/2, as given 
by simple nearest-neighbors couple mode theory. By measuring the discrete diffraction for 
single channel inputs and matching to theory, a linear coupling length of 15.74mm was 
deduced for the FW. As discussed previously, the tight spatial confinement of the second 
harmonic fields leads to SH coupling lengths much longer than the sample length so that kx is 
independent of ky for the harmonic component [8]. This also means that there is no discrete 
diffraction of the SH and it remains in the channel in which it is generated. 

 
Fig. 2.  The first derivative dky/dkx of the dispersion relation obtained by plotting the centroid 
at the output facet of a fundamental beam injected into the PPLN arrays as a function of the 
relative phase between the adjacent channels. 
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3. Modulation instability at normal incidence 

The first nonlinear experiments consisted of directing the input fundamental beam at normal 
incidence (kyd=0 - normal diffraction) onto the array for both positive and negative 
wavevector mismatch. The beam observed emerging from the output facet was measured as a 
function of increasing fundamental input energy and is shown in Fig. 3. Total output energy 
was normalized to the same value for different input energies. 

 
Fig. 3  Output from PPLN array as a function of increasing input fundamental energy. Left-
hand-side: positive phase-mismatch of 170π. Right-hand-side: negative phase-mismatch of - 
40π. 

Here waveguide imperfections play the role of an amplitude “seed”. In the defocusing case it 
is clear that the output pattern is independent of increasing power, i.e. no filamentation growth 
occurs due MI parametric gain and instead the pattern contrast decays due to propagation 
losses. For positive wavevector mismatch (self-focusing case), the relative intensity of the 
defect seeded channels increases. Plotted in Fig. 4 is the spatial Fourier spectrum of the 
normalized array output shown in Fig. 3.  

 
Fig. 4. Spatial Fourier transform of the output intensity patterns shown in Fig. 3.. Left-hand-
side: positive phase-mismatch of 170π. Right-hand-side: negative phase-mismatch=-40π.  

There is clearly gain in the self focusing case for a Fourier component representing the defects 
followed by saturation due to the long samples used. In contrast, for the defocusing case there 
is no increase in Fourier components with increasing power. The corresponding normalized 
output intensity distributions are shown in Fig. 5 at low (blue) and high (green) powers. 
Clearly a periodic pattern occurs at high powers for the self-focusing case where-as no pattern 
emerges for the defocusing case. Note that moving from one limit to the other just involved a 
change in the input wavelength. 
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Fig. 5. Low and high power output intensity distribution from the array at high (green) and low 
(blue) powers. Left-hand-side: positive phase-mismatch of 170π. Right-hand-side: negative 
phase-mismatch of -40π. 

Simulations were also performed to verify theoretically that MI only occurs for the self-
focusing case at normal incidence. The system is described by the equations: 
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where un and vn are the fundamental and harmonic fields at the center of the n’th channel, and 
c, δ, Δβ and γ represent the linear coupling constant, the inverse group velocity mismatch, 
linear wavevector mismatch and the effective quadratic nonlinear coefficient, respectively. 
Note that the SH field inter-channel coupling can be neglected for the simulation of our 
experiment as the coupling of the SH is much weaker than for the FW because of the much 
tighter SH mode confinement in the channels. The results in Fig. 6 obtained for the 
experimental parameters verify that parametric amplification should occur for the self-
focusing case, but not for the self-defocusing case, as observed experimentally. 

 
Fig. 6. Calculated evolution of a seeded fundamental beam in the PPLN array as a function of 
increasing peak input fundamental power in the middle channel. Experimental parameters were 
assumed. Left-hand-side: positive phase-mismatch of 170π. Right-hand-side: negative phase-
mismatch of -40π. 

4. Measurements at non-normal incidence 

The effect of varying the relative input phase kyd through the zero diffraction point was also 
investigated. These measurements were limited by a number of factors. Reflections that occur 
at the array boundaries due to the large sample lengths and the total number of channels in an 
array limit the angular range to |kyd|≤0.75π. The lack of second harmonic coupling between 
adjacent channels and therefore the resulting difference in the fundamental and harmonic 
dispersion relations limits the growth of the harmonic. Furthermore, small variations in SH 
generation efficiencies between channels found experimentally lead to cumulative phase 
variations in the fundamental along the channel. Nevertheless, it is clear from the high input 
power pictures in Fig. 7 that, for positive wavevector mismatch, filamentation only occurs for 
|kyd|≤0.5π (i.e. normal diffraction) and disappears for |kyd|≥0.5π (anomalous diffraction). 
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Fig. 7. Distribution across the array of the fundamental beam output power from the PPLN 
array for incidence of the fundamental beam as a function of the relative input phase between 
adjacent channels. Positive phase mismatch = 170π on the left; negative phase-mismatch=-40π 
on the right. The input pulse energy was 0.27μJ corresponding to a peak power of 620W in the 
middle channel. Regions of high contrast filaments are identified by ellipses. 

In contrast to this, for negative wavevector mismatch, no filamentation occurs for |kyd|≤0.5π 
but does occur for |kyd|≥0.5π. All of these results are consistent with filamentation when the 
product of the diffraction coefficient (D) and the wavevector mismatch is negative, and no 
filamentation when the product is positive. The results are also in agreement with the previous 
experiments on filamentation observed due to the self-focusing Kerr nonlinearity in AlGaAs 
arrays [11]. 

5. Summary 

In summary, we have observed MI gain due to discrete modulation instability in arrays with 
quadratic nonlinearities. Whether filamentation occurs or not depends on the sign of the 
product of the diffraction coefficient and the cascading nonlinearity 
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