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Discrete optical systems can be realized as arrays of parallel, weakly coupled, channel waveguides where light normally un-

dergoes “discrete diffraction” via the weak coupling between adjacent channels. Here we describe how light can be forced

to maintain a constant field profile on propagation in waveguide arrays, i.e., to localize into a discrete spatial soliton, by us-

ing the second order nonlinearity of periodically poled lithium niobate near phase-matching for second harmonic genera-

tion. Detailed sample characterization and experimental verification of the excitation of discrete quadratic solitons is re-

ported.
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1. Introduction

When two parallel, identical two-dimensional waveguides

are placed in sufficiently close proximity that their modes

overlap, light can be coupled from one waveguide to the

other via tunnelling across the gap between the guides

[1,2]. There is a p/2 phase shift associated with the cou-

pling as the energy is transferred to the adjacent channel.

This device is known in integrated optics as a dual direc-

tional coupler. When the device length is terminated ex-

actly at the linear coupling length, light is completely

switched from the input to the adjacent channel. This

switching can be prevented by detuning the optical proper-

ties (propagation constants or effective indices) of the two

waveguides. This can be achieved either electro-optically,

or all-optically [3,4]. The simplest example of all-optical

detuning is to utilize a Kerr nonlinearity and detune the in-

put channel by applying high enough intensities to signifi-

cantly change the local refractive index.

If the input channel is embedded within an array of

channels the light can be coupled to two adjacent channels

corresponding to a form of discrete diffraction [2,5,6]. In

this way light can spread throughout the array. Now the p/2

phase shift plays a critical role in the way light spreads in

the array. In the extreme case of excitation of only one

channel, the pattern exhibits two well-defined power lobes

travelling at equal angles out from the excitation channel,

leaving only small intensities in the input and its adjacent

channels. In the other limit, for wide excitation beams

overlapping many channels, the diffraction pattern resem-

bles closely that associated with diffraction in continuous

media, i.e., the intensity maximum tracks the central chan-

nel. If the channels of the array exhibit a self-focusing Kerr

nonlinearity, energy transfer between channels can be

again arrested at high input intensities, just like in the di-

rectional coupler case, and the beam is localized to its input

channels as it propagates down the waveguide [7]. This

corresponds to a discrete Kerr soliton which has been re-

ported in the literature [8]. It is the continuous medium an-

alogue of a 1D spatial Kerr soliton in a slab waveguide [9].

It is now well-known that a cascading induced nonlinear

phase shift which occurs near phase-matching for second

harmonic generation (SHG) can also lead to a self-focusing

of both the fundamental and harmonic beams [10]. In fact,

the transfer between the two channels of a dual directional

coupler has been inhibited at high intensities solely due to

this cascaded c(2)-effect [11]. Furthermore, mutually

self-trapped fundamental and harmonic beams, i.e., spatial

solitons, have been observed in 1D (slab waveguides) and

2D (bulk media) due to their interaction via the second order

nonlinearity [12,13]. Thus, it is not surprising that discrete

“quadratic” solitons have been predicted theoretically to ex-

ist in weakly coupled arrays of channel waveguides tuned

close to phase-matching for SHG [14–16].

This paper describes the observation of discrete qua-

dratic solitons in periodically poled lithium niobate wave-

guide arrays. A brief initial report has already published in

letter format and this paper is meant to give a detailed dis-

cussion of the samples, their characterization, the apparatus

used in the experiments and the observations [17].
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2. Periodically poled lithium niobate arrays and
their characterization

The 7-cm long, Z-cut LiNbO3 samples were cut along the

X-axis from 4 inch congruent wafers. The channel

waveguides were fabricated by Ti-indiffusion. Electric

field assisted periodic poling was used to create a quasi-

-phase-matched (QPM) structure [18]. It was necessary to

address a number of key issues in order to achieve the re-

quired waveguide quality and reproducibility, and these

were thoroughly investigated. In order to achieve a high

degree of homogeneity, uniformity of Ti-deposition, photo-

lithographic Ti-stripe definition, Ti-indiffusion and peri-

odic poling were optimised. In particular, for electric field

assisted periodic poling, various parameters such as a tem-

perature, poling voltage, poling current, total charge and

voltage profile were precisely controlled to get a homoge-

neous microdomain structure with the optimum duty cycle

of 1:1. As a result, a variety of Ti:PPLN waveguide struc-

tures of excellent properties could be developed.

The procedure steps, developed over 20 years at the

University of Paderborn, are summarized in Fig. 1. The ar-

rays, four to a sample each containing 101 channels were

fabricated over the full 7-cm length of the samples. The

spacing between individual channels was different in each

array, varying from 14 to 16 µm, in order to allow different

coupling lengths between adjacent channels. Isolated single

“witness” channels, in which linear losses and SHG effi-

ciency could be measured, were placed between each set of

arrays. Representative micrographs of the end-face

(in-coupling facet) of a sample, and also taken from above

after selective etching to make visible both the individual

channel as well as the periodically poled regions, are

shown in Fig. 2. Based on the fabrication parameters, the

index distribution within the material due to Ti-indiffusion

was modelled, and the modal field distributions at both the

fundamental (FW at 1560 nm) and second harmonic (SH at

780 nm) fields were calculated numerically with excellent

agreement with the measured mode profiles and are shown

in Fig. 3 [19]. Note that although the field distributions of

adjacent channels overlap for the FW, the overlap is essen-

tially zero for the SH.

The fabrication of arrays with 101 channels that are

identical over 7 cm was technologically challenging. The

uniformity of each array was evaluated by injecting light at

1560 nm into single channels and then measuring the inten-

sity distribution at the output. This allowed regions in ar-

rays without channel breaks, inhomogeneities and scatter-

ing sites due to imperfect poling etc. to be identified. As-

suming that coupling only occurs between nearest neigh-

bours, the equation describing the evolution of the field

amplitude an in the centre of the n-th channel is given by

- + + + =+ -i
da

dx
a c a a

n
n n nb ( )1 1 0, (1)

where c Lc= p 2 is the coupling constant, Lc is the half-

-beat coupling length, x is the propagation direction, and b
is the propagation constant (wavevector) for an isolated in-

dividual channel [5]. Thus, light spreads throughout the ar-

ray via nearest neighbour coupling. It has been shown that

the field distribution at the output facet when only the n = 0

channel is excited is given by

E x i J cxn
n

n( ) ( ) ( )= - 2 , (2)
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Fig. 1. Schematical representation of the steps for Ti:PPLN channel

waveguide fabrication.

Fig. 2. Microphotographs of the polished end face of a part of a waveguide array illuminated from the input side (left), and of the

periodically poled microdomain structure of a waveguide array observed from above after preferential etching (right). The periodic

orientation of the Z-axis is indicated.



where Jn is the n-th order Bessel function. An example of a

measured discrete diffraction pattern is shown in Fig. 4, as

well as the best fit used to evaluate the coupling length Lc

which was found to be 15.7 mm in this case. The fit be-

tween experiment and theory is excellent, indicating an ex-

cellent quality region of the array. Note the characteristic

of single channel excitation with strong side-lobes into

which most of the energy flows.

Linear and nonlinear characterization of the appropriate

“witness” channels was performed once the suitable array

for the soliton experiment was identified. The losses were

measured to be ~0.15 dB/cm and ~0.30 dB/cm at the FW

and SH wavelengths respectively. The SH tuning curves

were also measured for the witness channels, at the temper-

ature of 195°C and they are shown in Fig. 5. Note that it

was necessary to investigate the sample in an oven in order

to minimize photorefractive effect which was observed at

temperatures below 150°C. The oven introduced tempera-

ture gradients near the end faces of the samples. The mea-

sured distortions of the detuning curves away from the

classical sinc2 response are a combined result of the tem-

perature gradient at the sample ends and width variation of

individual channels – both influencing the local wavevector

mismatch.

3. Linear wave propagation in arrays

The coupling between adjacent channels not only leads to

“discrete diffraction” but also to the propagation of beams

across the array [6]. The dispersion relation for “plane

waves” is obtained by exciting each channel with the equal

amplitude a0 and with a relative phase between channels of

Df. The Bloch wavevector ky associated with the periodic

structure can be defined by ky = Df/d where d is the cen-

tre-to-centre channel spacing. Assuming “plane wave” so-

lutions of the form

a E i t k x nk dn x y= - -0 exp[ { }]w , (3)

and substituting into Eq. (1) gives the dispersion relation

k c k dx y= +b 2 cos[ ]. (4)

This dispersion relation is plotted in Fig. 6.

There are two immediate repercussions to such a peri-

odic dispersion relation. The spatial diffraction coefficient

is given by

D
d k

dk
D cd k d

x

y

y= = -
2

2

22, cos( ). (5)

This result predicts that maximum beam broadening oc-

curs for kyd = ±np for n = 0, 1, 2,… where-as for kyd = ±(n

+ 1/2)p the diffraction is zero, i.e., there is no beam spread-

ing. This was verified experimentally [20] in the LiNbO3
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Fig. 3. Typical refractive index distribution and the fundamental

and harmonic mode profiles for Z-cut, X-propagation Ti:PPLN

channel waveguides in a periodic array.

Fig. 4. Measured “discrete diffraction” pattern (solid line) at the

output for single channel excitation. The best fit to the theoretical

[Eq. (2)] diffraction pattern (at the centres of the channels) is given

by the circles. The dashed lines are guides to the eye.

Fig. 5. SHG detuning curves for two witness channels.



with results shown in Fig. 7. Note that at kyd = ±p/2 there is

no increase in the width of the beam transmitted through

the array. Furthermore, depending on the relative input

phase between adjacent channels, the beam slides across

the array. The displacement of the beam’s centre channel at

the output facet relative to the beam centre’s input channel

should vary proportional to sin(kyd), i.e., it should be a

maximum at kyd = ±p/2, and zero at kyd = ±np. The actual

measurements, shown in Fig. 8, agree with these predic-

tions. Note that there the maximum propagation angle

across the array relative to the x-axis for weak coupling is

given by ±p/2bd.

All of the measurements discussed above were taken

for propagation of the FW beam at ~1560 nm, i.e., at low

powers so that essentially no SH is generated. At high input

powers, SH is generated. Because the coupling coefficient

for the SH is very small, as illustrated by the modal profiles

in Fig. 3, there is effectively no coupling between the SH

fields in the individual channels. However, SH does appear

in neighbouring channels due to generation from the FW

present in that channel. This is shown schematically in

Fig. 9. Mathematically, there is no dispersion in the SH

wavevector kz = b(2w) with input phase angle between ad-

jacent channels.

4. Discrete quadratic solitons: theory

The introduction of the second order nonlinearity which

couples the FW to the SH waves, and which is known to

lead to effective self-focusing and self-defocusing nonline-

arities can lead to solitons. As mentioned previously, this

has led to the observation of quadratic solitons in 1D (slab

waveguide) and 2D (bulk) media. Similarly for the discrete

case, including this coupling has been predicted to lead to

discrete quadratic solitons in 1D (and probably also in 2D)

[14–16].

The relevant discrete equations now become

i
a

x
c a a a b i x

i
b

x
a

n
n n n n

n
n

¶
¶

wg b

¶
¶

wg

+ + = - -

= -

+ -( ) exp[ ]*
1 1 D

2 exp[ ]i xDb

, (6)

where an and bn are the FW and SH field amplitudes in the

channel, g e c= ( / )( / )
( )

0
2

2 2eff K where K is a mode overlap
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Fig. 6. Theoretical propagation vector dispersion relation for a

discrete system. Beam diffracts with maximum strength at

k d ny = ± p. There is no diffraction at k d ny = ± +( )1 2 p.

Fig. 7. Experimental results on linear beam propagation in the

Ti:PPLN waveguide arrays. Notice that for the relative phase

difference between adjacent channels of k dy = ± p 2 diffraction

vanishes when the output beam width equals the input beam width

of 60 µm.

Fig. 8. Output power distribution vs. relative phase difference

between adjacent channels for a 4-channel wide input beam.

Fig. 9. Schematic representation of the discrete diffraction at the

fundamental wavelength (left-hand-side), and the lack of discrete

diffraction for the harmonic which is generated independently in

each channel by the fundamental present.



integral and Db = 2kx – b(2w) ± 2p/L where b(2w) is the

guided wave wavevector at the harmonic frequency and L
is the QPM period. Because the inter-channel coupling be-

tween the harmonic fields is very small, it has been ne-

glected, as discussed previously with regard to Fig. 3. Note

that in the previous theoretical work it was assumed that

the coupling constant for the SH field was comparable to

that for the FW field.

There are four solutions to Eq. (6) for bright solitons

whose energy propagates along the x-axis without spread-

ing [14–16]. They depend on the sign of the nonlinearity,

self-focusing for Db > 0 or self-defocusing for Db < 0, and

the sign of the diffraction coefficient D, negative for nor-

mal diffraction and positive for anomalous diffraction. The

field “symmetry” is either “unstaggered” with all of the

fields in adjacent channels in phase, or “staggered” in

which the fields in adjacent channels are p out-of-phase

with one another. These are illustrated in Fig. 10. The for-

mer occurs for Db > 0 and D negative, and the latter for Db
< 0 and D positive. In addition, the peak amplitudes can lie

either on a channel (shown in Fig. 10) or between channels

(not shown in Fig. 10). Only the “on channel” case is stable

and small perturbations cause this case to evolve into the

stable one.

The “wrong” combination of signs for the diffraction

coefficient and nonlinearity leads to enhanced diffraction.

This would occur for D negative and Db < 0, as well as for

D positive and Db > 0.

5. Experimental setup

The properties of the laser source required were set by the

power required for discrete soliton excitation, the sample

length (which determines the SHG and therefore laser

bandwidth) and the temporal walk-off between FW and SH

due to their different group velocities. For the 7-cm long

samples at 1560 nm, an ideal source bandwidth should be

less than 0.2 nm which corresponds to a pulse length of 12

ps for a bandwidth limited pulse.

Furthermore, theoretical calculations show that the min-

imum power required for soliton excitation on SHG

phase-match is of the order of a few 100 Watts [14–16].

Off phase-match, the required power scales approximately

linearly with the phase-mismatch. Given the losses in a typ-

ical optical system for shaping and characterizing the input

beam, at least an additional factor of two more in power is

needed. Our target was 5 kW.

Secondary but still important requirements were the

pulse-to-pulse stability and the source’s repetition rate. The

first relates to the reproducibility of the results and the sec-

ond to the signal-to-noise ratio of power measured by de-

tectors. These parameters were set at a minimum of 1 MHz

for the repetition rate and pulse-to-pulse stability better

than 5%.

The source laser was a Pritel FFL-1000 Er-doped fiber

laser which produced transform limited pulses over the

wavelength range 1535–1565 nm at a 5-MHz repetition

rate. It was necessary for the experiments to amplify the

pulses in a fiber amplifier to an output of 5 kW of peak

power with minimal self-phase modulation. A dual core

power fiber amplifier from KEOPSYS was used. It was

necessary to use a pulse stretcher before the amplifier to re-
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Fig. 10. Stable “unstaggered” and “staggered” discrete soliton

fundamental field distributions at the center of each channel and

their excitation conditions in the array.

Fig. 11 Temporal autocorrelation (left) and spectral intensity (right): circles – experiment, solid line – calculated from the FROG retrieved

pulse.



duce the peak intensity (and hence the spectral broadening

due to self-phase modulation). A custom-made chirped fi-

ber grating was obtained from Ian Bennion’s group at

Aston University in the UK. It is the spectral response of

this grating which limited the tuning range of the amplifier

system to 8 nm. The amplified pulses were then recom-

pressed in a bulk grating compressor operated at near graz-

ing incidence.

The output from the compressor (available for the ex-

periments) was measured with both an autocorrelator and a

FROG system, and the results are shown in Fig. 11. The

pulse width was measured to be 7.7 ps and the spectral

bandwidth was 0.22 nm, FWHM and the peak power ex-

ceeding 4 kW.

The layout of the total experimental system is shown in

Fig. 12. Germanium detectors and cameras were used to

measure the incident, transmitted pulse energies and the

output beam profiles respectively. Silicon detectors and

cameras were used to measure the output harmonic compo-

nent. Combinations of spherical and cylindrical lenses were

used to shape the beam into an elliptical cross-section with

a planar phase-front at the input facet of the sample. The

sample was held in an adjustable mount with multiple de-

grees of translational and rotational freedom to facilitate

both coarse and fine adjustments of the sample relative to

the input beam.

6. Experiments on nonlinear beam propagation

The first set of experiments dealt with a demonstration of

“unstaggered” solitons, i.e., the channels were all excited

with the same phase. The incident FW beam was adjusted

to give a FWHM of 62 µm, which corresponds to an excita-

tion of about 4–4.5 channels. The intensity maximum was

adjusted laterally until it coincided with a channel. The SH

associated with the solitons is generated with distance into

the individual channels, a common practice for exciting

quadratic soliton [21].

The results obtained by ramping the input power and

measuring the output intensity profile from the array are

shown in Fig. 13. The collapse of the output beam with in-

creasing power is clear, leading to the formation of a dis-

crete quadratic soliton by 300 W peak power in the com-

bined waveguides. As power is increased further, solitons

are excited up to about 650 W peak power. A correspond-

ing output intensity profile is shown in Fig. 14 at a peak

power of 530 W. Shown there are the linearly (low power)

diffracted beam profile, the theoretically calculated diffrac-

tion profile and both – experimental and calculated soliton

profiles. The agreement is excellent. Further increases in

power led to a broadening of the output beam profile due to

combined effects of multiphoton absorption [22], green in-

duced infrared absorption [23] and photorefractivity which

“flattens” the peak of the profile.

The generation of “staggered” beams in the waveguide

array was facilitated by tilting the input beam until the rela-

tive phase between adjacent channels was p. Shown in

Figs. 15 and 16 are respectively, the power evolution at the

output facet and the detailed intensity output profile in the

power range in which a staggered soliton is excited. The

power evolution plot again indicates a collapse of the out-

put beam into a soliton at the output, this time requiring

140 W peak power in all of the channels. The agreement

between the intensity profiles for the experimental and cal-

culated soliton shapes is in excellent agreement, although

the agreement between the theoretical and calculated dif-

fraction patterns is not as good. This is a consequence of
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Fig. 12. Experimental setup.
Fig. 13. Fundamental wavelength output energy distribution vs.

total input peak power for the “unstaggered” case.

Fig. 14. Comparison of experimental and calculated output energy

distributions for the diffracted beam and the soliton for the

“unstaggered” case.



the excitation method used which puts power into higher

order Floquet-Bloch bands of the periodic structure when

operating at the edge of the first Brillouin zone (which cor-

responds to the p phase shift between channels) [24].

By tuning the temperature of the sample it is possible to

not only operate on both sides of phase matching, but also

to change the phase-mismatch systematically. It is known

that the magnitude of the cascading nonlinearity increases

when tuning the wavevector mismatch closer to the phase-

-match condition. Furthermore, the power required to ex-

cite discrete quadratic solitons is expected to decrease as

the coupling length increases (and the coupling coefficient

c decreases). All of these features characteristic of c(2)-me-

diated discrete solitons were tested and the results are

shown in Fig. 17. Indeed the peak power required for

soliton formation was found to decrease with decreasing

wavevector mismatch, both from the positive and negative

detuning sides. Furthermore, the power required also de-

creases with coupling coefficient decrease. These results

verify that indeed these are quadratic solitons.

Two additional sets of experiments were performed for

conditions under which no solitons are expected to exist.

An “unstaggered” beam was directed onto the input facet

for Db < 0. It is expected theoretically, as discussed above,

that in this case increasing power will lead to an enhanced

(wider) diffraction pattern. This was indeed observed ex-

perimentally. An example of the increased width of the in-

tensity profile is shown in Fig. 18.

Finally, the stability of the solutions to the nonlinear

generating Eq. 6 was checked experimentally with the re-

sults shown in Fig. 19. When the input beam was centred

between channels, noise on the beams is sufficient to cause

the output beam centre to move back and forth between the

two adjacent channels. On the other hand, when the input

beam is centred on one channel, the output is stable. This

verifies that stable solitons exist only for beams centred on

a channel.
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Fig. 15. Fundamental wavelength output energy distribution vs.

total input peak power for the “staggered” case.

Fig. 16. Comparison of experimental and calculated output energy

distributions for both the diffracted beam and soliton for the

“staggered” case.

Fig. 17. Dependence of the threshold power required for soliton

formation vs. wavevector mismatch for samples with different

coupling lengths.

Fig. 18. Comparison of experimental and calculated output energy

distributions for a linearly diffracted beam and a nonlinearly

broadened beam for the “unstaggered case” Db < 0 and D < 0.



7. Conclusions

We have defined the conditions under which discrete qua-

dratic solitons could be observed in PPLN arrays. Arrays of

101 Ti-indiffused waveguides were fabricated and prepared

for phase-matching SHG at 1560 nm by periodic poling.

The waveguides were characterized for losses, SHG effi-

ciency, and their discrete diffraction patterns.

A laser system and experimental apparatus was built

with the appropriate characteristics for exciting discrete

quadratic solitons in these arrays. At FW power levels of

100 W, discrete solitons of both the “unstaggered” and

“staggered” variety were observed experimentally. Addi-

tional measurements as a function of phase-mismatch es-

tablished that the solitons observed really were due to the

second order nonlinearity.
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