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The recent theoretical predictions and experimental observations of discrete surface
solitons propagating along the interface between a one- or two-dimensional continuous
medium and a one- or two-dimensional waveguide array are reviewed. These discrete
solitons were found in second order (periodically poled lithium niobate) and third order
nonlinear media, including AlGaAs, photorefractive media and glass, respectively.

Keywords: Solitons; surface waves; nonlinear optics.

1. Introduction

The optics of light propagation in an array of parallel, identical, weakly coupled
waveguides in one- or two-dimensions exhibits many features different from light
propagation in a continuous medium.1 The channels are coupled to each other due to
the weak spatial overlap of their fields. In particular, the dispersion relations of the
resulting Floquet-Bloch modes yield multiple bands associated with the Brillouin
zone of the periodic structure. The first order band (largest allowed propagation
wavevector) is separated from the second order band by a forbidden band gap.
When a narrow beam is launched into a single channel, modes of the first band
are excited and light spreads via “discrete diffraction” throughout the array by
tunneling between adjacent waveguides, as shown in Fig. 1(a). For wider beam
excitation, the relative phase difference θ between the fields in adjacent channels
determines the beam’s transverse motion (across the array). More specifically, fields

(a)

(b)

Fig. 1. (a) The evolution of discrete diffraction throughout an array when a single channel is
excited. Inset: Field overlap with adjacent channels. (b) The dispersion relation kdis

z versus kxd
was obtained from coupled mode theory where “d ” is the lattice periodicity.
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in phase (θ = 0, ±2π, . . .) or π out-of-phase (θ = ±π, ±3π..) remain centered
on the excitation channels, while for intermediate values of θ, the beam’s center
travels along the array with a transverse Bloch wavevector kx = θ/d, where d is the
periodicity of the array. For the first order band, the propagation wavevector kdis

z

varies with θ approximately as kdis
z = β + 2C cos(θ), where β is the single, isolated

channel propagation wavevector and C is the coupling constant between adjacent
channels, see Fig. 1b. Note that diffraction defined as D = d2kdis

z /dk2
x exhibits both

normal (D < 0) and anomalous (D > 0) diffraction for π/2 > |θ| and π > |θ| > π/2
respectively, Fig. 1(b).

Discrete spatial solitons are electromagnetic wave packets which propagate in
a localized manner to a few channels of an array.1–4 Solitons exist when “dis-
crete diffraction” is arrested by either positive or negative nonlinear phase shifts,
which decouple adjacent channels to produce no net power transfer between them.
Although the fields in the channels of the array oscillate from maxima to deep
minima or zero (due to weak coupling), the envelope of these peaks takes on a
solitonic shape, which remains invariant or periodic (breathers) upon propagation.
In Kerr media, for “bright” solitons, the product of ∆n(I) × D must be negative
where ∆n(I) is an intensity induced change in the refractive index for an intensity
I, usually written for the Kerr case as ∆n(I) = n2I (n2 is the nonlinear Kerr coeffi-
cient). Due to the diversity in the sign of the diffraction available in arrays, solitons
with no analogue in continuous systems occur. In-phase solitons (fields in phase
in adjacent channels) exist for D < 0 and ∆n > 0 (self-focusing nonlinearity,1,4)
at the center (kxd = 0) of the first Brillouin zone. Out-of-phase solitons (fields
with a π phase difference between adjacent channels) for D > 0 and ∆n < 0 (self-
defocusing nonlinearity) occur at the edges (kxd = ±π) of the first Brillouin zone. In
fact, such solitons have been observed experimentally inside discrete arrays made
of Kerr, photorefractive, quadratic and liquid crystal media for the first time in
Refs. 1, 5–10.

Based on theoretical analyses in the 1980’s and 1990’s of electromagnetic wave
propagation along the boundaries between two continuous dielectric media (at least
one of which is nonlinear), solitons can be guided by interfaces when the nonlinear
index change is of appropriate sign and sufficient magnitude to reverse the initial
index difference between the dielectrics.11–13 For large distances from the interface,
the fields decay exponentially into both media. It was predicted then that such
self-trapped states would have a power threshold proportional to the initial index
difference between the two media, and inversely proportional to the size of the
nonlinearity required to cancel this difference. However, to the present date, no
experiments have been reported because of the difficulties in finding materials with
large enough optically induced index changes to compensate for index differences
between available materials. Recently, these concepts were extended to the interface
between continuous and periodic media, and surface solitons were predicted with
a similar dependence of the power threshold on the index difference between the
continuous dielectric medium and that of the periodic array.14,15
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The special properties of waveguide arrays have now made possible the
observation of discrete surface solitons propagating along the boundary between
one-dimensional (1D) continuous media (slab waveguides) or two-dimensional (2D)
continuous media on the one side and a 1D16–23 or 2D24,25 periodic array on the
other side. Both the continuous and periodic array regions can be characterized by
an effective index neff ,c and neff ,a, respectively. Note that because of the higher
refractive index in the channel regions, neff ,a > neff ,c, the difference neff ,a–neff ,c

can be varied from zero at the channel waveguide cut-off, to larger values by adjust-
ing the geometry, composition and new channel fabrication techniques.

In this paper, we review the key experiments on surface discrete solitons, and
the theoretical papers that stimulated their observation. First, we will consider the
simplest case of surface solitons in 1D Kerr media, the underlying basic theory
and then the experimental realization. This will then be extended to the 2D case,
focusing on the differences with respect to 1D. Next, discrete surface solitons based
on the photorefractive nonlinearity (both 1D and 2D) will be summarized, again
focusing on the differences from the Kerr case, which is discussed in detail. Finally,
the case of quadratic discrete surface solitons, which involve multiple components
at different frequencies, will be discussed.

2. Theory of Discrete Surface Solitons in Kerr Media

2.1. 1D Arrays

To analyze the generic problem of 1D surface solitons, we consider a semi-infinite
array as depicted schematically in Fig. 2.14 Both n2 > 0 and n2 < 0 nonlinearities
are considered, with the first being appropriate for AlGaAs at 1550nm. Since the
induced nonlinear index change results in a nonlinear wavevector shift ∆kNL

z , which
will push the soliton eigenvalue (n2 > 0) into the “forbidden region” (see Fig. 3),
the field will decay exponentially into the continuous medium. For n2 < 0, the
soliton will be depressed below the dispersion curve into the first forbidden gap
between the first and second bands, and again the fields will decay exponentially
into the slab waveguide. Therefore, the coupled mode equations for the normalized
field amplitudes an are given by the discrete nonlinear Schrödinger equation

i
da0

dZ
+ a1 + |a0|2a0 = 0, (1a)

for the boundary channel n = 0, i.e., there is no coupling into a propagating mode
of the slab waveguide. For n ≥ 1, there is coupling to both neighboring channels,
and the field evolution with propagation distance is described by

i
dan

dZ
+ (an+1 + an−1) + |an|2an = 0. (1b)

Fig. 2. Schematic representation of the array interface region analysed.
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Fig. 3. Eigenvalue location of the corresponding soliton solutions relative to the array’s dispersion
curve. Red (upper) ellipse is for n2 > 0 and blue (lower) ellipse for n2 < 0. The corresponding
∆kNL

z and field distributions are also shown.

The usual propagation co-ordinate z is normalized to the coupling length for dis-
crete diffraction, so that the normalized coordinate Z is given by Z = Cz. The
dimensionless amplitudes an are related to the actual peak electric fields in each
channel through the relation En = [(2Cλ0η0)/πn2neff ,a]1/2an, where λ0 is the free
space wavelength and η0 is the free space impedance.

Understanding the discrete diffraction (linear) behavior of the array is the first
step towards solving for the soliton modes. The response to any arbitrary input
beam can be determined by the linear superposition of the single channel response
functions of the array, weighted by the amplitudes and relative phases imparted
by the incident beam. Consider a single waveguide site to be excited at location m

from the boundary, that is an(0) = A0δnm. It has been shown that the field in the
nth waveguide of this array at a distance Z from the input is given by14,16,17,26:

an(Z) = A0[in−mJn−m(2Z) + in+mJn+m+2(2Z)]. (2)

Figure 4(b) shows the intensity distribution (discrete diffraction) when the first
few waveguides (m = 0–2) are excited. Clearly, the diffraction patterns in this case
differ considerably from those encountered in an infinite array, due to the presence
of effective “mirror” sources in the slab waveguide.26 More specifically, the solu-
tion involves an additional term (Jn+m+2(2Z)) arising essentially from boundary
reflections. Finally, sufficiently far from the boundary, i.e., large m, the diffraction
behavior approaches that of the infinite array.

Spatial solitons which propagate as a non-diffracting beam along the boundary
between a 1D semi-infinite array and a 1D slab waveguide are stationary solutions
of Eqs. (1) of the form an = un exp(i[kdis

z + ∆kNL
z ]z), where kdis

z + ∆kNL
z repre-

sents the soliton’s propagation wavevector, and all the fields un are taken to be
in-phase (for n2 > 0, ∆kNL

z > 0) and π out-of phase (for n2 < 0, ∆kNL
z < 0)
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(a)

(b)

Fig. 4. (a) Geometry showing the excitation channels defined by m. (b) Discrete diffraction
patterns for single channel excitation of m = 0, 1 and 2.

with their neighbors an−1 and an+1. Standard relaxation methods are then used to
evaluate the solutions, and the results are plotted in Fig. 5(a) for the total soliton
power P versus the nonlinear wavevector increment ∆kNL

z associated with these
surface solitons for n2 > 0. Note that the results for the two cases, self-focusing
and self-defocusing nonlinearity, are essentially mirror images of each other around
the axis ∆kNL

z = 0 in Fig. 5(a). Also, there is a power threshold which varies with
the channel number n, above which the solitons exist in both cases. The minimum
of the existence curves corresponding to the power threshold for solitons peaked
in channel n is plotted in Fig. 5(b) as a function of the channel n, i.e., of the dis-
tance from the boundary. Linear stability analysis reveals that the negatively sloped
dP/d|∆kNL

z | < 0 part of the P − |∆kNL
z | curve, i.e., to the left of the respective

minima, are unstable, whereas they are stable to the right where dP/d|∆kNL
z | > 0

are stable. This behavior indicates that the well-known Vakhitov-Kolokolov crite-
rion valid in the continuum limit for dielectric interfaces is also applicable here.27–29

Beam propagation techniques were also utilized to verify that the solitons on the
dP/d|∆kNL

z | > 0 branches were indeed stable. This behavior is strongly reminiscent
of that obtained previously for nonlinear surface waves at the boundary between
two dielectric media, at least one of which is nonlinear.10–12

Absolute values for the solution fields at the minimum power threshold are
shown Fig. 6(a) for the first few channels from the boundary. Note that the fields
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(a) (b)

Fig. 5. (a) The existence curves of power versus normalized nonlinear wavevector for surface
solitons in AlGaAs with intensity peaked in the n = 0, 1, 2 and 12 channels. The circles labeled A,
B, C, and D are the corresponding positions of highly confined surface solitons with approximately
the same ratio of the relative intensity of the peak channel to the first neighboring channel.
(b) Cw power threshold for soliton formation and the power required to form similar highly
confined solitons with single channel excitation.

(a)

(b)

Fig. 6. (a) The soliton fields at threshold for various different channels near the boundary at
which the soliton is peaked. (b) The strongly confined soliton fields obtained with single channel
excitation at a power at which the relative intensity of the first neighbor channel relative to peak
intensity channel is approximately the same. The ABCD refer to the points on the dispersion
curve shown in Fig. 5(a).
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are in-phase or π out-of phase for self-focusing and self-defocusing nonlinearities,
respectively. As n, (i.e., the distance from the boundary) increases, the soliton
field distributions become less asymmetric, until deep within the array, where they
degenerate into the broader solitons of decreasing peak power associated with the
solitons that appear in an infinite lattice. However, as the soliton power is increased
for a specific n, all solutions that lie on the existence curve become progressively
narrower, i.e., more confined around their peak value. In the highly-confined case for
the soliton peaked on the boundary channel n = 0, the solutions are approximately
given by an = A exp(−np + i[kdis

z + ∆kNL
z ]z) where C(kdis

z + ∆kNL
z ) = A2 + A−2

and p = 2 ln A.
The solitons deeper into the array become wider, making the diffraction length

longer. This makes it more difficult not just to assign a power threshold experimen-
tally, but also to get multiple diffraction length propagation in realistic samples. It
proves convenient to define (and measure) the power at which equivalent, strongly
confined solitons are reached for each value of n. The variation of the power required
with channel number is shown in Fig. 5(b), and the corresponding field distribu-
tions in Fig. 6(b). Note, however, that the power thresholds for achieving strongly
localized solitons with cw excitation are quite different from the power thresholds
associated with the minima in Fig. 5(a) for n > 3.

The experiments to be described in the next section were performed with
a 1ps pulsed laser in AlGaAs samples with real linear (α = 0.14–0.25cm−1)31

and nonlinear (three photon absorption, α3 ≈ 0.05 ± 0.02 cm3/GW 2),32 Kerr
nonlinearity (n2 = 1.5 ± .15 × 10−13 cm2/W ),33 and group velocity dispersion
(k” =1.3× 10−24m−1s2).31 The sample geometry is shown in Fig 4(a). All of these
factors were taken into account to evaluate realistic power thresholds for strongly
localized, discrete surface solitons. The results shown in Fig. 7 clearly resemble
closely the cw power thresholds corresponding to the minima of the existence curves

Fig. 7. The threshold power for the strongly localized discrete surface soliton as a function of
the channel number, i.e., distance from the surface into the array. Squares (blue) experimental
data. Disks (red) simulations based on experimental parameters. The “theoretical” error bars
correspond to the uncertainty in the experimentally measured n2.
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shown in Fig. 5(b), except for the elevated peak power values in Fig. 7, due to loss
and the pulsed nature of the experiments.

For the 1D case appropriate to gap solutions, Kartashov et al. considered
in detail the Kerr case for a simple co-sinusoidal refractive index typical of the
index modulation found for optically written channels in photorefractive media.34

Index saturation effects with increasing intensity, also typical of photorefractive
nonlinear response, were neglected and surface solitons with fields π out-of-phase
in adjacent channels similar to those discussed above were found at the edge of
the Brillouin zone. This paper also addressed discrete gap surface solitons asso-
ciated with higher order bands, and found that their power threshold increased
with the band number. Finally, they found twisted gap surface solitons to be
unstable.

2.2. 2D Arrays

In principle, the 2D array case could be analyzed using coupled mode theory in the
same way as just discussed for the 1D case. However, the first theoretical paper
on 2D discrete solitons utilized the more general Floquet-Bloch analysis.15 This
approach yields the full band structure of the array, and takes into account the
exact index structure responsible for waveguiding. A nonlinear Kerr semi-infinite
square lattice with a linear refractive index difference between the core and cladding
was analysed. The wave propagation in this two-dimensional self-focusing optical
lattice is described by the nonlinear Schrödinger equation:

i
∂u(x, y)

∂z
+

1
2k

{
∂2u(x, y)

∂x2
+

∂2u(x, y)
∂y2

}
+ V (x, y)u(x, y)

+ γ(3) |u(x, y)|2 u(x, y) = 0, (3)

inside the array (x ≥ 0) where V (x, y) and γ(3) are the normalized semi-infinite
index potential and third order nonlinearity respectively.

This analysis leads to the usual discrete solitons belonging to different sites
inside the array, and in addition to new soliton solutions at the 90◦ corners (see
Fig. 8(a)), and at each edge between a continuous medium and the 2D array (see
Fig. 8(b)). Their properties for the first band are similar to those discussed above
for the 1D case. For self-focusing nonlinearities, these solitons lie above (higher
values of the propagation wavevector) the first Floquet-Bloch band. The soliton
fields travel along the z-axis, and are confined within a few channels along the
corner and edge respectively. Again, there are threshold powers for the existence of
these solitons, see Fig. 8(c), and the solitons are stable only for positive slopes of
the power-nonlinear eigenvector curves. The threshold of the edge surface state is
slightly higher than that of the corner soliton, since the latter self-trapped state is
confined to fewer sites. Although not discussed in detail in this paper, other surface
soliton configurations do exist for different combinations of nonlinearity such as,
for example, gap discrete surface solitons etc.15
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(a) (b)

(c)

Fig. 8. (a) The field distribution near threshold for an edge discrete spatial soliton for positive
Kerr nonlinearity. (b) The field distribution near threshold for a corner discrete spatial soliton
for positive Kerr nonlinearity. (c) Normalized power-nonlinear wavevector shift for the edge (red,
lower curve) and the corner (blue, upper curve).

3. Experiments on 1D and 2D Kerr Media

3.1. 1D AlGaAs sample

The sample used for the initial experiments (Fig. 4(a)) had a ridge width =
4 µm, periodicity =10 µm, etch depth =0.72 µm, a 1.5 µm thick core layer of
Al0.18Ga0.82As sandwiched between the lower index Al0.24Ga0.76As layers consist-
ing of 0.8 µm upper cladding and 4 µm lower cladding layer thicknesses.16,17,31

The resulting index contrast between the slab waveguide and the array is
δ ≈ 7.5 × 10−4.31 1ps pulses of wavelength 1550nm from a 1KHz OPG/OPA were
shaped by circular and cylindrical lenses to match that of the fundamental mode
of an isolated waveguide, and then injected into the n = 0 channel. The intensity
distribution at the output facet of the sample was imaged onto a Roper InGaAs
linear array.

The result obtained when the peak power was ramped for small values up to
2 KW is shown in Fig. 9. There are three distinct regions of response. Discrete
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Fig. 9. Intensity distributions recorded at the output facet of the waveguide array sample versus
peak power of an input beam injected into the n = 0 channel. The output data was sampled for
each power by the software, the maximum intensity channel identified, the color of that channel
was set to brown (maximum) and the remaining data at that power was renormalized.

diffraction associated with boundary channel excitation persists up to 1KW power,
followed by a rapid collapse of the diffraction pattern into the boundary channel by
1.5KW and then the strongly localized discrete surface soliton persists up to the
highest power levels measured. This rapid collapse is a consequence of the existence
of a threshold power for soliton formation, as predicted theoretically. As shown
in Fig. 5(a), this threshold corresponds to the minimum in the theoretical exis-
tence curve. Finally, as shown in Fig. 10, there is excellent agreement between the
measured and theoretically calculated intensity distributions at the output facet.

A new sample was fabricated with the same periodicity (10 µm), variable ridge
width (2.4–5.4µm), etch depth =1.1µm (hence index contrast= 2×10−3) and chan-
nel length of 1.35 cm. These samples were used to investigate the family of discrete
solitons peaked at the n = 0, 1, 2, 3, 4, 5 and n = 12 channels. The variable ridge
width allowed the dependence of the threshold power on the coupling constant to
be evaluated. The coupling constants of these samples were measured by analyzing
the discrete diffraction patterns deep inside the array, and the results are listed in
Table 1. A comparison between experiment and analysis of the structure and modal
fields is shown in Fig. 11. Clearly, the agreement is excellent. Note the minimum
in coupling length with increasing ridge width. It is a consequence of a trade-off
between the stronger confinement that occurs with wider channels, which decreases
C, and the overlap of the fields which increases with the width of the channel
because of the fixed center-to-center channel separation. The effective nonlinear
modal area was calculated from the details of the structure of an isolated channel,
and is also listed in Table 1 below.

The threshold power for strongly localized discrete surface solitons was measured
for the excitation of the n = 0, 1, 2, 3, 4, 5, 12 channels with ridge width = 4.4 µm.
In each case, the low power discrete diffraction patterns collapsed into the excitation
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Measured output intensity when the boundary channel of the waveguide array was
excited with a beam of (a) 450 W (low power), (b) 1300 W, and (c) 2100 W peak power. (d), (e)
and (f) are the corresponding simulated intensities for 280 W (low power), 1260 W and 2200 W of
input power, respectively.

Table 1. Waveguide parameters.

Ridge Width (µm) Coupling Constant (m−1) Effective Mode Area (µm2)

2.4 520 17.0
3.4 445 14.8
4.4 420 14.2

5.4 430 14.4

Fig. 11. The dependence of the coupling constant C on the ridge width with fixed center-to-center
channel spacing of 10 µm. Data given by diamonds �, and calculations by the solid line.
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Fig. 12. Input peak power required for a strongly localized soliton formation versus localization
site for the samples with d = 2.4 µm (squares), d = 3.4 µm (circles), d = 4.4 µm (triangles), and
d = 5.4 µm (inverted triangles).

channels as the input power was increased. The variation of the strongly localized
discrete soliton’s threshold power with n is shown in Fig. 7, along with the results
of BPM studies. The agreement is indeed excellent, certainly within the error bars.

The variation in threshold power with increasing n is the same for all the ridge
widths studied, i.e., the strongly localized soliton power threshold decreases with n.
This is clear from the results shown in Fig. 12. Analogous to a nonlinear two
channel coupler, it is expected that the threshold power should vary linearly with
C and in fact, the minimum threshold power does coincide with the minimum C.35

However, the increase in power threshold for the 5.4 µm ridge shown indicates that
when the ridge width becomes comparable to the period, other factors also become
important.

3.2. 2D Glass sample

2D arrays were fabricated inside fused silica samples using a novel direct laser writ-
ing technique, shown in Fig. 13(a), by researchers at the Fraunhofer Institute in
Jena, Germany.36 A modification of glass and a local increase in the refractive index
occurs at the focal point of light from a Ti:sapphire laser focused into the sample.
The sample is scanned relative to the laser, and by controlling the pulse energy
and the scan rate, the shape and index change could be controlled, producing low-
loss waveguides with only a small reduction in the Kerr nonlinearity.37 Precision
arrays consisting of 7×7 channels were fabricated. The ellipticity of the waveguides
formed (long axis along the input laser direction, (Fig. 13(b)), was compensated by
changing the depth versus lateral spacing of the waveguides, so that the coupling
constant C in both the x and y directions is the same. This was checked by measur-
ing the 2D diffraction pattern deep inside the array, and discrete 2D solitons were
measured successfully in these samples.6,38

Results of experiments on edge and corner discrete surface solitons in these glass
waveguide array samples are shown in Fig. 14.25 The excitation geometry is shown
in the upper panel of Fig. 14. The lower panels show the experimental results
for the two cases, as well as the theoretical simulations. The low power discrete
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(a) (b)

Fig. 13. (a) Schematic of apparatus used the direct laser writing of arrays of channel waveguides
in fused silica (and other materials). (b) Measured mode profile.

Fig. 14. Upper panel: Single channel excitation geometry for edge (left side) and corner (right
side) 2D discrete surface solitons. Lower panel, left side: Left column — experiment, right col-
umn — simulation. Excitation of a surface wave along the edge of waveguide array Input peak
power is 1.2MW (a), 1.8MW (b), and 4.8MW (c). Lower panel, right side: Left column — exper-
iment, right column — simulation. Excitation of a surface wave along the corner waveguide of the
array. Input peak power is 1.2MW (a), 1.8MW (b), and 4.8MW (c).
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diffraction patterns for single channel excitation are shown in Fig. 14(a) in the two
lower panels for the edge (left side) and corner (right side) respectively. Note the
excellent agreement with theory. As the power is increased (b) and (c), localization
into the excitation channels increases until in (c), the output intensity distribution
of the edge (left lower) and corner (right lower) solitons are obtained.

4. Photorefractive Discrete Surface Solitons: Theory

The photorefractive effect leads to an intensity-dependent refractive index change
∆n(I) due to a number of physical phenomena.39 This index change accumulates
with absorbed optical flux and saturates at a value determined by the crystal prop-
erties and wavelength of illumination. Furthermore, the index change can occur over
second or minute, allowing the evolution of a soliton to be monitored as a function
of time (i.e., integrated flux).

The screening nonlinearity has been used extensively in demonstrating soli-
tons in discrete media.1 For an applied electric field along a crystal axis in a non-
centrosymmetric crystal, the 1D case yields an intensity-dependent nonlinear index
change of the form39

∆n(I) =
∆n0

1 + (I/Ib)
(4)

where Ib is either a dark irradiance proportional to the conductivity of the non-
illuminated crystal, or an applied uniform intensity used to increase the conductivity
everywhere. Here ∆n0 = ±0.5n3

0reff V/L. n0 is the (unperturbed) medium index,
reff is the effective electro-optic tensor component, and V is the voltage applied
to the crystal electrodes separated by distance L. Note that the nonlinearity can
be either self-focusing or self-defocusing depending on the voltage applied. This
expression was also a good approximation for the 2D case used in obtaining a 2D
discrete surface soliton.24

A second form of photorefractive nonlinearity used in discrete surface soliton
experiments is the photovoltaic nonlinearity used in titanium in-diffused LiNbO3

channel waveguides used for 1D discrete arrays. The waveguides are made by
in-diffusion of copper or titanium through masks deposited on the surface. The
nonlinearity is of the defocusing type, and the saturating index change is given by

∆n(I) = ∆n0
I/Ib

1 + (I/Ib)
(5)

where ∆n0 = −0.5n3
0reff κ/qµτR. κ is the material’s photovoltaic constant, q is the

charge on the electron, and τR is the carrier recombination time. This nonlinearity
was used to demonstrate 1D discrete surface gap solitons.19–21

The analysis of surface discrete solitons in photorefractive media closely mirrors
that of Kerr media, with the Kerr law nonlinearity replaced by an appropriate
saturating one, Eq. (4) or (5). For the 2D array case, the pertinent propagation
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equation is

i
∂u(x, y)

∂z
+

1
2k

{
∂2u(x, y)

∂x2
+

∂2u(x, y)
∂y2

}

+ V (x, y)u(x, y) + ∆n(I)|u(x, y)|2u(x, y) = 0. (6)

Translating to the 1D case, u(x, y) and V (x, y) are replaced by u(x) and V (x)
respectively, and there is no diffraction term along the y-axis. The solutions again
exhibit in-phase soliton fields for adjacent channels at the center of the Brillouin
zone and π out-of-phase soliton fields between adjacent channels at the edge of the
Brillouin zone.

5. Experiments on Discrete Surface Solitons in Photorefractive
Media

5.1. 1D Discrete gap solitons

Two very similar experiments which demonstrate discrete 1D gap surface soli-
tons have been reported based on the photovoltaic effect in LiNbO3 waveguide
arrays.19–21 Both samples used x-cut surfaces with propagation along the y-axis.
Titanium in-diffusion through a mask was used to create the weakly coupled, indi-
vidual, single mode channels. To increase the photorefractive response, either Fe or
Cu was also diffused in through the x-cut surface.19 Light in the blue-green part
of the spectrum, polarized along the z-axis (TE-polarized), was injected into single
boundary channels, and the intensity distribution at the output facet was measured.

Fig. 15. Intensity distributions observed at the output facet of photovoltaic LiNbO3 sample for
single (a) and (b) channel and three (c) and (d) channel excitation (intensity ratios 1.0:0.5:0.1 for
n = 0, 1 and 2 respectively) at low (a) and (c), and high powers of 0.225mW (b) and 0.45mW
(d) respectively.19
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Fig. 16. Measured surface localization time vs probe beam power. Solid curve: A+B/(P −Pth) fit
to experimental data (red dots). Vertical dashed line marks the threshold power (Pth = 0.042mW).
(a)–(c) Beam intensity profiles of decreasing width corresponding to the indicated points.

Typical results are shown in Figs. 15 and 16. The first shows both the low
power diffraction patterns of single channel and three channel excitation at low
powers.18 For the three channel case, the input beam was tilted to produce a π

phase difference between adjacent channels. With increasing input power, these
patterns both collapsed into a discrete surface soliton peaked on the boundary
channel (n = 0). Agreement with simulations in both reports was very good.19–21

A demonstration of the existence of a threshold power for surface discrete soliton
formation is shown in Fig. 16.20 It relies on the well-known fact that the final steady
state change in refractive index decreases with decreasing intensity of illumination.
A threshold power corresponds to a threshold change in the refractive index in the
boundary channel for soliton formation. It is clear in Fig. 16 that there is a minimum
input power required for soliton formation, since the formation time diverges at a
power of 0.42mW.

Very recently, the trapping via a combination of self- and cross-phase modula-
tion was reported at a surface channel of a continuum excited in a photonic crystal
fiber with a femtosecond Ti:-sapphire source.21 The nonlinearity was the photo-
voltaic effect in a 1D photorefractive titanium in-diffused LiNbO3 array of channel
waveguides as described above.

5.2. 2D Discrete surface solitons

An experiment using the screening nonlinearity in the photorefractive Ce:SBN was
published24 almost simultaneously with the Kerr nonlinearity (n2 > 0) glass exper-
iments discussed in Sec. 3.2. Because the sign of the nonlinearity is easily changed
for the screening nonlinearity, surface solitons at both the Brillouin zone center and
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edge (gap solitons) were demonstrated. The photorefractive results for the posi-
tive nonlinearity using single channel excitation were very similar to those already
shown in Fig. 14 for the glass samples.

The waveguides were fabricated using the optical induction technique.40 Par-
tially incoherent light is transmitted through an amplitude mask onto the crystal
entrance facet, resulting in a square lattice pattern with a sharp edge/corner after
appropriate imaging. A cross-polarized (to the writing beam) Gaussian beam at
488 nm, shaped to the single channel mode profile, was focused onto the edge or
corner channel of interest at normal incidence, and the light intensity pattern at
the output facet was recorded.

The experimental results for both signs of the effective nonlinearity are shown
in Fig. 17. The lattice structure is shown in Fig. 17(a). The panels (b)–(d) and (e)–
(g) are for self-focusing and self-defocusing cases, respectively. Note that the gap
soliton is not as strongly localized (e) as the one at the center of the Brillouin zone
(b). The key results are shown in Figs. 17(c) and (f), in which the interference pat-
terns between the soliton outputs from the crystal and a plane wave are recorded.
For the self-focusing case, the bright spots corresponding to neighboring channels
are clearly in-phase with one another. However, the bright spots are out-of-phase
for the defocusing case, i.e., every adjacent channel experiences destructive inter-
ference, indicating a π phase shift between channels. The last column (d) and (g)
shows a comparison of the wavevector spectrum measured via “Brillouin zone spec-
troscopy” for the self-focusing and self-defocusing cases.41 Clearly, both varieties of
edge discrete surface solitons have been observed.

6. Coupled Mode Theory of Discrete Surface Solitons:
Quadratic Media

There are two unique features associated with using quadratic nonlinearities to
create spatial solitons. One, the effective nonlinearity can either be of the self-
focusing or self-defocusing type.44 Defining the isolated channel guided wave prop-
agation constants as β(ω) and β(2ω) for the fundamental and harmonic fields
respectively for Second Harmonic Generation (SHG), ∆β = 2β(ω) − β(2ω), the
wavevector mismatch for second harmonic generation determines the sign of the
nonlinearity. Self-focusing occurs for ∆β > 0, and self-defocusing for ∆β < 0.
Thus by tuning ∆β, it is possible to study discrete surface solitons at both the
center and edge of the first Brillouin zone. Second, the soliton consists of 2–3 dif-
ferent frequency components, all strongly coupled via the second order nonlinearity
χ

(2)
ijk(−[ω1±ω2]; ω1, ω2). All of the frequency components propagate locked together

with the same phase and group velocity.
The locking of frequency components which differ by at least a factor of two

in frequency seriously impacts the discrete diffraction process, since the coupling
constant is a very strong function of frequency. A typical SHG sample exhibits
drastically different field confinements for the fundamental and harmonic. This
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 17. Results of the experiments showing the excitation of both Brillouin zone center (in-phase
fields in adjacent channels) and edge (π out-of-phase fields in adjacent channels) 2D discrete surface
solitons in a photorefractive crystal. (a) Left panel: Illustration of the optically induced lattice
surface, where the probe beam location is marked by a blue (green) spot for excitation of in-phase
(out-of-phase) surface solitons; Right panel: Dispersion relation for the first Floquet-Bloch band

showing the Γ point where in-phase solitons exist and the M point where π out-of-phase solitons
occur. (b), (c) and (d) are for in-phase solitons and (e), (f) and (g) for out-of-phase solitons.
(b) and (e) show the soliton intensity distributions at the output facet. (c) and (f) show interference
patterns between the soliton outputs and a plane wave. (d) and (g) show spatial spectra when
the probe beam undergoes nonlinear self-trapping. (The blue squares mark the edge of the first
Brillouin Zone).
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Fig. 18. Cross-section of the periodically poled LiNbO3 sample showing the periodic poling

inversion of χ
(2)
333, the titanium in-diffusion profile and the resulting index profile, the width and

separation of the guiding channels, and the fundamental TM00(ω) and harmonic TM00(2ω) field
distributions.

is shown in Fig. 18 for the periodically poled LiNbO3 samples used. When this
process is near phase-match (∆β = 0), there is effectively no discrete diffraction
experienced by the harmonic wave due to its strong confinement. As a result, the
only source of SH fields in a channel is the generation via the SHG process. The rele-
vant nonlinear equations for the fundamental un and harmonic vn field envelopes are
given by4:

−∆ksol
z un + C[un+1 + un−1] +

2
2∆ksol

z + ∆β
|un|2un = 0

vn =
2

2∆ksol
z + ∆β

u2
n n ≥ 1

−∆ksol
z u0 + Cu1 +

2
2∆ksol

z + ∆β
|u0|2u0 = 0

v0 =
2

2∆ksol
z + ∆β

u2
0 n = 0.

Again, there are minimum threshold powers in the power-eigenvalue existence
curves for discrete quadratic surface solitons, as shown in Fig. 19. The above
equations suggest the four possibilities shown in Fig. 19. Consider first 2∆ksol

z > 0,
and the soliton is located above the fundamental’s dispersion curve, the effective
nonlinearity is self-focusing for 2∆ksol

z + ∆β > 0, the fundamental and harmonic
fields are in phase from channel to channel and with one another, and the funda-
mental field is larger than the harmonic one (Case A). However, if ∆β is negative
with its magnitude smaller than 2∆ksol

z , the effective nonlinearity is still of the
self-focusing type, and this soliton is characterized by dominant harmonic fields
(Case B). If 2∆ksol

z < 0 and the soliton is located below the fundamental’s disper-
sion curve, the effective nonlinearity is self-defocusing for 2∆ksol

z + ∆β < 0, the
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(a) (b)

Fig. 19. Existence (power-eigenvalue) curves for the fundamental and harmonic components of
the quadratic discrete surface solitons for all four cases A, B (a), C, D (b) described in the text.
In (a), the SH for case A is identical with Case B after the threshold for B. ∆βL = +36π for A
and D, and ∆βL = −15π for B and C. The dashed vertical lines are the threshold for the cases
indicated. The total soliton power consists of the FW +SH.

fundamental fields are π out-of-phase from channel to channel, the harmonic fields
are in-phase from channel to channel and the fundamental field dominates, Case C.
When ∆β > 0 and smaller in magnitude than 2∆ksol

z , the effective nonlinearity is
again self-defocusing, but the harmonic field is now dominant (Case D).

7. Experiments on 1D Quadratic Media (PPLN Samples)

The sample geometry and resulting field distributions were shown in Fig. 18. The
regions in which Ti was in-diffused were 7 µm wide, and the center-to-center channel
spacing was varied from 14–16µm for different arrays. The array used for experi-
ments had a channel-to-channel period that was chosen to give a Lc = 15.74mm
coupling length. In the current case, the maximum refractive index change due to
Ti in-diffusion was ∆n < 8 × 10−3. Each array consisted of 101 identical guides,
and the samples were 5 cm long. The periodic poling period was 16.8 µm, which
produced phase match (∆β = 0) at a temperature of 234◦C. Raising the temper-
ature decreased ∆β, and an oven was used to attain the desired phase-mismatch.
The measured loss for the fundamental wave was 0.15 dB/cm and 0.30 dB/cm for
the harmonic. A 2-year development program at the University of Paderborn was
required to achieve uniform phase-match across the central part of the array. The
key was to fabricate arrays with channels for which the second harmonic wavelength
peak response in neighboring channels varied only by small wavelength changes,
smaller than the SHG bandwidth of individual channels. These arrays were previ-
ously used to observe quadratic solitons near the middle of the arrays, and their
characterization can be found in Ref. 42.
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The apparatus used to excite the arrays was more demanding than that for
the AlGaAs samples because of the very narrow SHG bandwidths of the channels,
which were measured to fall in the range of 0.25–0.30nm (corresponding to a band-
width limited pulse width of 10-8ps respectively) with a low power, tunable, single
frequency 1550nm diode laser. To achieve the right combination of power and band-
width, a 5 MHz repetition rate pulsed fiber laser from Pritel was stretched in the
chirped fiber grating, amplified in a large core EDFA, and then recompressed with
a pair of bulk gratings to 7.7 ps, bandwidth limited (0.22nm) pulses with maximum
peak power of 4 kW. The bulk, high efficiency, grating pulse compressor limited the
source tuning range to 1554–1561nm.

Experiments on discrete surface soliton generation were performed by the exci-
tation of the boundary channel with the fundamental beam. The incident beam
was shaped to match as closely as possible to the fundamental mode profile of
an isolated channel. This method of excitation favors the excitation of solitons
with the fundamental as the dominant frequency, the cases A and C discussed
above.

The results for both ∆β > 0 and ∆β < 0 are shown in Fig. 20. Although the
region labeled “bulk” is also periodically poled and could in principle support second
harmonic generation, the phase-mismatch is very large, since the experiment was
operated near phase-match for the channel waveguides. Hence, there is insufficient
SH generated in the “bulk” to support quadratic spatial solitons there. As a result,
this case corresponds to surface solitons guided by the interface between a 1D semi-
infinite array and a semi-infinite 2D half-space. This is in contrast to the Kerr case
previously discussed, for which discrete surface solitons were guided by the interface

(a) (b)

Fig. 20. Intensity distribution measured at the output facet when the boundary channel is excited
with increasing fundamental input power. (a) ∆βL = +36π. (b) ∆βL = −15.5π. “Bulk” represents
a crystal region which is also periodically poled but there is no waveguide confinement.
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between a 1D semi-infinite periodic medium and a 1D semi-infinite medium (slab
waveguide).

In both cases, the discrete diffraction patterns collapse into discrete surface
solitons at around 500W peak input fundamental power, shown in Fig. 20. Note
that because the magnitude of the phase-mismatch is larger for ∆β > 0 than for
∆β < 0, the magnitude of the effective nonlinearity is larger for the “gap” soliton
case. As a result, the confinement to the boundary channel is higher for the gap case.
Note that the BPM simulated intensity patterns at the output facet based on the
theoretical equations are in good agreement with the experimentally measured ones,
as shown in Fig. 21. However, the lack of discrete diffraction for the harmonic and
the single boundary channel excitation with only the fundamental, results in large
differences in the FW and SH intensity distributions at the output facet. Although
there are large “tails” extending up to channel 9 for the fundamental wave, the
SH is confined to the first 2–3 channels. This occurs because of a combination of

(a) (b)

(c) (d)

Fig. 21. Measured, (a) and (c), and calculated, (b) and (d), field distributions for the “gap”
discrete surface soliton at the sample output facet for the fundamental, (a) and (b), and harmonic,
(c) and (d), soliton components.
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the fundamental intensity in the channels and the distance over which the SH can
grow, i.e., a number of discrete diffraction distances must take place before the SH
can grow in the outer channels.

8. Summary

We have described the first successful experiments on the generation of surface
solitons travelling along the interface between a periodic medium and a 1D and
2D semi-infinite medium. Discrete surface solitons lying at the center and the edge
(“gap” solitons) of the first Brillouin zone have been investigated in Kerr, pho-
torefractive and quadratically nonlinear media. As predicted theoretically, these
solitons have power thresholds and in general, the agreement between experiment
and theory was excellent.

Finally, we note that the claims made in Ref. 45 that the authors of that article
were the first to report the observation of “nonlinear Tamm states”, “discrete soliton
gap states”, and “surface discrete solitons” in general are false.20 In fact, their work
was preceded by Refs. 16–19, with the earliest dating back over one year prior to
their work.16,17
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