Electrode-free high voltage cutoff waveguide sensor in domain inverted LiNbO₃

D. Janner, D. Tulli, M. Garcia-Granda
ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park
08860 Castelldefels (Barcelona), Spain
davide.janner@icfo.es

R. Ricken
Applied Physics Department, University of Paderborn
33098 Paderborn, Germany

V. Pruner
ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park
08860 Castelldefels (Barcelona), Spain
ICREA - Barcelona, Spain

davide.janner@icfo.es

Abstract—We present the design and fabrication of a novel electric field optical sensor in LiNbO₃. The design is based on a waveguide near cutoff, centered on a few microns wide domain inverted region. Electric fields as high as 20 MV/m can be measured thanks to the electrode-free surface geometry.

Electric field sensor, Electrode-less sensing, lithium niobate

I. INTRODUCTION

In the last few years, the need for intense electromagnetic field sensing technology has widely increased playing a critical role in various scientific and technical areas, especially in the power industry and in the electromagnetic compatibility (EMC) measurements. Conventional electric field meters normally use conductive parts, which can interfere with the field to be measured, and are very sensitive to electromagnetic noise. Moreover, frequency bandwidth limitation and 50-Ω characteristic impedance in the case of RF waveguide sensors limits the scope of applicability of such technology. Electro-optic (EO) devices present several advantages compared to their electronic counterparts such as noise immunity, the feasibility of electrode-free operation, and consequently the possibility of operating even in harsh or dangerous environments.

So far, several configurations of EO sensors have been proposed, mostly based on waveguide interferometers [1] or bulk polarization/phase rotation in a piezoelectric crystal [2]. This second approach is based on polarization or phase measurements which require interrogation systems that are rather expensive to implement and may present long-term stability issues. On the contrary, waveguide based sensors directly translate the electric field value into an optical power variation, thus simplifying the interrogation system and potentially lowering the costs. In this context, Mach-Zehnder interferometers are employed for their sensitivity. However, they require additional metal electrodes and controlled biasing to work properly. To overcome some limitations, schemes without any conductive parts based on ferroelectric poling of the two interferometer arms have been proposed [3]. Alternative designs are based on Bragg grating in LiNbO₃ [4] or cutoff modulators with dummy electrode structure [5]. Field intensities measurable with the aforementioned approaches are typically below the fields present in some installations, like electric plants or railways electric network where very bulky sensors need to be employed [6].

In this work, we propose an electrode-free lithium niobate electric field sensor that can measure fields up to 20 MV/m. The novel design leverage on a combination of an optical waveguide near or below cutoff and domain inversion.

II. DEVICE DESIGN

The scheme of the proposed device is sketched in fig. 1. A proton exchange (PE) γ-propagating waveguide in z-cut LiNbO₃ is designed to be near cutoff at the working wavelength (λ=1550 nm) and centered in a domain inverted region. The waveguide has a width of 6 µm and a depth of 4 µm, where the vertical profile was assumed to be half-gaussian with an index step of 0.01. On application of an external electric field parallel to the z axis of the device, the refractive index in the central inverted domain will decrease while the in the external domains will increase. Thus, the index difference change ∆nₑ between positive and negative domains is given by:

\[\Delta nₑ = 2 \cdot \frac{n₃^3}{2} r₃ E, \]

where E is the intensity of the externally applied electric field, nₑ=2.14 and r₃=30.8 pm/V are respectively the refractive indices and the electro-optic coefficient along the z-axis. Limiting the external field below the coercive field of LiNbO₃ along z-axis (Eₑ= 21.4 MV/m), from eq. (1) we estimate that we are able to induce index changes of ∆nₑ =6.5·10⁻³ for electric fields of 20 MV/m.

![Scheme of cutoff electric field sensor. Optical waveguide is centered in the domain inverted region.](image)

In order to find the optimal configuration, we studied with a BPM simulation software the behavior of the sensor under variation of the width of the central poled region (Wₚ=6, 10, 15, 20 µm). In fig. 2 we report the optical power in the waveguide mode after a fixed propagation length L=10 mm against the external electric field applied. From these results we
see that the best sensitivity is obtained for a poling region width \(W_p = 10 \mu m \).

![Figure 2](image)

Figure 2. Transmitted power vs. external electric field after 10 mm propagation for different poling region widths.

In fig. 3 we plot the evolution of the optical power in the waveguide along the propagation. Those simulations suggest that sensors may be optimized for a specific electric filed range by reducing the overall length to target for very intense field while increasing it for weaker fields. To further improve the sensitivity and allow the sensor to work in reflection a multilayer dielectric mirror could be deposited on one face.

AC operation of the device can be achieved by using a waveguide below cutoff for which the positive or negative electric field would increase or decrease respectively the transmitted power. In this case the poling length and pattern could be optimized to improve the linearity and dynamic range of the response.

![Figure 3](image)

Figure 3. Evolution of the optical field along propagation direction for different values of index change induced by external electric field.

III. Fabrication

The device was fabricated starting from the domain inversion by electric field poling. To this aim a 3.3 \(\mu m \)-thick layer of resist AZ4533 was spun on the z- face and was used as an insulator layer after patterning and baking at 140°C for 1 hour. The inverted domains were then revealed via differential etching in hydrofluoric acid for alignment purposes. The final difference between z+ and z- domains was around 90 nm. Fig. 4 shows the poled domains and illustrates the position of the waveguides in their center. According to our simulations, the etching step is not affecting the optical mode even in the presence of the external electric field. Waveguide mask was aligned with the center of the inverted regions and a 200-nm-thick aluminum mask layer was deposited by lift-off technique. Waveguides were fabricated by 30 minutes PE in molten benzoic acid with a subsequent annealing step of 11 hours at 360°C. The aluminum mask was then removed and the sample was diced and the faces were end polished.

Preliminary measurements confirm the simulation results and the possibility to measure electric fields as high as 20 MV/m. More details on the characterization and results will be presented at the Conference.

![Figure 4](image)

Figure 4. Domain inverted regions revealed by HF differential etching and position of the optical waveguides.

REFERENCES

Plan Nacional TEC2007-60185 and Juan de la Cierva programs