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Cubic (zinc blende) AlGaN=GaN heterostructures for application in GaN-based high electron

mobility transistors are investigated theoretically. The formation of 2DEGs (two-dimensional

electron gas) in cubic AlGaN=GaN structures is studied, carrier distributions and threshold voltages

are calculated, and design issues are investigated. For the calculations, a Schrödinger-Poisson solver

and a simple analytical model developed in the present work are used. It is shown that due to the

barrier doping needed for the formation of a pronounced 2DEG in cubic structures, undesirable

saturation effects of the 2DEG density may occur. Options to avoid 2DEG saturation and to realize

cubic normally-off HEMTs are elaborated. The behavior of cubic AlGaN=GaN structures is

compared to that of their hexagonal counterparts. VC 2011 American Institute of Physics.

[doi:10.1063/1.3663364]

I. INTRODUCTION

Due to the advantageous properties of the AlGaN=GaN

material system, such as large bandgap and high breakdown

field, combined with reasonably high electron mobility and

high peak velocity, GaN-based HEMTs (high electron mo-

bility transistors) are currently of major interest for high-

power, high-temperature, and high-frequency electronics.1–3

Popular applications for AlGaN=GaN HEMTs include,

among others, microwave power transistors1,4–6 and power

switches.7,8

So far, GaN-related research has mainly been focused on

hexagonal (wurzite) AlGaN=GaN structures.9–17 Due to strong

spontaneous and piezoelectric polarization in hexagonal

AlGaN=GaN heterostructures, a 2DEG (two-dimensional elec-

tron gas) channel with very high sheet density is formed at

AlGaN=GaN interfaces.12,18 Therefore, hexagonal AlGaN=GaN

HEMTs exhibit a significantly enhanced current drive capability

compared to, for example, GaAs-based HEMTs.

It has been shown, however, that hexagonal AlGaN=GaN

HEMTs suffer from degradation. Although the reasons or the

observed degradation are still under discussion, it seems that

the strong polarization in hexagonal AlGaN=GaN plays a cru-

cial role.19–22 An alternative to hexagonal AlGaN=GaN could

be cubic (zinc blende) AlGaN=GaN where polarization effects

do not occur. First experimental HEMTs based on cubic GaN

have already been demonstrated.23 Although these first devi-

ces lack the exceptional performance of their hexagonal coun-

terparts, theoretical24–28 and experimental29,30 studies show

similar or even superior material properties of the cubic

AlGaN=GaN system.

The absence of high polarization bound charges at

cubic AlGaN=GaN interfaces has another interesting aspect.

It provides an additional degree of freedom for the design of

normally-off transistors.31 As in GaAs-based HEMTs, doping

and thickness of the barrier layer can be adjusted to achieve

normally-off operation without affecting the conduction band

offset. In hexagonal AlGaN=GaN HEMTs, on the other hand,

the large polarization bound charge can only be reduced by

lowering the Al fraction in the barrier. This, in turn, will also

lead to a reduction of the conduction band offset at the

AlGaN=GaN interface. The conduction band offset, however,

should be as large as possible to prevent the channel electrons

from entering the barrier layer and to minimize the detrimen-

tal impact of alloy scattering.32 Moreover, the height of the

conduction band offset defines the onset of gate conduction at

positive gate biases.33 This is particularly important for

normally-off HEMTs, which need a sufficient gate voltage

swing between the positive threshold voltage and the onset of

gate conduction.

The aim of this paper is to study design options for cubic

GaN-based HEMTs. We focus on the vertical design to clarify

the main differences in the electrostatics and the general design

rules of cubic AlGaN=GaN HEMTs compared to their hexago-

nal counterparts. Special attention is paid to normally-off opera-

tion. Our study is based on both numerical self-consistent

solutions of the one-dimensional (1 D) Schrödinger and Poisson

equations and analytical modeling of the 1 D electrostatics.

The paper is organized as follows. In Sec. II, the details

and results of numerical Schrödinger-Poisson solutions are

presented. In Sec. III, an analytical model that provides use-

ful insights into the electrostatics of doped cubic

AlGaN=GaN heterostructures is developed and modeling

results are compared with those of numerical Schrödinger-

Poisson solutions. In Sec. IV, design guidelines for

normally-off cubic AlGaN=GaN HEMTs derived from the

analytical model are presented and modeling results for

cubic and hexagonal HEMT structures are discussed. Finally,

Sec. V concludes the paper.
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II. NUMERICAL SCHRÖDINGER-POISSON
SOLUTIONS

A. Studied structures and simulation framework

Figure 1 shows the cubic and hexagonal AlGaN=GaN

heterostructures considered in this work. Due to the absence

of polarization effects, the cubic structure has to be doped

to form a high-density 2DEG. This is realized by a thin

n-doped layer within the AlGaN barrier separated by intrin-

sic layers from the electron channel (i.e., the 2DEG) and the

gate. All other parts of the cubic structure are undoped.

Unintentional background doping is neglected in this study

since our intention was to provide general guidelines for the

layer design. To this end, the doping level of the n-type layer

and the layer thicknesses t1 (undoped AlGaN layer under-

neath the gate), t2 (n-type AlGaN layer, doping ND), and t3
(undoped AlGaN spacer between n-type layer and GaN

channel) have been varied in the simulations. While uninten-

tional doping may slightly modify the results, test simula-

tions have revealed only a minor impact of the background

doping for donor concentrations up to 5� 1017 cm�3.

Along the growth direction of AlGaN=GaN heterostruc-

tures, electrons are confined in deep and narrow quantum

wells. This requires a self-consistent solution of the 1 D

Schrödinger and Poisson equations. We have used our in-

house Schrödinger-Poisson solver,34 which employs the

effective-mass approximation and accounts for the nonpara-

bolicity of the central C valley.

The material parameters used in this work are summar-

ized in Table I. The effective electron masses m*k and m*\
for cubic and hexagonal GaN and AlN are taken from

Ref. 35, and the corresponding masses for Al0.25Ga0.75N are

obtained by linear interpolation. For the bandgap EG we used

a nonlinear interpolation model.18 The relative dielectric

constant er has been assumed to be 9.5 for all materials,

which is well within the range of values available in the liter-

ature for cubic and hexagonal GaN or AlN. The conduction

band offsets DEC at the AlGaN=GaN interfaces were

assumed to be 63% of the bandgap differences. Note that,

although the band gaps of hexagonal GaN and Al0.25Ga0.75N

are somewhat larger than for the cubic materials, the conduc-

tion band offset is smaller in the hexagonal heterostructure.

The spontaneous and piezoelectric polarizations in hex-

agonal AlGaN=GaN have been calculated using equations

(13) and (43) from Ref. 18, respectively. The discontinuity

in the overall polarization at the Al0.25Ga0.75N=GaN inter-

face results in a bound polarization charge density of

1.12� 1013 cm�2. It should be noted that in experimental

devices partial strain relaxation or the formation of interface

states may lead to a reduction of the actual bound charge at

the AlGaN=GaN interface. Such effects, however, strongly

depend on the specific fabrication process and are beyond

the scope of this work. Our intention is to elaborate the dif-

ferences in HEMT characteristics and design between cubic

and hexagonal material.

B. Results and discussion

Let us first consider a cubic heterostructure with an

overall barrier thickness of 20 nm including a thin 2-nm

n-doped D-layer in the AlGaN barrier separated by a 3-nm

intrinsic spacer from the heterojunction. In Fig. 2 the simu-

lated electron sheet densities are shown as function of the

applied surface potential ECS (i.e., the conduction band edge

EC at the gate contact) for various donor concentrations ND.

The upper x axis shows the gate voltage VG, which is related

to the surface potential via

VG ¼ � ECS � UBð Þ=q; (1)

where UB is the Schottky barrier height and q is the elemen-

tary charge. We consider a UB of 1.4 eV, which is a typical

value for Ni=Au contacts on AlGaN. For each structure, two

curves are shown: The overall electron sheet density nS and

the integrated electron density in the GaN layer only, nS,GaN,

i.e., the 2DEG sheet density. The difference between these

two values corresponds to the integrated electron density in

the AlGaN layer nS,AlGaN. Also shown for comparison are

FIG. 1. (Color online) The cubic (left)

and hexagonal (right) AlGaN=GaN het-

erostructures investigated in this work.

The barrier thickness tbar, and thus the

layer thicknesses t1, t2, and t3 and the

doping of the n-layer in the cubic struc-

ture have been varied. The hexagonal

structure is undoped.

TABLE I. Material parameters used for the Schrödinger-Poisson simula-

tions of the heterostructures shown in Fig. 1.

GaN Al0.25Ga0.75N

Cubic Hexagonal Cubic Hexagonal

m*k (m0) (Ref. 35) 0.193 0.186 0.224 0.220

m*\ (m0) (Ref. 35) 0.193 0.209 0.224 0.239

EG (eV) (Refs. 18 and 35) 3.070 3.420 3.747 3.910

DEC (eV) (Ref. 18) 0.427 0.309

Rel. dielectric constant 9.5 9.5 9.5 9.5

Nonparabolicity (Ref. 32) 0.363 0.363 0.332 0.332
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results for an undoped hexagonal heterostructure with the

same barrier thickness tbar.

It is obvious from Fig. 2 that the electron sheet densities

in the cubic heterostructure with ND¼ 1� 1019 cm�3 are

much smaller than in the hexagonal structure. With increas-

ing ND, nS can be increased whereas the whole nS (ECS)

curve is shifted along the ECS axis in positive direction (i.e.,

the threshold voltage Vth is shifted toward more negative val-

ues). For ND> 1� 1019 cm�3, however, a saturation of

nS,GaN is observed for surface potentials below a critical

value Ecrit
CS , while the slope of the overall nS (ECS) curve

increases. The reason for this saturation effect is the forma-

tion of a second undesirable (parasitic) electron channel in

the doped AlGaN layer as can be seen in Fig. 3. The conduc-

tion band edge in the AlGaN shows a minimum within the

doped layer, and for the considered surface potential this

minimum is below the Fermi level EF. Since in Fig. 3 we

considered the donors to be completely ionized, the conduc-

tion band in (and close to) the n-type layer is populated by

electrons. The negative electron charge in the parasitic chan-

nel tends to compensate the positive charge of the ionized

donors, which leads to the observed saturation of the 2DEG

density nS,GaN. Since the parasitic channel is located closer

to the gate electrode than the 2DEG at the AlGaN=GaN

interface, the gate capacitance, which is inversely propor-

tional to the distance between gate and channel, becomes

larger when the parasitic channel is formed. This explains

the visible increase of the slope of the overall nS(ECS) curves

in Fig. 2 once nS,GaN saturates.

If, on the other hand, incomplete ionization of the

donors is taken into account, electrons will occupy the donor

states before entering the conduction band. This situation is

illustrated in Fig. 4, where the density of ionized donors NþD
is compared to the total donor concentration. Nevertheless,

incomplete ionization also results in a saturation of nS,GaN,

as can be seen in Fig. 5. In this case, however, the critical

surface potential is somewhat larger (the corresponding criti-

cal gate voltage Vcrit is smaller) compared to the case of

complete ionization. This is due to the fact that the conduc-

tion band edge in the vicinity of the doped layer forms a nar-

row quantum well for electrons, in which the lowest subband

edge is well above the EC minimum. To populate this sub-

band by electrons, the EC minimum has to be moved below

the Fermi level, while in the case of incomplete ionization,

those donor states located (in term of energy) slightly below

the conduction band edge are occupied. Therefore, in the lat-

ter case it is not necessary to move the EC minimum below

the Fermi level in order to fill the donor states, i.e., compared

to complete ionization a smaller gate voltage (larger ECS) is

required for the onset of saturation.

Which of the two cases is actually closer to reality

strongly depends on the doping concentration. As ND

increases, a semiconductor at low temperatures undergoes an

insulator to metal transition, referred to as the Mott transi-

tion. In other words, above a critical density all donors can

FIG. 2. (Color online) Simulated electron sheet densities as a function of

the applied surface potential for cubic heterostructures with various doping

levels (complete ionization). For each structure two curves are shown: The

overall electron sheet density nS (dashed lines) and the integrated electron

density in the GaN layer only, nS,GaN (solid lines). Also shown for compari-

son are results for an undoped hexagonal heterostructure. The upper x axis

shows the gate voltage assuming a Ni=Au contact with a Schottky barrier of

1.4 eV.

FIG. 3. (Color online) Simulated conduction band edge EC and electron dis-

tribution in a cubic heterostructure doped with ND¼ 5� 1019 cm�3 (com-

plete ionization) biased in the saturation regime.

FIG. 4. (Color online) Conduction band edge, electron distribution and den-

sity of ionized donors in a cubic heterostructure with ND¼ 5� 1019 cm�3

(incomplete ionization). The activation energy of the donors is 20 meV.
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be considered ionized—independent of temperature or Fermi

level position. Considering the material parameters of cubic

Al0.25Ga0.75N, Mott transition occurs at a donor concentra-

tion of about 1.4� 1018 cm�3.36 Thus, for the doping levels

considered here, the assumption of complete ionization is a

good approximation.

In general, a saturation of the 2DEG density at the

AlGaN=GaN interface is undesirable for a HEMT since it

leads to a degradation of the transconductance gm and hence

to a significant deterioration of the frequency performance.

The reason is the considerably lower electron mobility in the

barrier layer compared to that within the 2DEG, or even

worse, due to trapping of electrons in the barrier. Thus, the

critical surface potential Ecrit
CS , which corresponds to a critical

gate voltage Vcrit basically limits the usable effective gate

voltage VGeff, where VGeff¼VG�Vth. For large signal appli-

cations, the difference between Vcrit and Vth should therefore

be as large as possible.

It should be mentioned that the saturation of the 2DEG

density is not a problem exclusively related to cubic

AlGaN=GaN heterostructures. It is a well known effect that

has first been modeled and discussed for AlGaAs=GaAs

HEMTs.37,38 Based on assumptions similar to those made in

Refs. 37 and 38, we can derive analytical expressions for

Vcrit and Vth for the layer structure shown in Fig. 1 (the heter-

ostructures considered in Refs. 37 and 38 are special cases of

this layer sequence). Such simple analytical models give use-

ful insights into the device physics and provide general

guidelines for the device design.

III. ANALYTICAL MODELING

Our modeling approach is based on the observation

from Figs. 3 and 4 that the conduction band minimum in the

AlGaN barrier is always located within the doped layer (i.e.,

layer 2 with thickness t2). This is due to the fact that band

bending can only occur in a space charge region. Assuming

that the AlGaN barrier is fully depleted and all donors are

ionized, the Poisson equation within layer 2 reads as

d2u xð Þ
dx2

¼ � qND

ebar

; (2)

where u xð Þ ¼ �EC xð Þ=q is the potential in the layer 2 (given

in volt), EC is the conduction band edge, x is the depth meas-

ured from the gate contact, and ebar is the dielectric constant

of the barrier. We take the Fermi level as the reference. The

solution of Eq. (2) can be easily obtained as the superposi-

tion of two contributions,

u xð Þ ¼ u0 xð Þ þ usc xð Þ; (3)

where u0(x) is solution for an undoped heterostructure to

which a surface potential u0S is applied, and usc(x) is the

contribution of the space charge in layer 2 assuming that it

induces equal counter charges on both the gate contact and

in the 2DEG channel at the AlGaN=GaN interface. Figure 6

illustrates the shape of both components. From Fig. 6(a) it is

clear that u0(x) is a linear function of x given by

u0 xð Þ ¼ � x

t�bar

u0S � u�ch

� �
þ u0S; (4)

FIG. 5. (Color online) Electron sheet densities as a function of the applied

surface potential of a cubic heterostructure with ND¼ 5� 1019 cm�3. The

two cases of complete and incomplete ionization are compared. nS,ch (solid

lines) is the sheet density of channel electrons, which belong to the 2DEG at

the heterojunction, including those penetrating into the AlGaN barrier.

FIG. 6. (Color online) Schematic illustration of the two potential compo-

nents in Eq. (3): (a) u0(x) and (b) usc(x).
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where t�bar is the effective barrier thickness, which accounts

for the effective channel thickness d* as

t�bar ¼ tbar þ d� ebar=echð Þ; (5)

and ech is the dielectric constant of the channel material. By

the effective channel thickness d*, the effects of two capaci-

tance components in the channel region are modeled: The

electrostatic capacitance component related to the average

distance d of the 2DEG electrons from the AlGaN=GaN

interface, and the quantum capacitance Cq which is related

to the density of states in the channel.39,40 Both capacitance

components contribute to d* as

d� ¼ dþ ech=Cq: (6)

The potential u�ch in Eq. (4) can be considered as the

potential in the barrier at the AlGaN=GaN interface extrapo-

lated to a position ebar=echð Þ � d� below the interface (see

Fig. 6). It is given by

u�ch ¼ uch � DEC=q; (7)

where uch is a fitting parameter41,42 that is useful when the

quantum capacitance is assumed to be constant.

Figure 6(b) illustrates the shape of the second potential

component in Eq. (3)—the contribution of the space charge

in layer 2, usc(x). Here we assume that one half of the inte-

grated space charge (qNDt2=2) induces a counter charge on

the gate and the other half induces a counter charge in the

2DEG. For symmetry reasons, usc(x) must have a maximum

in the center of layer 2 at xm¼ t1þ t2=2, i.e., usc(xm)¼um.

The voltage drops across the undoped layers, labeled with V1

and V3 in Fig. 6(b), are given by

V1 ¼ Mt2t1 and V3 ¼ Mt2t�3; (8)

where M ¼ qND=2ebar and t�3 ¼ t3 þ d� ebar=echð Þ. Solving

Poisson’s equation in the second half of layer 2, i.e., between

x¼ xm and x¼ xmþ t2=2, we arrive at the quadratic equation

for usc(x)

usc xð Þ ¼ �M x� xmð Þ2þum; (9)

where

um ¼ V2 þ V3 ¼ M
t2

4
þ t�3

� �
t2: (10)

According to Fig. 6(b), the contribution of the space charge

to the surface potential, uSCS, is given by

uSCS ¼ V3 � V1 ¼ M t�3 � t1

� �
t2: (11)

The surface potential uS ¼ �ECS=q (given in volt) is related

to u0S and uSCS via

uS ¼ u0S þ uSCS: (12)

Due to usc(x) from Eq. (9), Eq. (3) is a quadratic function of

x with a maximum at

xpeak ¼ xm �
1

2Mt�bar

uS �M t�3 � t1
� �

t2 � u�ch

� �
: (13)

The maximum potential umax¼u(xpeak) corresponds to the

conduction band minimum and is a quadratic function of the

surface potential uS. When umax approaches a certain value

up close to zero, the electron density in the channel starts to

saturate. The corresponding surface potential, which we call

the critical surface potential ucrit ¼ �Ecrit
CS=q, is related to the

critical gate voltage by Vcrit¼ucritþUB=q. It is obtained by

solving the equation

umaxðuS ¼ ucritÞ ¼ up (14)

leading to

ucrit ¼
qND

CG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ebar

qND

up � u�ch

� �
þ t�23

s
� t�3

 !
� qNDt2

ebar

xm

þ u�ch;

(15)

where CG ¼ ebar=t�bar is the gate capacitance.

Following our approach, the electron sheet charge in the

2DEG consists of two components, namely the contribution

of the space charge in layer 2, i.e., the counter charge for one

half of the integrated doping density, qNDt2=2, and the

charge induced by applying the surface potential u0S to an

undoped heterostucture given by CG � u0S � u�ch

� �
. Hence,

when a surface potential uS smaller than ucrit is applied, the

charge in the 2DEG is given by

qnS ¼
q

2
NDt2 þ CG uS �M t�3 � t1

� �
t2 � u�ch

� �
: (16)

At uS¼uth, nS vanishes, and from Eq. (16) the threshold

surface potential is obtained as

uth ¼ �Eth
CS=q ¼ � qNDt2

ebar

xm þ u�ch; (17)

which is related to the threshold voltage by

Vth¼uthþUB=q.

For t1¼ 0, Eqs. (15) and (17) lead to the expressions

derived in Ref. 37. Note that in Ref. 37 an idealized 2DEG

was considered, i.e., the effects of the capacitance compo-

nents of the 2DEG (d* and uch) were neglected. Chao

et al.,38 on the other hand, considered an ideal planar doping

layer in the barrier with zero thickness. Their model can be

seen as the extreme case of Eqs. (15) and (17) for t2! 0 and

ND� t2¼NDS> 0.

Figure 7 compares the critical and threshold surface

potentials calculated from Eqs. (15) and (17), respectively,

with those obtained from numerical Schrödinger-Poisson

simulations for various ND. The surface potentials are given

in units of electron volt, i.e., in the form Ecrit
CS and Eth

CS. The

Schrödinger-Poisson results were extracted from simulated

nS,ch(ECS) curves (see Fig. 5) as follows. First, the

nS,ch(ECS) curve was approximated by its tangent at the

point of maximum slope. Then, Eth
CS was taken where the

tangent crosses the x-axis at nS¼ 0, whereas Ecrit
CS was taken
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where the simulated ns,ch is equal to 95% of the tangent-

value.

In Fig. 7, complete and incomplete ionization are con-

sidered. For both cases, the agreement between analytical

and numerical results is very good. Note that for each case

(i.e., for complete and incomplete ionization) a different set

of fitting parameters (d*, up, uch) was used. For complete

ionization, however, a slight deviation of the analytical

Ecrit
CS NDð Þ curve from the numerical results is observed when

using a constant up. This is not surprising, since the quantum

well for the parasitic channel becomes deeper and narrower

when ND is increased, and thus the energy separation

between the lowest subband and the conduction band mini-

mum increases as well. A perfect agreement between analyt-

ical and numerical results is achieved when the doping

dependence of up is modeled with a simple linear function,

up ¼ a � ND þ b. All fitting parameters are given in the cap-

tion of Fig. 7.

IV. DESIGN CONSIDERATIONS

Let us now apply our model to the design of a cubic

AlGaN=GaN HEMT. Using Eqs. (15) and (17), we find for

the maximum usable effective gate voltage

Vmax
Geff ¼ ucrit � uth ¼

qND

CG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ebar

qND

up � u�ch

� �
þ t�23

s
� t�3

 !
:

(18)

This gate voltage corresponds to a 2DEG density

qnSmax ¼ CG � Vmax
Geff , that sets a limit for the drain current of

a HEMT. Note that nSmax is independent of CG. Inspecting

Eq. (18) reveals that the design parameters defining Vmax
Geff are

ND, t3 and tbar. While tbar basically defines the slope of the

nS(VG) curve, the other two parameters directly affect nSmax.

Interestingly, Vmax
Geff does not depend on the thickness of the

n-type layer t2. In other words, a certain doping level of layer

2 has a fixed effect on Vmax
Geff , regardless of the choice of t2.

This, however, is not yet the full story, since t2 definitely

affects both the critical voltage and the threshold voltage,

see Eqs. (15) and (17). For a fixed ND, both Vcrit and Vth

become more negative for larger t2. The actual effect of t3
and ND on Vmax

Geff becomes clearer, if we rearrange Eq. (18) to

Vmax
Geff ¼

2t�bar up � u�ch

� �
2ebar

qND
up � u�ch

� �
þ t�23

� �1=2

þt�3

: (19)

Accordingly, for a large Vmax
Geff a large ND is beneficial,

whereas t3 should be as small as possible. The hypothetical

upper limit of Vmax
Geff is achieved in the extreme case of infin-

itely high doping and is given as

Vmax
Geff ¼

t�bar

t�3
up � u�ch

� �
: (20)

Note that the same expression is found when considering an

ideal planar doping layer.38

Figure 8 summarizes the effects of the layer structure on

Vmax
Geff . It shows Vmax

Geff as a function of the critical surface

potential for three combinations of t2 and t3. For each combi-

nation, the variation of the critical surface potential is

achieved by varying ND. The barrier thickness is 20 nm in

every case. As can be seen, our analytical model describes

the results obtained from Schrödinger-Poisson simulations

very well. The largest Vmax
Geff is calculated for the structure

with t2¼ 2 nm and t3¼ 3 nm. Increasing either t2 or t3
reduces Vmax

Geff for fixed Ecrit
CS . Note that the effect of t2 is

related to the simultaneous shift of both critical and threshold

surface potentials, i.e., for the same Ecrit
CS the structure with

t2¼ 2 nm can be much higher doped compared to the

FIG. 7. (Color online) Critical and threshold surface potentials calculated

from Eqs. (15) and (17), respectively, compared with those obtained from

numerical Schrödinger-Poisson simulations, as a function of ND. The fitting

parameters (d*, up, uch) for the analytical models are (3.06 nm, �75 mV,

0.97 mV) for incomplete ionization and (2.17 nm, 59 mV, 35 mV) for com-

plete ionization. For the latter case we also considered a linear dependence

of up on ND (dash-dotted line), up¼ a�NDþ b, with the fitting parameters

a¼ 1.28� 10�21 Vcm3 and b¼ 6 mV.

FIG. 8. (Color online) Maximum usable effective gate voltage as a function

of the critical surface potential for three combinations of t2 and t3. The varia-

tion of the critical surface potential is achieved by varying ND. Analytical

and Schrödinger-Poisson results are compared. In the analytical models the

linear fit of up(ND), see Fig. 7, is used.
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structure with t2¼ 17 nm (where t1¼ 0). In order to find an

appropriate layer structure for a normally-off HEMT, one

should bear in mind that because of the relation

Vth ¼ UB � Eth
CS

� �	
q; (21)

Eth
CS should be small in order to get a positive Vth. On the

other hand, for proper transistor operation the applied ECS

must be positive (i.e., VG<UB=q) to limit the gate current.

Hence, to achieve large 2DEG densities, while limiting Eth
CS,

Ecrit
CS should be close to zero. For the structure with t2¼ 2 nm

and t3¼ 3 nm, this is the case for ND � 2� 1019 cm�3, as

can be seen from Fig. 7.

In case the threshold voltage is still negative, which

mainly depends on the Schottky contact, the barrier thickness

may be reduced. This is illustrated in Fig. 9, where nS(ECS)

curves are shown for three different barrier thicknesses,

while t2 and t3 are held constant. Also shown for comparison

are the curves for hexagonal Al0.25Ga0.75N=GaN heterostruc-

tures with the same tbar. The upper x axis again shows the

gate voltage assuming a Schottky barrier height of 1.4 eV.

As can be seen, for tbar¼ 15 nm the threshold voltage of the

cubic heterostructure is positive, while for hexagonal mate-

rial Vth remains negative even for a 10-nm thin AlGaN bar-

rier. According to Fig. 10, for the hexagonal heterostructure

the barrier has to be made thinner than 5 nm to get a positive

Vth. This clearly demonstrates the advantage of using cubic

AlGaN=GaN for normally-off transistor applications instead

of hexagonal material.

V. CONCLUSION

Our study shows that cubic GaN-based HEMTs can be a

promising alternative to their hexagonal counterparts, in par-

ticular for normally-off transistor applications. The absence

of polarization effects in cubic AlGaN=GaN allows the de-

signer to adjust the 2DEG density via the doping of the

AlGaN barrier without affecting the conduction band offset.

Doping of the barrier, however, can lead to undesirable satu-

ration effects of the 2DEG density. The analytical model

developed in this work describes the critical gate voltage for

the onset of saturation effects very well for a generic doped

heterostructure that covers a wide range of realistic device

designs. As a general guideline to maximize the usable effec-

tive gate voltage, the doped layer should be as close as possi-

ble to the heterojunction whereas the donor density should

be large. While the thickness of the doped layer does not

directly affect the maximum usable effective gate voltage, a

narrow doping layer is beneficial for a positive threshold

voltage. Our model can be helpful to find the optimum dop-

ing level for a normally-off HEMT design.
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8M. Südow, M. Fagerlind, M. Thorsell, K. Andersson, N. Billström, P.-A.

Nilsson, and N. Rosman, IEEE Trans Microwave Theory Tech. 56, 1827

(2008).
9Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Den-

baars, and U. K. Mishra, Appl. Phys. Lett. 69, 1438 (1996).
10J. Burm, W. J. Schaff, G. H. Martin, L. F. Eastman, H. Amano, and I. Aka-

saki, Solid-State Electron. 41, 247 (1997).
11R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. Asif Khan, A. O. Orlov,

G. L. Snider, and M. S. Shur, Appl. Phys. Lett. 72, 707 (1998).

FIG. 9. (Color online) nS(ECS) curves for cubic and hexagonal heterostruc-

tures with three different barrier thicknesses obtained from Schrödinger-

Poisson simulations.

FIG. 10. (Color online) Threshold voltage as a function of the barrier thick-

ness for cubic and hexagonal heterostructures. For the cubic heterostructure,

the parameters of the doping layer (t2, t3, ND) are the same as in Fig. 9. Ana-

lytical and Schrödinger-Poisson results are shown.

114501-7 Granzner et al. J. Appl. Phys. 110, 114501 (2011)

Downloaded 01 Dec 2011 to 131.234.170.10. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1109/JPROC.2007.911060
http://dx.doi.org/10.1002/(SICI)1521-396X(199911)176:1<>1.0.CO;2-M
http://public.itrs.net/
http://public.itrs.net/
http://dx.doi.org/10.1109/TED.2008.2011849
http://dx.doi.org/10.1109/TED.2008.2011849
http://dx.doi.org/10.1109/LED.2009.2039847
http://dx.doi.org/10.1109/LED.2009.2032938
http://dx.doi.org/10.1109/LED.2009.2032938
http://dx.doi.org/10.1109/TMTT.2008.927317
http://dx.doi.org/10.1063/1.117607
http://dx.doi.org/10.1016/S0038-1101(96)00210-9
http://dx.doi.org/10.1063/1.120852


12O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,

R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J.

Appl. Phys. 85, 3222 (1999).
13E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skier-

biszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif

Khan, M. S. Shur, R. Gaska, and D. Maude, Appl. Phys. Lett. 77, 2551

(2000).
14V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. A.

Khan, and I. Adesida, IEEE Electron Device Lett. 23, 455 (2002).
15T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. Den-

Baars, J. S. Speck, and U. K. Mishra, IEEE Electron Device Lett. 26, 781

(2005).
16T.-H. Yu and K. F. Brennan, IEEE Trans. Electron Devices 50, 315(2003).
17T. Sadi, R. W. Kelsall, and N. J. Pilgrim, IEEE Trans. Electron Devices

53, 2892 (2006).
18O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickh-

off, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L.

F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).
19A. Sozza, C. Dua1, E. Morvan, M. A. DiForte-Poisson, S. Delage, F. Ram-

pazzo, A. Tazzoli, F. Danesin, G. Meneghesso, E. Zanoni, A. Curutchet,

N. Malbert, N. Labat, B. Grimbert, and J.-C. De Jaeger, Tech. Dig. IEDM,

590 (2005).
20J. Joh and J. A. del Alamo, Tech. Dig. IEDM, 1 (2006).
21J. Joh, L. Xia, and J. A. del Alamo, Tech. Dig. IEDM, 385 (2007).
22A. Chini, F. Fantini, V. Di Lecce, M. Esposto, A. Stocco, N. Ronchi,

F. Zanon, G. Meneghesso, and E. Zanoni, Tech. Dig. IEDM, 169

(2009).
23E. Tschumak, R. Granzner, J. K. N. Lindner, F. Schwierz, K. Lischka, H.

Nagasawa, M. Abe, and D. J. As, Appl. Phys. Lett. 96, 253501 (2010).
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