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The electronic and optical properties of zinc-blende (zb) AlxGa1−xN over the whole alloy composition range are
presented in a joint theoretical and experimental study. Because zb-GaN is a direct (�v → �c) semiconductor and
zb-AlN shows an indirect (�v → Xc) fundamental band gap, the ternary alloy exhibits a concentration-dependent
direct-indirect band gap crossing point the position of which is highly controversial. The dielectric functions
of zb-AlxGa1−xN alloys are measured employing synchrotron-based ellipsometry in an energy range between
1 and 20 eV. The experimentally determined fundamental energy transitions originating from the �, X, and L

points are identified by comparison to theoretical band-to-band transition energies. In order to determine the
direct-indirect band gap crossing point, the measured transition energies at the X point have to be aligned by
the calculated position of the highest valence state. Thereby density-functional theory (DFT) based approaches
to the electronic structure, ranging from the standard (semi)local generalized gradient approximation (GGA),
self-energy corrected local density approximation (LDA-1/2), and meta-GGA DFT (TB-mBJLDA) to hybrid
functional DFT and many-body perturbation theory in the GW approximation, are applied to random and special
quasirandom structure models of zb-AlxGa1−xN. This study provides interesting insights into the accuracy of
the various numerical approaches and contains reliable ab initio data on the electronic structure and fundamental
alloy band gaps of zb-AlxGa1−xN. Nonlocal Heyd-Scuseria-Ernzerhof-type hybrid-functional DFT calculations
or, alternatively, GW quasiparticle calculations are required to reproduce prominent features of the electronic
structure. The direct-indirect band gap crossing point of zb-AlxGa1−xN is found in the Al rich composition range
at an Al content between x = 0.64 and 0.69 in hybrid functional DFT, which is in good agreement with x = 0.71
determined from the aligned experimental transition energies. Thus our study solves the long-standing debate on
the nature of the fundamental zb-AlxGa1−xN alloy band gap.
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I. INTRODUCTION

Throughout the last two decades, scientific breakthroughs
on the field of group-III nitride semiconductor materials have
always stimulated rapid technological progress in the man-
ufacturing of optoelectronic and electronic devices. Group-
III nitrides naturally crystallize in stable hexagonal lattices
with wurtzite (wz) structure (space group: P 63mc – C4

6v).
Artificially grown, group-III nitrides may adopt a metastable
cubic phase with a zinc-blende (zb) structure (space group:
F43m – T 2

d ). Probably the most appealing characteristic of
binary group-III nitrides and their multicomponent alloys is
the extremely large accessible range of band gap energies,
i.e., from ∼0.7 eV (wz-InN)1 to ∼6.0 eV (wz-AlN)2,3 for
the hexagonal compounds and from ∼0.6 eV (zb-InN)4 to
∼5.3 eV (zb-AlN)5 for the cubic ones.

For a long time almost exclusively grown along the polar
(0001) c direction of the hexagonal crystal, group-III nitrides,
and their multicomponent alloys exhibit strong internal piezo-
electric and spontaneous polarization electric fields, which
are undesirable for optoelectronic applications since they
inherently limit the device performance.6,7 The occurrence

of such polarization fields is a direct consequence of the lack
of inversion symmetry in the hexagonal crystal that naturally
show both piezoelectric and spontaneous polarization parallel
to the c axis.8 The growth of nonpolar and semipolar nitrides
has found increasing technological interest over the past years
to avoid these strong internal fields. In these nonpolar or
semipolar nitrides, the c axis is orthogonal or inclined to the
growth direction, thus eliminating or limiting the field effects
in the growth direction.9 However, the electrical, optical, and
structural properties are affected by strong lateral anisotropies.
A way to fabricate group-III nitride based optoelectronic
devices, fundamentally free of polarization fields,7 is the
growth5,10–14 of cubic nitride alloys with (001) orientation and
the engineering of nanostructured material compounds (e.g.,
quantum wells and superlattices).15–20

Among all group-III nitride semiconductors, zb-AlN is
the only binary semiconductor with an nondirect �v → Xc

fundamental bulk band gap.5 In the ternary (also pseudobinary)
zb-AlxGa1−xN alloys, the electronic states, responsible for the
band gaps in the pure bulk phases, intermix with respect to the
relative concentration of each material component. Thus there
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is a critical cation concentration that marks the transition of the
fundamental alloy band gap from involving either the bulklike
�c conduction band states originating from the direct zb-GaN
band gap or the bulklike Xc conduction band states of the indi-
rect zb-AlN band gap. This direct-indirect band gap crossing is
a common alloy characteristic of the cubic group-III nitrides
and the group-III arsenides. Analogously to zb-AlN, AlAs,
which naturally crystallizes in a stable zinc-blende structure, is
the only indirect semiconductor among the group-III arsenides.
The critical Al concentration for the direct-indirect band gap
crossing in AlxGa1−xAs has experimentally been found at
∼0.4.21 A detailed knowledge of the direct-indirect band gap
crossing points and accurate band gap data over the whole
composition range of multicomponent semiconductor alloys is
of fundamental interest for the engineering of optoelectronic
and electronic devices.

The experimental band gaps of the binary bulk semi-
conductors zb-AlN and zb-GaN have been reported con-
sistently in several experimental studies. The absorp-
tion/ellipsometry/reflectivity investigations of zb-AlN at room
temperature (RT) yielded for the indirect �v → Xc band gap
values of 5.34 eV (see Ref. 5) and 5.3 eV (see Ref. 22) as
well as of 5.93 eV (see Ref. 22) and 6.05 eV (see Ref. 23)
for the direct �v → �c band gap. The direct �v → �c band
gap of zb-GaN at RT was determined with 3.231 eV (see
Ref. 10), 3.2 eV (see Ref. 24), 3.25 eV (see Ref. 23), and
3.232 eV (see Ref. 25), while values of 3.302 eV (see Ref. 10)
and 3.295 eV (see Ref. 25) have been reported for T = 10 K.

For zb-AlxGa1−xN alloys, the experimental data on the
direct-indirect band gap crossover are limited and partially
completely inconsistent with theoretical data. Okumura et al.24

investigated the optical properties of molecular beam epitaxy
(MBE) zb-AlxGa1−xN epilayers by cathodoluminesence and
spectroscopic ellipsometry techniques. Their data indicate
a direct nature of the fundamental band-edge transitions
over the whole composition range that is characterized by
a linear increase of the alloy band gap [Ezb-AlxGa1−xN

gap (x) =
1.6 x + 3.2 eV ] with increasing Al content. Guerrero et al.23

carried out room temperature reflectivity measurements on
MBE grown zb-AlxGa1−xN epilayers and deduced a nonlinear
functional dependence [Ezb-AlxGa1−xN

gap (x) = 6.05 x + 3.25(1 −
x) − 1.4 x(1 − x) eV ] of the lowest direct absorption edge on
the Al concentration. Nakadaira and Tanaka26 used near-band-
edge photoluminescence spectroscopy at room temperature
to investigate the zb-AlxGa1−xN alloy in the Ga-rich region
for 0 � x � 0.23 and reported a linear band gap dependence
[Ezb-AlxGa1−xN

gap (x) = 1.85 x + 3.2 eV ] on the Al content. All
three experimental studies on zb-AlxGa1−xN predict similar
direct band gap transitions below x � 0.5. However, only the
data of Guerrero et al. are consistent with the measured direct
band gap of zb-AlN, while the data of Okumura et al. are
neither in agreement with the direct nor the indirect band gap
of zb-AlN. Guerrero et al. explicitly stated that there is no
experimental indication for a direct fundamental absorption
edge of zb-AlxGa1−xN alloys. To the best of our knowledge,
no experimental study has published a definitive value for
the direct-indirect band gap crossing point in zb-AlxGa1−xN
alloys so far.

An analysis of reported theoretical data reveals incon-
sistencies in the numerical description of the composition

dependence of the fundamental zb-AlxGa1−xN band gaps as
well. Recently, Amin et al.27 employed the Wu-Cohen gener-
alized gradient approximation (GGA) within a full-potential
linearized augmented plane wave approach (FLAPW) to calcu-
late the zb-AlxGa1−xN band gaps over the entire composition
range. Consistent with the band gap data of Okumura et al.,
the alloy band gap was found to be direct for the entire
composition range, increasing linearly from a direct band gap
of 3.00 eV in zb-GaN to a direct band gap of 5.50 eV in
zb-AlN. However, this result stands in disagreement with the
majority of theoretical studies. Early effective pseudopotential
method (EPM) studies of Fan et al.28,29 reported a direct-
indirect band gap crossover in zb-AlxGa1−xN at x = 0.52.
Albanesi et al.30 reported a similar crossing point of x = 0.57
from band structure calculations applying a linear-muffin-tin-
orbital (LMTO) implementation of density functional theory
(DFT) in local density approximation (LDA). In this study,
a cluster expansion approach (CEA)31–33 was used to treat
the problem of the stochastically occupied semiconductor
alloys. Sökeland et al.34 published the first GW quasiparticle
(QP) theory data on zb-AlxGa1−xN alloys. Their data indicate
an increase of the critical Al content from x = 0.54 in
DFT-LDA to x = 0.63 in the GW approximation (GWA).
In both cases, the virtual crystal approximation (VCA)33

was applied to model the semiconductor alloys. A DFT-
LDA band gap crossing point of ∼0.6 has been confirmed
in further studies.35,36 Using the screened-exchange LDA
method37–39 within DFT and special quasirandom structures
(SQS’s),33,40 Lee and Wang41 predicted the direct-indirect
band gap crossing point at x = 0.85. Very recently, Mourad
and Czycholl42 employed an empirical tight-binding model
(ETBM) to calculate the electronic structure of substitutionally
disordered alloys. Besides large unit-cell (2000–4000 atoms)
calculations, the disordered systems were treated within the
coherent potential approximation (CPA)43–45 and the VCA.
The crossover point in zb-AlxGa1−xN was found to fall
into the concentration range from x = 0.7 to x = 0.8. A
short summary of various theoretical studies, including the
computational method and the modeling approach to treat the
substitutional disorder in the Al-Ga cation sublattice is given
in Table I. In light of the partially contradictory results, a

TABLE I. Theoretical data on the direct-indirect band gap
crossover in zb-AlxGa1−xN alloys. Listed are the approaches to
describe the electronic structure and the substitutionally disordered
alloy as well as the Al concentration x at the crossing point. The
entries are ordered according to their time of publication.

Simulation method Crossing

Electronic structure Random alloy x Ref.

LMTO-LDA CEA 0.52 30
EPM VCA 0.57 28, 29
DFT-LDA VCA 0.54 34
GWA VCA 0.63 34
DFT-LDA 8 atom unit cells 0.6 35
DFT-LDA 8/16 atom SQS’s 0.61 41
DFT-(sX-LDA) 8/16 atom SQS’s 0.85 41
DFT-LDA 8 atom unit cells 0.69 36
ETBM CPA, VCA 0.7–0.8 42
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rigorous numerical study as well as a careful investigation of
zb-AlxGa1−xN alloys by experimental techniques is needed
to verify the true nature of the fundamental alloy band gap.
This study serves both aspects by presenting state-of-the-art
ab initio calculations and latest synchrotron based ellipsom-
etry data on zb-AlxGa1−xN over the entire concentration
range.

The paper is organized as follows. Section II contains the
details of the experimental setup as well as a discussion of
critical points in the measured dielectric functions (DFs). In
Sec. III, the key ideas of the numerical approaches, needed
to calculate accurate band gaps and to model the infinite
randomly occupied semiconductor alloys, are summarized.
Furthermore, the application to the binary bulk materials is
discussed in detail. Section IV is used for the presentation
and discussion of the theoretical and experimental transition
energies, while Sec. V summarizes the relevant results of this
study and gives concluding comments and reasonings.

II. EXPERIMENT

A. Experimental details

For this study, epitaxial zb-AlxGa1−xN layers spanning
the full composition range were grown by plasma assisted
molecular beam epitaxy. The two binary samples, zb-GaN
and zb-AlN, were taken from earlier studies. Detailed reports
about their optical properties and sample structures can be
found elsewhere.22,25 The zb-AlxGa1−xN layers were grown
on 3C-SiC(001)/Si substrates. The thickness of the sample
layers ranges between 50 and 380 nm. Lattice parameters
and Al concentration were determined by high-resolution
x-ray diffraction (HRXRD). The amount of hexagonal group
III-nitride inclusions have also been checked by performing
reciprocal space maps (RSM) around the symmetric GaN
(002) or AlN (002) reflex. From the intensity ratio of
the cubic (002) reflex to the hexagonal (1011) reflex, we
estimate about 99% cubic phase in both GaN and AlN
samples. Further details on the structural properties are given
in Refs. 46 and 13.

The linear optical response of all samples was measured by
spectroscopic ellipsometry (SE) using two different setups at
room temperature. In the energy range between 1 and 6.4 eV,
a variable angle ellipsometer (J.A. Woollam) was used at the
incidence angles of 60◦, 67◦, and 74◦. Data up to 20 eV
were recorded employing the dedicated rotating analyzer
ellipsometer attached to the Berlin electron storage ring for
synchrotron radiation (BESSY II). Here, the angle of incidence
is fixed to 67.5◦ up to 10 eV and to 45◦ between 10 and 20 eV.
Low-temperature experiments at 10 K are only possible in the
range between 5 and 10 eV due to limitations of the setup. More
details about the synchrotron-ellipsometer setup are published
elsewhere.47

The ellipsometric parameters � and � from both setups
and all angles of incidence were merged and fitted by
taking into account the layer structure, surface and interface
roughnesses of the respective sample yielding the complex DF
ε̄(h̄ω) = ε1(h̄ω) + jε2(h̄ω). As ε1 and ε2 are related by the
Kramers-Kronig relations, it is sufficient to present either one.
Here, we show the imaginary part of the DFs, ε2.

B. Experimental results

The imaginary parts of the DFs at room temperature are
presented in Fig. 1. Note that for three of our samples
(x = 0.26, 0.50, and 0.71), only data up to 10 eV are
available. At the low-energy side, each sample shows an
absorption onset, i.e., a steplike behavior of ε2 marking the
energy position of the direct band gap. While the steps are
relatively sharp for the two binary compounds, the ternary
alloy films show larger broadenings of the onset. This behavior
is expected already from statistical disorder in the randomly
distributed cation matrix containing Al and Ga atoms in
a certain fraction but with locally different concentrations.
The large broadening and the low layer thicknesses do not
allow to determine the indirect band gaps in this composition
range. However, as demonstrated previously for zb-AlN22 and
zb-GaN,25 accurate values for the �v → �c spacing (band gap
E0) can be determined from the analysis of the ε2 data by taking
the excitonic effects around the absorption edge into account
yielding for the two binaries 5.93 and 3.232 eV, respectively.
The obtained E0 values of all samples are summarized in Fig. 2.
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FIG. 1. (Color online) Imaginary parts (ε2) of the complex di-
electric function of the zb-AlxGa1−xN samples up to 20 eV measured
at room temperature (295 K). The spectra are shifted vertically
for clarity proportional to their gallium content [×50(1 − x)]. The
connecting continuous curves are guidelines for the eye and mark
absorption transitions occurring at the same point in the Brillouin
zone. The inset presents details around the E2 contribution for low
aluminum content samples. It can be clearly seen that E2 shifts to
lower energy for increasing Al concentration.
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FIG. 2. (Color online) Characteristic transition energies as ob-
tained from analysis of critical points in the measured dielectric
functions of zb-AlxGa1−xN at room temperature (295 K) as a function
of the aluminum concentration x.

A couple of characteristic high-energy features are found
in all spectra, their dependence on the alloy content are
indicated by continuous lines in Fig. 1. Except for E2, all
characteristic transitions shift to higher energies for increasing
Al concentration. This behavior is analogous to that of
wz-AlxGa1−xN alloys48 where also only one feature is shifting
to smaller energy for an increasing Al content. The most
prominent feature in ε2 is visible at around 7.5 eV for all
samples. This sharp peak (E2) has already been successfully
identified with the interband absorption at the X point of the
Brillouin zone in zb-AlN22 and zb-GaN.25 A more detailed
analysis of this peak reveals that it shifts from 7.51 eV for
zb-GaN to 7.204 eV for zb-AlN. The inset in Fig. 1 displays
a closer look of the behavior of E2 for the low Al content
samples. In the direct vicinity of E2 in the spectra we find
a feature labeled E1, which is below the E2 contribution for
zb-GaN (at 7.23 eV) but above E2 for zb-AlN (at 9.8 5eV).
We identify this band by interband absorption at the � line
between the L and � points of the zinc-blende Brillouin zone
in agreement with earlier studies.25,49 At even higher energies
we find two separate contributions for zb-GaN at 10.72 and
12.87 eV, while in zb-AlN these contributions are split into
three peaks at 11.32, 12.68, and 14.1 eV. We label them E′

1, E′
2,

and E′
0, respectively. The prime marks interband transitions

into higher conduction bands at the same point in the Brillouin
zone.

In order to allow a comparison of these experimental
transition energies with the results of the band structure calcu-
lations, the influence of electron-hole interaction (excitonic
effects) on the shape of ε2 in the vicinity of high-energy
critical points has to be considered. A detailed discussion
for zb-AlN has been published recently where the shape of
the independent-quasiparticle DF (disregarding electron-hole
many-body interaction) and the excitonic DF as obtained
by solving the Bethe-Salpeter equation was analyzed.49 In
particular, a pronounced feature related to E2 becomes only
visible by the inclusion of excitons (inset of Fig. 6 in Ref. 49).
It peaks at 7 eV, while the corresponding quasiparticle gap
amounts to 7.22 eV. Conversely, by adding the 220 meV
difference to the experimental E2 value reported above one
obtains 7.424 eV for the quasiparticle gap at the X point. The
size of the shift has not been calculated yet for the alloys,
i.e., we cannot correct the whole curve in Fig. 2. However, a
pronounced change of the correction value is unlikely because
the transition energy undergoes only a 300 meV upshift with
decreasing Al content. Correspondingly, the excitonic-induced
downshift for E′

2 amounts to 300 meV, while other transitions
cannot be unambiguously identified in the calculated DF.49

In order to quantify the nonlinear deviations of the alloy
band gaps, the bowing parameters bk were determined accord-
ing to

E
AlxGa1−xN
gap,k = EAlN

gap,k x + EGaN
gap,k(1 − x) − bk x(1 − x). (1)

The k-point index indicates that the electronic states of the
alloy are labeled by the symmetry of their equivalents in the
individual bulk materials. Positive and negative bowing param-
eters indicate a downward and upward bowing, respectively,
with respect to a linear dependence on the alloy composition.
The fundamental direct band gap (E0) can be described by a
nonlinear interpolation including a notable downward bowing
characterized by a bowing factor of b� = 0.85 eV. In general,
other high-energy critical-point energies also show a nonlinear
dependence on the Al concentration as discussed below.
Theoretical first-principles calculations as presented below are
usually performed for zero temperature. It is thus appropriate
to consider the influence of sample temperatures on the energy
positions of the features in the DFs. Therefore we have
performed low-temperature (10 K) synchrotron spectroscopic
ellipsometry experiments for the binary components zb-GaN
and zb-AlN. While the data for zb-GaN were already published
earlier,25 these for zb-AlN are presented in Fig. 3. For 10 K,
we find decreasing broadening and increasing amplitude of
high-energy features in the DF. Furthermore, the whole DF is
shifted to higher energy values due to reduced electron-phonon
interaction. E2 is located at 7.271 eV for 10 K, which resembles
an upshift of 67 meV. The shift of E0 is found to be similar.
The corresponding shifts were found to be 63 meV (E0) and
110 meV (E2) for zb-GaN (see Ref. 25). It is therefore
reasonable to estimate the temperature shift from 295 to 10 K
for all features in ε2 to about 100 meV for the whole
alloy system. When comparing calculated quasiparticle band
energies to experimentally obtained transitions as done below,
this shift should be kept in mind.
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FIG. 3. (Color online) Imaginary parts of the dielectric functions
(ε2) of the zb-AlN samples up to 10 eV at 295 and 10 K.

In order to determine the Al concentration at the direct-
indirect crossing the direct E2 transition energies at the X

point need to be aligned by the relative difference of the highest
X point valence states and the position of the highest � point
valence state (zero point of the energy scale). Since the accurate
calculation of the valence band position is crucial to obtain
the band gap crossing concentration, we will first discuss the
suitability of various numerical approaches to simulate the
electronic structure of nitride semiconductors before returning
to the direct-indirect band gap crossing in Sec. IV.

III. THEORY

A. Ab initio calculations

The theoretical determination of the direct-indirect band
gap crossing necessitates both a highly precise description
of all extremal points of the band structure and an accurate
reproduction of the infinite randomly occupied semiconductor
alloy over the entire composition range.

Nowadays, the Kohn-Sham formulation50 of DFT51 is
practically established as a standard for atomistic calculations
in the solid-state community. The interpretation of energy
differences between Kohn-Sham ground-state eigenvalues,52

obtained using either the LDA53–55 or the GGA56–59 to
approximate the exchange-correlation (XC) potentials and
energies, as excitation energies have resulted in severely under-
estimated, unsatisfying band gap energies for a vast majority
of semiconductors and insulators or even absent band gaps
for small-gap systems (e.g., Ge, GaSb, and InAs, see Ref. 60).
This so-called band gap problem is commonly portrayed as the
most prominent unsolved problem of DFT and handicaps the
communication of numerical results to nonspecialist readers
less familiar with the theoretical foundations of DFT. The
origin of the band gap underestimation can be traced back
to self-interaction errors as well as the lack of a derivative
discontinuity at integer electron number in approximated XC
functionals.52,60–65 The accuracy of conventional (semi)local
DFT is often still sufficient to provide a sound basis for
qualitative and quantitative interpretation of experimental data
and, beyond that, it even shows some degree of inherent
predictive power. Nevertheless, much methodological work
in electronic structure theory has been devoted to the band gap

problem in DFT. From a theoretical point of view, the focus
of this study is to go beyond conventional DFT and apply
various electronic structure methods, including many-body
perturbation theory (MBPT),66,67 that can be expected to give
more accurate band gap values.

(1) TB-mBJLDA: Recently, Tran and Blaha68 proposed
an in-real-space multiplicative Kohn-Sham-like potential by
modifying the Becke-Johnson (BJ) exchange potential69,70

vTB-mBJ
x,σ (r) = c vBR

x,σ (r) + (3c − 2)
1

π

√
5

12

√
2tσ (r)

ρσ (r)
, (2)

where

vBR
x,σ (r) = − 1

bσ (r)

[
1 − e−xσ (r) − 1

2
xσ (r) e−xσ (r)

]
(3)

is the Becke-Roussel exchange potential71 as proposed earlier
to model the Coulomb potential created by the exchange hole.
Here, ρσ = ∑Nσ

i=1 |ψi,σ |2 and tσ = (1/2)
∑Nσ

i=1(∇ψ∗
i,σ · ∇ψi,σ )

are the electron and kinetic-energy densities, xσ is determined
from a nonlinear equation containing tσ as well as the density
gradients ρσ ,∇ρσ , and ∇2ρσ and bσ are calculated according
to bσ = [x3

σ e−xσ / (8πρσ )]1/3. Equation (2) ensures that for
any value of c the LDA exchange potential is approximately
recovered for a constant electron density. For c = 1 the original
BJ potential is recovered. The actual value of the c parameter
in Eq. (2) is calculated from the cell average of the quantity
|∇ρ/ρ| via

c = α + β

[
1

Vcell

∫
cell

|∇ρ(r′)|
ρ (r′)

d3r ′
]1/2

, (4)

where Vcell is the unit-cell volume and α and β are two free
parameters, whose values (α = −0.012, β = 1.023 bohr1/2)
are determined to minimize the mean absolute relative error
of the band gap for a representative set of solids (see Ref. 68).
Due to their dependence on the kinetic energy density tσ , the
exchange potentials above can be classified as meta-GGA’s.
In practical calculations, the TB-mBJ exchange potential is
used in combination with an LDA correlation potential55 (TB-
mBJLDA). Since the TB-mBJ exchange potential cannot be
obtained as a functional derivative (δExc [ρ] /δρ) of the total
energy,72 it is not possible to use the TB-mBJLDA potential
for force calculations. Thus structure relaxations have to be
done using alternative XC functionals.

The TB-mBJLDA potential has been shown to reproduce
experimental band gaps with an error margin of the same
order as hybrid functional or GW approaches (see Ref. 68),
thereby preserving the moderate computational cost of con-
ventional DFT. In principle, the TB-mBJLDA method can
be seen as a parameter-free approach, since the c parameter
can be calculated self-consistently according to Eq. (4).
However, using the self-consistently estimated values of c

electronic band gaps in semiconductors and insulators tend
to be underestimated.73–75 Since band gaps typically show
a monotone increase with increasing c,68 c can be adjusted
manually to match the experimental band gaps. In a study
on band structure topologies of III-V semiconductors, Kim
et al.73 reported an excellent TB-mBJLDA description of
band gaps at high-symmetry points, although a general
overestimation of effective masses by 20–30% was reported.

195210-5



M. LANDMANN et al. PHYSICAL REVIEW B 87, 195210 (2013)

Recently, Kresse et al.75 demonstrated that fundamental band
gap energies obtained with the TB-mBJLDA potential and
a properly adjusted c parameter can even compete with the
most sophisticated self-consistent GW schemes. However,
a significant tendency toward to narrow bandwidth and
consequentially a nonadequate representation of the optical
response was reported by using TB-mBJLDA orbitals to solve
the Bethe-Salpeter equation.

(2) LDA-1/2: Another approach to improve the description
of band gaps by approximately taking into account self-energy
corrections within the framework of conventional Kohn-Sham
DFT in LDA is the LDA-1/2 half-occupation technique.
LDA-1/2 has been derived in the spirit of Slater-Janack
transition-state theory76–78 and was recently developed by
Ferreira et al.79,80 into a practical scheme for band gap
calculations of semiconductors. While the half-occupation
scheme provides accurate atomic ionization potentials,79 it
cannot be directly applied to extended crystalline systems. In
the LDA-1/2 approach the orbital-dependent self-energy

Sα =
∫

nα (r) VS (r) d3r (5)

of a Kohn-Sham state α with electron density nα (r) is
subtracted from the Kohn-Sham eigenvalue at full occupation.
Therefore the self-energy potential VS , is approximately given
as the difference

VS ≈ −V (−1/2,r) + V (0,r) (6)

between the all-electron potentials of an atom and its half-ion.
VS has been interpreted as the work required to transform
the charge of a Bloch function into a localized hole state.81

In crystals, the self-energy correction is added to the atomic
(pseudo)potentials of all atoms, thus calculating the properties
of a “filled hole band” instead of individual localized hole
states. To avoid the penetration of the self-energy Coulomb
tails into neighboring atom sites, the self-energy potentials are
trimmed according to V ′

S = θ (r)VS by a cutoff function θ (r):

θ (r) =
{[

1 − (
r

CUT

)n=8 ]3
r � CUT,

0 r > CUT.
(7)

Ideally, LDA-1/2 can be considered to be fully ab initio, since
the value of the CUT parameter is determined in a variational
way to make the band gaps extremal without falling back
to empirical parameters. If not stated otherwise, the LDA-1/2
results, presented throughout this study, are obtained by adding
self-energy correction potentials with a cutoff of CUT =
2.90 a.u. to the N2p states in zb-AlN and zb-GaN. For zb-GaN,
additional self-energy corrections with a cutoff of CUT =
1.15 a.u. have been included for the Ga3d states.

LDA-1/2 has led to very impressive band gap results79

for a large number of materials ranging from small-gap
semiconductors to wide-gap semiconductors and insulators.
Thereby, LDA-1/2 even surpasses non-self-consistent GWA

approaches82,83 and partially or fully self-consistent GW

approaches that neglect the influence of electron-hole vertex
corrections (cf. Ref. 84). The LDA-1/2 approach was recently
used by Pelá et al.85 to model the band gaps of the ternary
group-III nitride alloys wz-AlxGa1−xN, wz-InxGa1−xN, and
wz-AlxIn1−xN. The LDA-1/2 band gaps were found to fit

remarkably well with the experimental results for all studied
alloys. Using the example of polar and nonpolar InN surfaces
Belabbes et al.86 demonstrated that the LDA-1/2 method
allows an approximate computation of accurate QP excitations,
that are on the same level as combined hybrid functional
and GW results, even for extended surface systems. Further
examples of LDA-1/2 studies include the electronic bands
and their alignment in various III-V semiconductors and
their polytypes,87 the energetics of SnO2 surfaces,88 and the
band offsets at AlAs/GaAs and AlxGa1−xAs/GaAs interfaces89

as well as Si/SiO2 interfaces.81 In a nutshell, the LDA-1/2
method provides a promising approach for an approximate
description of QP characteristics of the electronic-structure of
large scale semiconductor and insulator structure models at
the computational cost of conventional (semi)local DFT.

(3) HSE: An alternative approach to an accurate, DFT-based
band-structure description is the use of nonlocal, nonmul-
tiplicative XC potentials to solve a generalized eigenvalue
problem that formally lies outside the KS framework.37,38

Especially nonlocal hybrid functionals, which replace some
fraction of (semi)local DFT exchange by (Hartree-)Fock
(also exact) exchange energy (e.g., PBE059,63,90,91), have been
applied quite successfully in solid state theory. Thereby the
inclusion of an exact-exchange interaction fraction (∼25%)
is not only motivated by the observation of reverse band
gap errors in (semi)local DFT and Hartree-Fock (HF) theory,
but also rationalized by theoretical considerations.92 A class
of modern, extensively applied, hybrid functionals are HSE
(Heyd-Scuseria-Ernzerhof) functionals60,93–95 that restrict the
inclusion of exact Fock exchange EHF

X to short-range contri-
butions. In general, the long-range (LR) exchange interaction
and the correlation energy Ec remain unchanged with respect
to the PBE functional (EPBE

X and EPBE
C ), therefore, a HSE-type

functional exhibits the form

EHSE
XC = αE

HF,SR
X (μ) + (1 − α) E

PBE,SR
X (μ)

+E
PBE,LR
X (μ) + EPBE

C . (8)

Thereby the range separation into LR and short-range (SR)
parts of EHF

X is carried out by a decomposition of the Coulomb
kernel according to

1

r
= erf c (μr)

r︸ ︷︷ ︸
SR

+ erf (μr)

r︸ ︷︷ ︸
LR

. (9)

The parameter α defines the percentage of exact Fock
exchange. In agreement with the original definitions,93–96

we refer to the parameter values α = 0.25, μ = 0.2 Å−1 as
HSE06. The screening parameter μ is not changed throughout
this work. However, since a fixed amount of exact exchange
and a nonvariable screening limit the flexibility of the HSE06
functional, it is a common practice (especially for wide-gap
materials20) to sacrifice the essence of ab initio theory by
searching material optimized values for α and μ.

In general, the use of HSE-type hybrid functionals has
shown significant improvements in the description of elec-
tronic band gaps,60,97–100 band offsets,20,101 defect levels,102–104

and the prediction of accurate direct-indirect band gap
crossovers.101 Nevertheless the gain of accuracy increases the
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computational cost by two orders of magnitude compared to
conventional (semi)local DFT.

(4) GW : The final approach applied in this study to include
many-particle interactions beyond Kohn-Sham-like single-
particle mean-field theories is based on MBPT, as formulated
by Hedin.66,67 MBPT formally recast the solution of the
electronic-structure problem into a closed fundamental system
of five coupled integral equations for the Greens function
G, the screened Coulomb interaction W , the self-energy
�, the polarization propagator P , and a vertex function �.
Due to the complicated nature of the functional dependence
of � = � [G] on G, Hedin’s equations have to be solved
self-consistently. In practice, these equations are decoupled by
narrowing the vertex corrections to zeroth order as originally
proposed by Hedin67 (i.e., GWA). Within GWA, the energies
E

QP
nk of single excited (quasi)electrons and (quasi)holes, as

experimentally accessible in direct and inverse photoemission
spectroscopy experiments, are obtained as solutions to a set
of nonlinear differential equations,67,105 that are found to be
similar to the Kohn-Sham equations:(

T + Vext + VH − ε
QP
nk

)
�nk (r)

+
∫

d3r′�
(
r,r ′,εQP

nk

)
�nk(r′) = 0. (10)

Here, the Kohn-Sham XC functional V KS
xc (r) is replaced by the

nonlocal energy-dependent self-energy operator �(r,r ′,εQP
nk )

that carries the information of the many-body interactions.
The GWA self-energy, given to first order in W , is evaluated
as a convolution integral of the single-particle Greens function
G and the dynamically screened Coulomb interaction W ,

�(r,r ′,ω) = i

4π

∫ ∞

−∞
dω′eiω′δG(r,r′,ω + ω′)W (r,r′,ω′).

(11)
Here, δ is a infinitesimal positive number. In the most common
GWA calculations, DFT eigenvalues and wave functions are
used as input for the calculation of QP energy correction within
a first-order perturbation theory approach (i.e., G0W0). The
first-order energy corrections (so-called QP shifts) �ε

QP
nk are

given by

�ε
QP
nk = Znk Re

〈
�KS

nk

∣∣� (
εKS
nk

) − V KS
xc

∣∣�KS
nk

〉
, (12)

where the perturbation is given by the difference between the
self-energy and the DFT XC functional and Znk represents a
renormalization factor.38,105–107 G0W0 calculations systemati-
cally improve the DFT band gaps.83,108,109 However, this per-
turbative approach shows a strong dependence on the choice
of the initial wave functions that can be taken from (semi)local
DFT, hybrid functional DFT or other approaches.20,38,110

Effects of self-consistency within the GW approach are
considered partially by repeated calculation of QP corrections
with updated QP eigenvalues in G or both G and W .38,107

The according approaches are known as, GW0 and GW . For
numerous semiconductors, GW0 QP energies are very close
to experimental results.83,107 Nevertheless, QP corrections
in the various self-consistent approaches do not necessarily
improve the band gap description over the computationally less
demanding non-self-consistent G0W0 approaches. Especially
the fully self-consistent GW QP energies tend to overestimate

the experimental values for electronic band gaps.38,83 Aside
from self-consistency with respect to QP energies, also the
one-electron orbitals, initialized by various choices of Kohn-
Sham DFT orbitals, may be updated self-consistenly.82,84,111

Again, updated QP energies and one-electron orbitals may
be considered in the Green function G only (i.e., scGW0) or
in G and the screened Coulomb potential W (i.e., scGW ).
Since improvement over single shot G0W0 with carefully
selected initial DFT one-electron orbitals are sparse in the
self-consistency schemes above, it has been stated that the
inclusion of an attractive electron-hole interaction (i.e., vertex
corrections) might be the next systematic improvement over
the various GW schemes applied hitherto.75,84,112 In practice,
even non-self-consistent G0W0 calculations show a prohibitive
computational cost for larger unit cells of, e.g., surfaces
or alloys by even surpassing the computational demands of
hybrid-functional approaches.

Obviously, a detailed knowledge of the performance of the
approaches above with respect to various material character-
istics is of fundamental interest. In particular, given that the
computational expense of these approaches increases from
standard (semi)local DFT equivalent cost by two to three
orders of magnitude in case of hybrid-functional DFT or the
even more sophisticated GW QP theories.

B. Alloy modeling

In order to simulate the substitutional disorder of the
ternary semiconductor compounds, we adopted two different
strategies both aiming at an adequate single unit-cell rep-
resentation of the alloys. On the one hand, we generated
cubic 8, 64, and 216 atom unit cells (labeled by RAND) with
randomly occupied cation sublattices to study the influence of
the artificially introduced system size dependent periodicity
errors. We compare these arbitrary representations of the
random alloys to special quasirandom structures (SQSs)
constructed according to Zunger (see Refs. 33 and 40). A
SQS is designed to mimic the structural correlations of the
perfectly random alloy as closely as possible within the
most relevant lowest order structure correlations. Thereby
the basic assumption of the SQS approach is that most
physical properties show a hierarchical dependence on the
interaction distance with clearly dominating short-range (pair)
correlations and negligible pair and multisite correlations at
larger distances. For details on the generation of SQSs, we
refer the reader to the numerous literature.33,40,45 SQSs, with
just a few atoms per unit cell, promise to keep the required
resources of the more elaborate computational schemes within
reasonable limits and to circumvent the problem of scanning
a large number of different lattice configurations to utilize
statistical approaches. Nevertheless, it is worth to note that
alloys are best described by statistical averages on sufficiently
extended unit cells. Ultimately, an answer to the basic question
if a single unit-cell-based approach can be sufficient to char-
acterize stochastic substitutional disorder in an semiconductor
alloy will be closely connected to its chemical composition.
In particular, the extend of the lattice mismatch between the
individual material components and the degree of local atomic
relaxations, will be significant. So far, SQSs have been success-
fully applied to calculate the spatial and electronic structures
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FIG. 4. (Color online) Polyhedra representation of 8, 16, and 32
atom SQS’s unit cell for ternary zb-AlxGa1−xN alloys. Tetrahedral
AlN4 units are displayed in blue and GaN4 units in green. For zb-
Al0.75Ga0.25N, the chemical elements of the zb-Al0.25Ga0.75N cation
sublattice are interchanged. For each SQS, the particular unit cell is
draw as grey lines. The illustrations have been done using VESTA.113

of various binary and multicomponent alloys.38,114–119 An
automated SQSs generation tool is provided by the alloy
theoretic automated toolkit (ATAT).120

Our generated SQSs with 8, 16, and 32 atoms for Al
concentrations of x = 0.25 and 0.5 are displayed in Fig. 4. The
SQSs for x = 0.75 are obtained by interchanging the chemical
elements of the zb-Al0.25Ga0.75N SQS’s cation sublattices.
Details on the SQS unit cells are given in Table II. For all

TABLE II. Details on the basic shape of the generated zb-
AlxGa1−xN SQS unit cells. The lattice vectors are given in units
of azb-Alx Ga1−x N/2 with linearly interpolated alloy lattice constant
according to Eq. (13).

Model x Lattice vectors

SQS 8 0.25/0.75 (0, −1, −1) (−2,0,0) (0,2, −2)
SQS 8 0.5 (−2, −1, −1) (−1, −1, −2) (1, −2,1)
SQS 16 0.25/0.75 (−2,2, −2) (2,2,2) (1,0, −1)
SQS 16 0.5 (2,1, −1) (1,1, −2) (−2,4,2)
SQS 32 0.25/0.75 (1,1, −2) (0, −3, −1) (−4,1, −1)
SQS 32 0.5 (0, −1, −1) (−4,0,0) (0,4, −4)

composition ratios the local atomic relaxations are considered
by separate relaxations of the atomic structure.

To ensure consistency throughout the different numeri-
cal approaches, all bulk calculations are performed at the
experimental zb lattice constants121,122 (azb-AlN = 4.38 Å,
azb-GaN = 4.52 Å). In view of the small lattice mismatch
(∼3%) of the zb-AlN and zb-GaN bulk, the zb-AlxGa1−xN
alloys are constructed assuming a linear Al concentration
dependent lattice constant a(x) = x 4.52 + (1 − x)4.38 Å fol-
lowing Vegard’s law,

azb-AlxGa1−xN = x azb-AlN + (1 − x)azb-GaN. (13)

The validity of Vegard’s law for group-III nitride alloys has
been confirmed experimentally123 for wz-AlxGa1−xN and in
several theoretical studies on zb-AlxGa1−xN.35,36,124 In all
structure models, local atomic relaxations were considered
at the DFT-GGA level applying the Perdew-Becke-Ernzerhof
(PBE)59 XC functional and a force convergence criterion of
0.005 eV/Å.

C. Numerical details

The DFT and GW calculations of this study were per-
formed using the Vienna ab initio simulation package (VASP)
implementations.38,83,84,107,125 An energy cutoff of 400 eV
was used throughout this work to expand the Kohn-Sham
orbitals into plane wave basis sets. The electron-ion inter-
action was described by the projector-augmented wave (PAW)
method.126,127 Throughout this work the Ga3d semicore states
were treated as valence states in the PAW potentials. The
GW calculations for primitive bulk unit cells of zb-AlN and
zb-GaN were carried out with 256 electronic bands and 160
frequency grid points for sampling the dielectric function.
In all partially or fully self-consistent GW calculations, the
one-electron energies and optionally the one-electron orbitals
have been updated eight times to reach QP band gaps that
are converged within an accuracy of 0.01 eV. If not stated
otherwise, the Brillouin zone integration of primitive unit cells
was performed using regular �-centered 8 × 8 × 8 k-point
meshes. This again guarantees the convergence of bulk QP
band gaps within 0.01 eV. In all electronic band-structure
calculations the high-symmetry lines were sampled by 100 k

points. Further details on the parameters used in TB-mBJLDA
und HSE calculations as well as further details on the LDA-1/2
scheme as well as the GW approaches are given below.
The Brillouin zone integration for zb-AlxGa1−xN alloys was
performed by regular �-centered 8 × 8 × 8 and 3 × 3 × 3
k-point sets for cubic 8 and 64 atom unit cells. For cubic 216
atom unit cell, the calculations were restricted to the � point
only. For the more complicated SQS unit cells the k-point
mesh was chosen to match a comparable point density in the
reciprocal space.

All numerical simulations of this study do not include
effects of spin polarization. Without saying, the experimental
transition energies reflect the splitting due to spin-orbit
interaction that is neglected in our calculations. Therefore
we will not make use of explicit electronic state symmetry
labels in the discussion of theoretical and experimental results.
For a detailed discussion of the valence-band splitting due
to spin-orbit coupling in binary group-III bulk nitrides see
Refs. 128 and 129.
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TABLE III. Calculated band gaps of zb-GaN and zb-AlN. Experimental data are taken from
Ref. 22 for the direct and indirect band gaps of zb-AlN and from Ref. 25 for the direct band gap
of zb-GaN. TB-mBJLDA results are given for two optimized c-parameter values. TB-mBJLDA∗

and TB-mBJLDA∗∗ refer to c parameters of c = 1.45 and 1.55. For modified HSE calculations, the
fraction (α) of exact exchange is given. In partially and fully self-consistent GW calculations, the
QP eigenvalues have been updated eight times. In the scGW0 and scGW schemes, also updates of
the one-electron orbitals have been included in the self-consistency cycle. The relative errors of the
calculated band gaps with respect to the experimental values are visualized in Fig. 5. All band gap
values are given in eV.

zb-AlN zb-GaN
Method (�v → Xc) (�v → �c) (�v → �c)

LDA 3.22 4.15 1.68
PBE 3.31 4.12 1.66
TB-mBJLDA∗ (c = 1.45) 5.40 5.78 2.99
TB-mBJLDA∗∗ (c = 1.55) 5.79 6.09 3.29
LDA-1/2 5.34 5.87 3.31
HSE06 4.56 5.50 2.92
mod(32)HSE (α = 0.32) 4.92 5.90 3.30
mod(39)HSE (α = 0.39) 5.29 6.30 3.69
G0W0@PBE 4.59 5.64 2.92
G0W0@HSE06 5.16 6.25 3.47
GW 0@PBE 5.09 6.04 3.03
GW@PBE 5.57 6.53 3.37
scGW 0@PBE 5.47 6.25 3.34
scGW@PBE 5.42 6.30 3.71

exp 5.3 (295 K) 5.9 (295 K) 3.3 (10 K)

D. Band gaps of zb-AlN and zb-GaN

In order to find an accurate description of the zb-AlxGa1−xN
alloys, we start our discussion of the numerical approaches by
a comparison of the zb-AlN and zb-GaN bulk-band structure
characteristics. In Table III, the absolute values of the funda-
mental direct and indirect energy transitions are summerized
for both materials. Additionally, Fig. 5 visualizes the relative
percentaged band gap errors (Ecalc

gap − E
exp
gap)/Eexp

gap × 100 for all
approaches.

The use of the LDA and the semilocal PBE functional
yields quite similar band gaps. For both semiconductors,
the calculated (semi)local band gaps show the expected
characteristic underestimation. In case of zb-AlN, the direct
band gap is underestimated by ∼39% and the indirect band gap
by ∼30%. For zb-GaN, this underestimation actually increases
to almost 50%. Larger differences between DFT-LDA and
DFT-PBE results, occasionally reported, might arise from the
differences in the equilibrium lattice constants of zb-AlN and
zb-GaN.

The use of the TB-mBJLDA potential to calculate band
gap energies drastically increases the BGs towards their
experimental size. However, self-consistently determined c

parameters (not listed in Table III) of czb-AlN = 1.29 and
czb-GaN = 1.33 still show notably underestimated band gaps
of Ezb-AlN

gap (�v → Xc) = 4.81 eV, Ezb-AlN
gap (�v → �c) = 5.25 eV,

and Ezb-GaN
gap (�v → �c) = 2.66 eV. This tendency has already

been reported earlier.73,75 The TB-mBJLDA band gap in-
creases monotonically with increasing the c parameter, and c

can thus be adjusted separately for each material. The optimal

choice of c for zb-GaN is c ≈ 1.55 (labeled as TB-mBJLDA∗∗)
to reproduce the experimental band gap. For the same value of
c the zb-AlN band gaps are overestimated by ∼9% and ∼3%
for the indirect and direct band gaps. In case of zb-AlN we
searched for a c parameter that equally improves the indirect
and direct band gap. For c ≈ 1.45 (labeled as TB-mBJLDA∗),
we obtain band gaps of Ezb-AlN

gap (�v → Xc) = 5.40 eV and
Ezb-AlN

gap (�v → �c) = 5.78 eV. The error for both zb-AlN band
gaps is below ∼2%. Nevertheless, the reverse sign of the errors
shows that this is the best simultaneous description of the
indirect and direct band gaps. The c parameter optimized for
zb-AlN leads to a band gap underestimated of ∼9% for zb-
GaN. One interesting property of the TB-mBJLDA potential
is that the increase of the c parameter systematically reduces
the difference between the indirect and direct band gaps of
zb-AlN. For c = 1, we obtain a ratio of Ezb-AlN

gap (�v → Xc)/
Ezb-AlN

gap (�v → �c) = 0.84 for c = 1.6 this value increases to
Ezb-AlN

gap (�v → Xc)/Ezb-AlN
gap (�v → �c) = 0.96.

The calculated LDA-1/2 band gaps of Ezb-AlN
gap

(�v → Xc) = 5.34 eV, Ezb-AlN
gap (�v → �c) = 5.87 eV, and

Ezb-GaN
gap (�v → �c) = 3.31 eV are an astonishing result. The

relative error is significantly below 1% for all band gaps.
Therefore also the ratio between the direct and the indirect
band gap of zb-AlN is accurately reproduced. This feature
singles out the LDA-1/2 approach from all other numerical
approaches applied in this study, especially since these at least
need separately adjusted parameters for both binary materials
to reach the same accuracy. As stated above, these results were
obtained by adding self-energy correction potentials to the N2p
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FIG. 5. (Color online) Relative percentaged errors (Ecalc
gap − E

exp
gap)/Eexp

gap 100 of the calculated direct �v → �c and indirect �v → Xc band
gaps of zb-AlN and the direct zb-GaN band gap. TB-mBJLDA∗ and TB-mBJLDA∗∗ refer to c parameters of c = 1.45 and 1.55. For HSE-type
calculations, the used fraction of exact exchange is indicated in brackets. In partially and fully self-consistent GW calculations, the QP
eigenvalues have been updated eight times to reach self-consistency. In the scGW0 and scGW schemes, also updates of the one-electron orbitals
have been considered. The absolute band gap values corresponding to this diagrammatic representation are summarized in Table III.

states for zb-AlN and to the N2p and Ga3d states for zb-GaN.
The LDA-1/2 band gaps are predominantly influenced by
self-energy corrections to the N2p states. Considering only the
N2p state self-energy corrections for calculations on zb-GaN
results in a slightly smaller band gap of Ezb-GaN

gap (�v → �c) =
3.15 eV. Additional Al2p self-energy corrections increase
the zb-AlN band gaps to Ezb-AlN

gap (�v → Xc) = 5.42 eV and
Ezb-AlN

gap (�v → �c) = 6.05 eV.
Next, we consider the band gap description in hybrid-

functional DFT. Starting from the original HSE06 param-
eters, we find that a 25% exact SR exchange contribution,
underestimates the band gaps between ∼7% and ∼14%. This
is consistent with preceding studies that reported the best
HSE performance for small and midgap semiconductors and
a band gap underestimation for wide-gap semiconductors
and insulators.60,97,98 We systematically increased the exact
exchange fraction α [cf. Eq. (8)] in our modified HSE-type
hybrid functional calculations to determine the value for α

best suited to reproduce the experimental data. 32% exact
exchange [mod(32)HSE] exactly reproduces the direct band
gaps of both bulk material. Simultaneously, the indirect zb-
AlN band gap of Ezb-AlN

gap (�v → Xc) = 4.92 eV shows an
∼7% underestimation of the reported experimental value.
The indirect band gap of zb-AlN is not reproduced until a
Fock exchange fraction of ∼39% [mod(39)HSE] is used. The
difference of the indirect and direct zb-AlN band gaps is close
to 1 eV independently of the exact-exchange fraction thus
above the 0.6 eV difference between the experimental values.
Based on these observations it seems reasonable to introduce
a composition-dependent exact exchange fraction in the HSE
hybrid-functional description of the ternary zb-AlxGa1−xN
alloys.

Finally, we address the manifold of GWA based QP
theory approaches starting with the non-self-consistent G0W0

results obtained in first order perturbation theory according
to Eq. (12). G0W0 QP corrections, obtained from DFT-PBE
one-electron orbitals (i.e., G0W0@PBE), increase the DFT
band gaps to values very similar to the HSE06 results. A
G0W0@PBE band gap underestimation between ∼4% and
∼13% is observed. Since the results of the non-self-consistent

GWA critically depend on the initial wavefunctions, one-
electron orbitals from HSE hybrid-functional calculations
are a significantly improved basis to evaluate the QP
shifts. Consequently, the G0W0@HSE06 QP band gaps of
Ezb-AlN

gap (�v → Xc) = 5.16 eV, Ezb-AlN
gap (�v → �c) = 6.25 eV,

and Ezb-GaN
gap (�v → �c) = 3.47 eV are significantly closer

to the fundamental experimental band gaps within an error
range from ∼−3% to ∼6%. Thereby, the direct �v → �c

band gaps are overestimated while the indirect zb-AlN band
gap is still underestimated. With 1.09 eV the difference
of indirect and direct zb-AlN band gap energies is close
to the results of hybrid-functional DFT. Notably, the direct
G0W0@HSE06 QP band gap exactly corresponds to the
fundamental (direct) band gap of wz-AlN.130 The results of
the various self-consistent GW schemes are quite inconclusive
with relative band gap errors between ∼−8% and ∼12%. No
systematic trend in the QP band gaps is found. The partial
inclusion of self-consistency in the scGW0@PBE scheme is
the only scheme that generates improved band gap data for
the two materials considered in this study. The calculated
band gaps of Ezb-AlN

gap (�v → Xc) = 5.47 eV, Ezb-AlN
gap (�v →

�c) = 6.25 eV, and Ezb-GaN
gap (�v → �c) = 3.34 eV overes-

timate the experimental gaps by ∼1% to ∼6%. Another
important observation is the relative close agreement (<
0.13 eV) between the mod(39)HSE result and the QP
band gaps obtained by fully self-consistent scGW@PBE
calculations. This accordance implies two things. On the
one hand, HSE-type hybrid functionals can be adjusted
to reach even the QP band gap accuracy of sophisticated
GW schemes. On the other hand, the mod(39)HSE wave
functions are expected to be very close to the true QP wave
functions. Summarizing, the results from the self-consistent
GW approaches, even the best results represent only marginal
improvements over the G0W0@HSE06 results. Further im-
provements most likely require the inclusion of additional
vertex corrections to include the electron-hole interaction, that
is neglected in all GWA schemes, into the self-consistency
cycle.75,84,112 Considering the lower computational cost, non-
self-consistent G0W0 corrections obtained from high-quality
(hybrid-functional DFT) one-electron orbitals, that follow the
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originally intended idea of a perturbative approach, probably
still represent a very meaningful approach to obtain reliable QP
energies.

E. Band structure of zb-AlN and zb-GaN

In order to compare the electronic structure beyond the
fundamental direct and indirect band gap transitions, we
have visualized the TB-mBJLDA, LDA-1/2, modHSE, and
G0W0@HSE06 band structures in Fig. 6. For the TB-mBJLDA
and modHSE band structures the fundamental band gap
optimized c parameters and exact exchange fractions were
used. The G0W0@HSE06 QP band structure (see gray dots)
is taken as reference for QP energies. Ignoring the strongly
bound energy states that originate from the Ga3d semicore
and N2s states for a moment, our modified HSE-type hybrid-
functional calculations show an excellent agreement with the
G0W0@HSE06 band structures for valence and conduction
band states in both materials. This result again justifies
the adjustment of the exact-exchange fraction in HSE-type
hybrid-functional calculations to reproduce the GW QP band
structure. As already indicted by the fundamental band gaps,
the TB-mBJLDA and LDA-1/2 approaches both provide rea-
sonable approximations to the QP band structure. Differences
between TB-mBJLDA as well as LDA-1/2 energy bands and
the G0W0@HSE06 band structures increase significantly with
the excitation energy as well as the reciprocal lattice vector.
This affects band-structure characteristics such as the effective
masses. These deviations also affect the size and relative
differences of energy transitions, as indicated by the lowest
valence-to-conduction band transitions at the �, X, and L

points sketched in Fig. 6. Differences are in particular obvious
with respect to the modHSE band structures.

Compared to the G0W0@HSE06 QP energies, dramatic
deviations are found for the low lying, stronger localized
energy states. The N2s valence-band states in zb-AlN are
located between −13.3 and −16.1 eV in G0W0@HSE06. TB-
mBJLDA surprisingly well reproduces the QP N2s band with
maximal differences of ∼0.7 eV (at the � point). Comparing
the band energies at the � point, the LDA-1/2 calculation
overestimates the position of the N2s band energy by ∼1.7 eV.
Equivalently, the mod(39)HSE band structure shows an N2s

band underestimation of ∼1.1 eV. From G0W0@HSE06
calculations the position of the Ga3d bands in zb-GaN is
found between ∼−17 and ∼−18 eV. The N2s band is located
at ∼−18 eV at the � point and thus partially hybridized
with the Ga3d states around the � point. The N2s states at
−13.7 eV are well separated from the Ga3d states around
the W point. In general, the character of the s-d coupling
of N2s and Ga3d semicore states depends critical on the energy
differences between both states. Ding et al.131 used angle-
resolved photoelectron spectroscopy to study the valence band
structure of zb-GaN. In the high binding-energy region, a sharp
peak at 17.7 eV has been assigned to the Ga3d states, while a
second less intense peak at 14.2 eV binding energy belongs to
the N2s states. The photoemission data further indicate a very
clear separation of Ga3d and N2s states by 3.5 eV and a N2s band
width of 0.65 eV. Considering these experimental findings, our
G0W0@HSE06 QP energies are in good agreement with the
experiment except for the hybridization around the � point that

might be an artifact from the initial HSE06 hybrid-functional
DFT wave functions.

The mod(39)HSE calculations approximately place the
Ga3d semicore and N2s energy states in the same energy
region (−13.3 to −17.8 eV) as obtained from G0W0@HSE06.
In LDA-1/2, the occupied Ga3d and N2s states show the
same qualitative result, but shifted to higher energies. Even
the TB-mBJLDA energy bands show roughly the same
band characteristics. All these calculations are affected by a
hybridization of the electronic states that is even stronger than
the hybridization found in the G0W0@HSE06 data. Generally,
in all our calculations the Ga3d and N2s states occupy the
same energy region. Compared to the undisturbed N2s band
in zb-AlN, the Ga3d semicore states in a certain sense cut
the s band of N into two branches that hybridize with the
d sates. Thus one band with partial N2s character is found
below and one above the d-like energy bands. To single out the
effects from using different numerical approaches, we should
predominantly compare the position of the inert Ga3d energy
bands that are not notably affected by hybridization and that
show the expected low-energy dispersion of a localized d band.
The XC functional effect on the N2s states could be estimated
from the energy states at the W point. The mod(39)HSE QP
calculation places the (inert) d bands at ∼ −16.0 eV, almost
2 eV above the G0W0@HSE06 d bands. For the N2s states at
−13.3 eV, the upward shift with respect to the G0W0@HSE06
position is about 0.5 eV. In LDA-1/2, the Ga3d semicore states
are shifted by > 4 eV to ∼ −13.7 eV and the anion N2s states
by ∼ 2 eV to −11.3 eV. The TB-mBJLDA calculation finds
the N2s states at the same energy as in LDA-1/2. The Ga3d

states experience an additional shift of ∼1 eV to ∼−12.6 eV.
Summarizing, our band structure calculations clearly

demonstrate that calculations based on the TB-mBJLDA
potential with a properly adjusted c parameter as well
as the self-energy corrected LDA-1/2 approach allow the
approximate description of QP band gap energies. The overall
band topologies are in reasonable qualitative agreement close
to the band edges. However, the relative differences in the
transition energies at high-symmetry points might be critical
for the description of the direct-indirect band gap crossover.
Furthermore, important band-structure characteristics as the
effective masses might deviate significantly from the QP
result, as reported by other authors.73 The position of the
strongly localized low lying energy states are severely affected
by an artificial hybridization in all applied approaches that
is not seen in the experiment. Even the G0W0@HSE06
QP bands are still hybridized around the � point. HSE-
type calculations reproduce the entire G0W0@HSE06 QP
band structure over a wide-energy range with high accuracy.
Table IV summarizes the lowest band-to-band transition
energies of zb-AlN and zb-GaN at the �, X, and L points
that are relevant for the interpretation of experimental data in
the following section.

IV. BAND GAPS, TRANSITION ENERGIES,
AND DIRECT-INDIRECT CROSSOVER

In order to discuss the band gaps of zb-AlxGa1−xN we have
to be able to identify and label the electronic states of the
alloy consistently, which is not per se a trivial task. To begin
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FIG. 6. (Color online) Band structure of zb-AlN and zb-GaN calculated by the TB-MBJLDA meta-GGA potential, the LDA-1/2 technique,
and HSE-type hybrid functionals. TB-mBJLDA∗ and TB-mBJLDA∗∗ refer to optimized c parameters of c = 1.45 and 1.55. For HSE-type
calculations, the used fraction of exact exchange is indicated in brackets. The direct band gaps at the �, L, and X points are indicated. The gray
dots represent G0W0@HSE06 QP energies. The gray dashed lines are guidelines to the eyes.

with, the electronic states of the bulk materials are completely
characterized by a band index, labeling the corresponding
valence as well as conduction band, and a k-point index,
labeling the position of the electronic state in the irreducible
part of the Brillouin zone. Additionally, we have information
about the symmetry of the corresponding one-electron orbitals

and thus the degeneracy of the corresponding eigenvalues.
Type (direct/indirect) and size of the fundamental band gap
are commonly determined by band structure calculations on
a primitive unit cell of the periodic crystal lattice. Generally,
the use of nonprimitive unit cells in the numerical description
of the binary bulk materials gives rise to zone folding effects
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TABLE IV. Summary of the two lowest valence-to-conduction band transitions at the �, X, and L high-symmetry points corresponding to
the band gap data visualized in Fig. 6. Also the indirect �v → Xc and �v → Lc band gaps are included. TB-mBJLDA∗ and TB-mBJLDA∗∗

refer to optimized c parameters of c = 1.45 and 1.55. For HSE-type calculations the fraction of exact exchange is indicated in brackets. All
transition energies are given in eV.

TB-mBJLDA∗ TB-mBJLDA∗∗ LDA-1/2 mod(39)HSE mod(32)HSE G0W0@HSE06

Band transition zb-AlN zb-GaN zb-AlN zb-GaN zb-AlN zb-GaN zb-AlN zb-GaN

�v → �c 5.78 3.29 5.87 3.31 6.30 3.30 6.25 3.47
�v → �c2 14.27 12.62 13.80 11.78 15.12 12.34 14.95 12.49
Xv → Xc 6.97 7.59 6.86 7.49 7.34 7.73 7.36 7.65
Xv → Xc2 11.92 11.31 11.58 10.24 12.97 11.52 13.04 11.65
Lv → Lc 9.53 7.55 9.33 6.97 10.27 7.52 10.21 7.65
Lv → Lc2 12.36 11.36 11.72 10.81 13.19 11.94 13.08 12.05
�v → Xc 5.40 5.25 5.34 5.17 5.29 4.78 5.16 4.77
�v → Lc 9.08 6.72 8.90 6.13 9.70 6.47 9.64 6.61

that map one or more irreducible k points onto k points in
the new Brillouin zone. For instance, the threefold degenerate
Xc states of zb-AlN in the primitive zinc-blende Brillouin
zone are mapped onto the � point in a cubic unit-cell
representation, but this is a pure zone-folding effect, the
optical dipole-matrix elements remain unchanged and there
is no influence on the fundamental direct/indirect nature of the
electronic band gap. In contrast, the substitutional disorder,
and to a very small extend the topological disorder due to
local atomic relaxations, in a multicomponent semiconductor
alloy lift the strict long-range order of the bulk material.
Thus the Bloch theorem is not strictly valid, k is not a
good quantum number anymore and the band gaps of the
semiconductor alloy will, strictly speaking, become always
direct. However, in contrast to a truly amorphous material,
the one-electron orbitals in the substitutionally disordered
crystal will remain similar to the states in the bulk material
even close to the band edges. Therefore the nature of the
alloy band gap will be different if the electronic states at the
band edges are similar to electronic states forming a direct
or an indirect bulk band gap. For zb-AlxGa1−xN alloys in
the Al-rich concentration range, the conduction band edge (at
the � point) is formed by electronic states similar to the Xc

states of zb-AlN. This band gap is only pseudodirect, since
the dipole-matrix elements of such a band gap will always
be similar to the indirect bulk transitions and thus smaller
than those of a truly direct transition. It is common to reduce
the terminology to describe the alloy completely to that of
the bulk semiconductors, as already done in the introductory
section. In the ternary zb-AlxGa1−xN alloys, the electronic
states, responsible for the band gaps in the pure bulk phases,
intermix with respect to the relative Ga : Al concentration. It
is possible to trace the bulklike electronic states throughout
the whole composition range of the ternary alloy. In general,
the critical point of the cation concentration that marks the
transition of the fundamental alloy band gap from involving
either the bulklike �c conduction band states originating from
zb-GaN or the bulklike Xc conduction band states of zb-AlN is
called a direct-indirect band gap crossing/crossover instead of
the more precise term direct-to-pseudodirect transition. The
influence of alloy disorder is ultimately reflected in a lifted
degeneracy of electronic states that are degenerate in zb-AlN

and zb-GaN. In a unit-cell approach, the degree of disorder and
thus the degeneracy of the electronic states is directly related to
a particular lattice configuration (i.e., local atomic structure) in
a specific unit cell. To minimize the artificial periodicity errors,
we take the average of the originally degenerate bulk-energy
levels to extract the alloy band gaps.

In Fig. 7, the calculated zb-AlxGa1−xN band gaps for
eight atom unit cells (i.e., RAND 8) are plotted for various
numerical approaches. The visualized band gap data especially
confirm the relative close agreement between band gaps
from non-self-consistent GW and HSE-type hybrid-functional
DFT calculations over the entire composition range of zb-
AlxGa1−xN. In detail, the band gaps obtained from the
unmodified HSE06 hybrid functional agree very well with
G0W0@PBE QP band gaps. G0W0@HSE06 QP gaps are
found to be in excellent agreement with the band gaps obtained
from our modified HSE-type calculations. In the modHSE
approach, the exact-exchange fraction α in the alloy is linearly

FIG. 7. (Color online) Fundamental alloy band gaps of zb-
AlxGa1−xN for cubic eigth atom unit cells (RAND 8). Symbols
represent calculated values. Solid and dotted lines represent nonlinear
fits according to Eq. (1) for the direct �v → �c type and indirect
�v → Xc type alloy band gaps. In modHSE calculations, the exact
exchange fraction was linearly interpolated between αAlN = 0.39 and
αGaN = 0.32.
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TABLE V. Bowing parameters (in eV) of the direct �v → �c type and indirect �v → Xc type
zb-AlxGa1−xN alloy band gaps [calculated via Eq. (1)] as well as critical Al concentration at the
direct-indirect band gap crossover point.

Simulation method Bowing parameter (eV)
Crossing

Method Unit cell b� bX x

PBE RAND 8 0.17 −0.65 0.74
RAND 64 0.50 −0.06 0.72
RAND 216 0.56 −0.02 0.72
SQS 8 0.15 −0.65 0.74
SQS 16 0.50 −0.06 0.72
SQS 32 0.55 −0.03 0.72

TB-mBJLDA RAND 8 0.69 −0.21 0.88
RAND 64 1.12 0.29 0.87
RAND 216 1.17 0.30 0.88

LDA-1/2 RAND 8 0.60 −0.30 0.83
RAND 64 0.86 0.08 0.82
RAND 216 0.93 0.07 0.83

HSE06 RAND 8 0.22 −0.58 0.69
RAND 64 0.53 −0.01 0.67
RAND 216 0.59 0.01 0.69
SQS 8 0.30 −0.35 0.68
SQS 16 0.47 −0.08 0.67
SQS 32 0.59 0.02 0.69

mod(32)HSE RAND 8 0.21 −0.55 0.67
RAND 64 0.54 0.00 0.65
RAND 216 0.60 0.04 0.65

modHSE RAND 8 0.40 −0.33 0.66
RAND 64 0.53 0.05 0.64
RAND 216 0.59 0.09 0.64

G0W0@PBE RAND 8 0.11 −0.55 0.61
G0W0@HSE06 RAND 8 0.16 −0.50 0.60
G0W0@HSE06 SQS 8 0.11 −0.64 0.61
exp 0.85 0.01 0.71

interpolated between the optimized values of αAlN = 0.39 for
zb-AlN and αGaN = 0.32 for zb-GaN. Thus a properly adjusted
HSE-type functional allows us to calculate accurate QP band
gaps even for the large unit-cell alloys that are computationally
beyond the scope of even non-self-consistent GW calculations.

Subsequently, we discuss the Al-dependent bowing char-
acteristics of the energy transitions in zb-AlxGa1−xN alloys
according to Eq. (1). All calculated bowing parameters,
as well as the direct-indirect transition points are summa-
rized in Table V. From the experimental transition energies
(cf. Fig. 2), a bowing parameter of b� = 0.85 eV for the direct
�v → �c type band gap is obtained. In addition, no significant
bowing is indicated in the Xv → Xc transition energies. In
anticipation of the alignment of the E2 transition energies
discussed below, the indirect �v → Xc type alloy band gap
will preserve this characteristic, almost linear, dependence on
the alloy composition.

Independent of the numerical methodology, the alloy band
gaps of all eight atom unit-cell calculations visualized in
Fig. 7 share common bowing characteristics. The direct
�v → �c type band gaps in the zb-AlxGa1−xN alloys show
an increase with Al content that only weakly differs from
a linear dependence as indicated by bowing parameters b�

between 0.11 and 0.22 eV, which significantly underestimate
the experimental value. Only in the modHSE calculations a

notable downward bowing of 0.40 eV is indicated. The indirect
�v → Xc type band gap is characterized by a notable upward
bowing with a bX parameter between −0.50 and −0.65 eV,
which is in disagreement with the linear dependence observed
in the experimental data. Again a slightly improved value of
bX = −0.33 eV is obtained by modHSE calculations. As we
will see in a moment, these bowing parameters are affected
by the poor alloy description through cubic eight atom unit
cells that are affected by spurious symmetry. The nonlinear
curve fits in Fig. 7 further illustrate that an increased exact
exchange fraction, changes the distinct downward bending
at higher Al content in LDA/GGA DFT to a more constant
progression in hybrid-functional DFT and G0W0 calculations.
This directly influences the direct-indirect band gap transition
that occurs in the high Al concentration range. In LDA and
PBE DFT the transition concentration is x = 0.70 and 0.74,
respectively. In HSE hybrid-functional DFT the critical Al
content is found to decrease for a higher exact exchange
fraction from x = 0.69 in conventional HSE06 to x = 0.66
in modHSE. The G0W0 QP results provide an even lower
transition concentration of ∼0.6. From the bowing parameters
listed in Table V it is further obvious that both the TB-mBJLDA
functional and the LDA-1/2 technique lead to significantly
larger (more positive, less negative) bowing parameters that
are closer to the experimental observations. Aside from the
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FIG. 8. (Color online) Calculated DFT-HSE06 alloy band gaps
of zb-AlxGa1−xN for various SQS and randomly occupied cubic
unit-cell structure models (RAND). The symbols represent calculated
values. Solid and dotted lines represent trend lines of the direct
�v → �c type and indirect �v → Xc type band gaps.

modHSE results, the bowing parameters increase by roughly
0.4 eV in TB-mBJLDA as well as LDA-1/2. As argued below,
this assumed improvement rather represents a fortuitous than
a systematic improvement by partially canceling the small
unit-cell-induced periodicity errors with an overestimation of
the bowing parameters.

In order to identify the artificial periodicity errors in-
troduced by the small unit-cell representation of the zb-
AlxGa1−xN alloys, the HSE06 band gaps for all different
structure models are displayed in Fig. 8. It is obvious
that the Al-content dependent bowing characteristics of the
alloy band gaps are significantly influenced by the unit-cell
representation. Especially the indirect alloy band gap, obtained
from the Xc-type energy states, is affected by such unit-cell
periodicity errors. At x = 0.5, the difference between eight
atom unit-cell calculations and calculations on the RAND 216
and SQS 32 alloy unit cells is largest (∼0.15 eV). This
behavior directly reflects the artificial alloy symmetry, which is
necessarily largest for a 50:50 cation ratio due to the formation
of a superlattice-type zb-AlN/GaN alloy. The periodicity
error is slightly reduced by the SQS 8 structure that can
be characterized as a staggered superlattice-type alloy [see
Fig. 4(b)]. The SQS 16 alloy band gaps show just marginal
deviations from the RAND 216 and SQS 32 alloy unit-cell
results. The RAND 216, and SQS 32 unit-cell representations
of the zb-AlxGa1−xN alloy basically show identical band gap
energies and fitting-curve characteristics. For both structure
models, a notable bowing of the direct �v → �c type alloy
band gap of b� = 0.59 eV is obtained. The direct �v → Xc

type band gap shows a nearly linear increase over the complete
composition range. This linear dependence nicely matches the
linear dependence indicated in the experimental data. For both
alloy representations (RAND and SQS), the direct-indirect
band gap crossover is found at x = 0.69. The RAND 64
unit-cell calculations show band gap deviations � 0.02 eV
from the RAND 216 and SQS 32 results and the nonlinear
fitted band gap curves are almost identical to the results of

RAND 216 and SQS 32 unit cells. Also the Al content at
the direct-indirect band gap crossover of x = 0.67 is only
marginally affected.

In summary, the unit-cell representation of the randomly
occupied zb-AlxGa1−xN alloy suffers from notable periodicity
errors for very small (eight atom) unit cells. This observation
affects both unit-cell modeling approaches, even if the SQS 8
representation slightly reduces the periodicity errors. Com-
pared to the largest 216 atom unit cells, the 32 atom SQS unit
cells allow band gap calculations with a significantly reduced
number of atoms without any notable loss of accuracy. The
modeling of the zb-AlxGa1−xN alloy seems to benefit signif-
icantly from the similar lattice characteristics of zb-AlN and
zb-GaN. The direct-indirect band gap crossover concentration
seems to be quite insensitive to the specific unit-cell representa-
tion, since both the direct-type and the indirect-type alloy band
gap are equally affected by the artificially introduced lattice
periodicity. In fact, the differences in the direct-indirect band
gap crossing point between eight atom unit cells and the 32
atom SQSs as well as the RAND 216 unit cells never exceeds
0.02 (cf. Table V) for the various numerical approaches.
Thus even the critical Al concentrations for the direct-indirect
crossing from eight atom unit cells are very reasonable.

While the direct-indirect band gap crossing is weakly
affected by the unit-cell representation, the bowing parameters
show a significant dependence on the alloy modeling. The
unit-cell representation related trends in the bowing param-
eters, discussed above for the conventional HSE06 hybrid
functional, are found to be qualitatively very similar in the
other numerical approaches. The more accurate (i.e., less
symmetric and more random) alloy representation always
increases the downward bowing b� of the direct �v → �c type
alloy band gap. The smallest increase (0.19 eV) is found in
the modHSE approach. However, modHSE already predicted
a notable bowing for eight atom unit cells. For the other
XC functionals b� increases between 0.29 eV (HSE06, SQS
unit cells) and 0.48 eV (TB-mBJLDA, RAND unit cells).
For LDA-1/2 and TB-mBJLDA, the increase of the bowing
parameter even results in an overestimation of the experimental
bowing parameter of b� = 0.85 eV by 0.08 eV in LDA-1/2 and
0.32 eV in TB-mBJLDA. Alongside the observed increase of
the �v → �c type gap for all XC functionals, the indirect
�v → Xc type alloy band gap shows an even stronger increase
(between 0.37 eV in HSE06 and 0.63 eV in PBE) of the
bowing parameter bX. While the results of eight atom unit-cell
calculations indicate a notable upward bowing by negative
values of bX for all numerical approaches, the larger alloy
unit cells reproduce the expected linear dependence on x very
well. With exception of bX = 0.30 eV in TB-mBJLDA, all
numerical approaches yield bowing parameters bX between
−0.03 eV (PBE, RAND unit cells) and 0.09 eV (modHSE,
RAND unit cells).

Surprisingly, the comparison of bowing parameters and
direct-indirect crossing points shows that, despite the severe
band gap underestimation, the results of calculations using
the conventional semilocal PBE functional are very close to
the HSE-type hybrid functional data. This indicates that the
fundamental direct and indirect zb-AlxGa1−xN alloy band
gaps are rigidly narrowed in the DFT-PBE approach over
the entire composition range. In contrast, the LDA-1/2 and
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FIG. 9. (Color online) Fundamental alloy band gaps (upper panels) and position of the highest X point valence state (lower panel) of
zb-AlxGa1−xN calculated using (a) the TB-mBJLDA (c parameter linear interpolated between cAlN = 1.45 and cGaN = 1.55), (b) LDA-1/2
(self-energy corrections to N2p and Ga3d states), (c) mod(32)HSE (exact exchange fraction of α = 0.32 for all Al concentrations), and (d)
modHSE (exact exchange fraction linear interpolated between αAlN = 0.39 and αGaN = 0.32) approaches. Diamonds represent the calculated
band gaps for randomly occupied 64 atom unit cells. Crosses indicate the corresponding band gaps from 216 atom unit cells. Solid and dotted
lines represent nonlinear band gap fits according to Eq. (1). b�c

and bXc
are the bowing parameters of the direct �v → �c type and indirect

�v → Xc type alloy band gaps. bXv
is the bowing parameter of the highest valence state at the X point. The position of the direct-indirect band

gap crossover is indicated. Also included (light and dark gray symbols and lines) are the experimental transition energies (aligned according
to the position of the X point valence states visualized in the lower panel) and nonlinear band gap fits.

TB-mBJLDA bowing parameters and the particular direct-
indirect band gap crossing points show significantly larger
deviations from the hybrid functional DFT results than the
DFT-PBE results. Both LDA-1/2 and TB-mBJLDA predict
very high Al concentrations (x = 0.83 in LDA-1/2 and x =
0.88 in TB-mBJLDA) at the direct-indirect band gap crossing.
While LDA-1/2 calculations result in a slight overestimation
of bowing parameters, TB-mBJLDA severely overestimates
the bowing.

In Fig. 9, the �v → �c and �v → Xc type alloy band
gaps of zb-AlxGa1−xN are plotted for the TB-mBJLDA

and LDA-1/2 methods as well as for two HSE-type hybrid
functional approaches. Besides the modHSE approach, a
HSE-type hybrid functional with an exact-exchange frac-
tion of 32% [mod(32)HSE] was used over the entire alloy
composition range. The mod(32)HSE approach allows the
simultaneous exact reproduction of the direct experimental
�v → �c band gaps of zb-AlN and zb-GaN (cf. Table III). The
modHSE approach accurately reproduces the experimental
values of the direct �v → �c band gap of zb-GaN and the
indirect �v → Xc band gap of zb-AlN. The TB-mBJLDA
and LDA-1/2 techniques have already proven to allow the
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approximate calculation of bulk-QP band gaps with high
accuracy.

Figure 9 also contains the position and the corresponding
bowing parameter bXv

of the highest valence state at the X

point (lower panels) over the entire composition range. For
each numerical approach considered in Fig. 9, the X point
valence states have been used to align the measured direct
Xv → Xc type transition energies (cf. E2 transition energies
in Fig. 2) in order to extract the position of the experimental
direct-indirect band gap crossing point.

(1) TB-mBJLDA: The direct-type zb-AlxGa1−xN alloy
band gaps from TB-mBJLDA calculations agree reason-
ably with the experiment, even if the calculated bowing
parameter b� = 1.12 eV significantly exceeds the experi-
mental bowing of b� = 0.85 eV. The indirect-type alloy
band gap is characterized by a downward bowing of bX =
0.29 eV. Compared to the other simulation approaches,
the distinct bowing characteristics seem to be related to
the TB-mBJLDA valence band structure. Also, the highest
X point valence state of zb-AlxGa1−xN shows a notable
bowing of 0.4 eV throughout the alloy [cf. Fig. 9(a)]
that is not reproduced in any other approach. Already in
the TB-mBJLDA band structure calculations for the binary
zinc-blende semiconductors [cf. Figs. 6(a) and 6(b)] a strong
upward shift of the highest valence band around the X point
with respect to the G0W0@HSE06 QP band structure was
indicated. Hence the position of the indirect type alloy band
gap seems to be overestimated over the entire composition
range and the direct-indirect crossover point (x = 0.89) is
shifted to far into the Al rich regime. The TB-mBJLDA
alignment of the experimental transition energies leads to
a very similar crossover point of x = 0.88. Although, the
calculated TB-mBJLDA transition energies are fortuitously
close to the experimental ones, the alignment by TB-mBJLDA
valence states seems to be an improper choice for obtaining
the accurate position of the direct-indirect band gap grossing
point.

(2) LDA-1/2: LDA-1/2 reproduces the experimentally ob-
served �v → �c type alloy band gaps very well. The calculated
bowing of b� = 0.86 eV almost perfectly reproduces the
experimental bowing. The bowing parameter bX = 0.06 eV
indicates an almost linear dependence of the indirect �v → Xc

type alloy band gap on the Al content in LDA-1/2 calculations.
Similar to TB-mBJLDA, the direct-indirect band gap crossover
Al concentration is found at x = 0.82 well in the Al rich
regime. The LDA-1/2 alignment of the experimental transition
energies shifts the crossover point to an even higher Al
concentration of x = 0.92. Analog to TB-mBJLDA the high
Al crossover concentration seems to be the consequence of
artificially high lying X point type valence states, that is as
well indicated in the LDA-1/2 band structure of the binary
semiconductors [cf. Figs. 6(c) and 6(d)]. In fact, the energy
differences between the highest X point type valence band
states are �0.15 eV between TB-mBJLDA and LDA-1/2
calculations. Obviously, the inaccurate reproduction of QP
valence band features in TB-mBJLDA as well as LDA-1/2,
especially the relative energy difference between the highest
� and X point type valence states, seems to fudge the
direct-indirect band gap crossing point. The limitations of
TB-mBJLDA and LDA-1/2 are best illustrated by comparison
to the HSE-type hybrid functional data.

(3) mod(32)HSE: The mod(32)HSE alloy band gaps are
found to be a good approximation of the measured �v → �c

type direct alloy band gaps. However, the calculated bowing
parameter of b� = 0.54 eV underestimates the experimental
bowing parameter notably. The indirect �v → Xc type band
gaps of zb-AlxGa1−xN show a close to linear dependence
(bX = 0.05 eV) on the Al concentration and the direct-
indirect band gap crossing is found at an Al:Ga ratio of 1.54
(x = 0.65). This value is significantly smaller than the
crossover concentrations in TB-mBJLDA and LDA-1/2. Com-
pared to TB-mBJLDA and LDA-1/2 the X point energies,
necessary for the transition energy alignment, are reduced
by roughly 0.5 eV and the bowing of 0.09 eV indicates an
almost linear dependence of the valence states on the alloy
composition. Consequently, the mod(32)HSE alignment of
the experimental transition energies predicts a lower direct-
indirect band gap crossing point of x = 0.73 than obtained
for the TB-mBJLDA and LDA-1/2 alignments. In addition,
an almost linear trend in the indirect �v → Xc type alloy
band gap is indicated after the alignment. In the middle
of the composition range, the indirect �v → Xc band gaps
from the mod(32)HSE approach and the aligned experimental
transition energies agree very well. However, through a slight
mod(32)HSE overestimation of the indirect type gap, in the
Ga-rich composition range and an underestimation at Al-rich
conditions, the slope of the indirect �v → Xc type alloy band
gap with Al content x differs. mod(32)HSE predicts a much
weaker slope than the one actually found for the aligned
experimental transition energies.

(4) modHSE: In modHSE the overall agreement between
the pure theoretical description and the modHSE aligned
experimental data is very reasonable with respect to the
qualitative features, while an overall overestimation of the
experimental data is obvious. Compared to mod(32)HSE,
the indirect �v → Xc type alloy band gap increases almost
linear as well, as indicated by an identical bowing param-
eter of bX = 0.05 eV. However, the slope in modHSE is
much closer to the aligned experimental data. Similar to
mod(32)HSE, the direct-indirect band gap crossing is found
at x = 0.64 in the modHSE calculations and at x = 0.71 from
the aligned experimental transition energies. The common
features between both hybrid functional approaches are also
related to the quite similar description of the valence band
structure. The position of the highest X point valence states
is almost identical in the mod(32)HSE and the mod HSE
approaches. The largest differences occur at Al-rich conditions
and shift the X point valence states in modHSE by � −0.05
eV with respect to the mod(32)HSE energies. Even if there is
a systematic overestimation of all experimentally determined
energy gaps, we expect the modHSE results to be a very
accurate and the most reasonable approximation to the true
QP band structure of zb-AlxGa1−xN alloys. This statement is
based on two observation. On the one hand, we know that the
modHSE calculations reproduce all G0W0@HSE06 QP alloy
gaps within deviations �0.2 eV [cf. Fig. 7 for the alloys and
Figs. 6(e) and 6(f) for the binary semiconductors]. On the other
hand, the modHSE approach reproduces all experimentally
observed features of the alloy band gap dependence on the Al
concentration with an nearly constant offset <200 meV. This
offset is explainable by the difference between calculated QP
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band gaps and experimental band gaps obtained by optical
measurements (→ optical gaps) at room temperature. As
already discussed in the experimental section, temperature
effects, mediated by the electron-phonon coupling, seem
to be responsible for an downward shift of the absorption
edge in zb-AlxGa1−xN alloys of approximately 100 meV as
indicated in Fig. 3 for zb-AlN. To a small extend, also, the
neglected spin-orbit interaction might be responsible for the
observed difference between the experimental and theoretical
data. Finally, the general influence of excitonic contributions
through electron-hole interaction has already been discussed
above in Sec. II.

In summary, TB-mBJLDA and LDA-1/2 allow a rough
estimation of bowing parameters and the band gap crossover
point. Considering the electronic structure characteristics, both
approaches certainly fall into the same accuracy class. In
consideration of the very moderate computational cost, our
results support the use of both approaches to approximate
the QP band structure for large unit cells of alloys, surfaces,
and other nanostructured systems. Choosing between the two
approaches, LDA-1/2 seems to be a slightly more reliable
choice for approximate QP calculations. However, apart from
the compensation of the band gap underestimation, even
conventional semilocal DFT approaches (here, the PBE XC
functional) might outperform the TB-mBJLDA and LDA-
1/2 approaches in predicting electronic structure parameters
as the band gap crossover points in semiconductor alloys.
If reliable QP properties are desired, hybrid-functional ap-
proaches seem to be the best choice to obtain QP band gaps,
band structures, and further characteristics of the electronic
structure, at least if an accurate treatment of self-energy
corrections within MBPT is computationally off-limits. Using
an Al-concentration dependent exact-exchange parameter
in HSE hybrid-functional calculations, the direct �v → �c

type and indirect �v → Xc type zb-AlxGa1−xN alloy band
gaps are given by E

zb-AlxGa1−xN
gap,� (x) = 6.30x + 3.30(1 − x) −

0.53x(1 − x) eV and E
zb-AlxGa1−xN
gap,X (x) = 5.29x + 4.78(1−x) −

0.05x(1 − x) eV, respectively.
In Fig. 10, the measured energy transitions of Fig. 2 are

aligned according to the energy positions of the highest Lv

and Xv valence states (relative to the � point valence band
maximum) taken from modHSE calculations on 64 atom unit
cells. As stated above, also the high-energy optical transitions
show a nonlinear dependence on the Al concentration. The
E1 transition energies, originating from fundamental Lv →
Lc transitions, are in good agreement with the modHSE
data. However, the corresponding bowing parameters are
inconsistent. The experimental data indicate an pronounced
upward bowing of bL = −0.59 eV while the hybrid-functional
data show a strong downward bowing characterized by a
bowing parameter of bL = 1.05 eV. Also, for E

′
0 transitions

from the �v valence band edge to the second conduction band
�c2, a reasonable agreement of theoretical and experimental
transition energies is found while the bowing parameters differ.
Bowing parameters of bE

′
0
= 0.42 eV and bE

′
0
= −0.10 eV

are obtained from analyzing the experimental and modHSE
data, respectively. For the E

′
1 and E

′
2 transition energies, it

is not possible to prove the assumed correspondence to the
high-energy Lv → Lc2 and Xv → Xc2 type energy transitions

FIG. 10. (Color online) Analysis of �, L, and X point type
fundamental (E0, E1, E2) and high energy transitions (E

′
0, E

′
1, E

′
2)

in zb-AlxGa1−xN as a function of the Al content. Symbols indicate
measured transition energies (cf. Fig. 2) aligned according to the
energy positions of the highest Lv and Xvvalence states (relative to the
� point valence band maximum) taken from modHSE calculations
on 64 atom unit cells. Lines represent nonlinear fits according to
Eq. (1). Also included (gray symbols and lines) are the corresponding
modHSE band gap energies and nonlinear curve fits.

(plotted in Fig. 10 as dotted gray lines form modHSE bulk
data). This indicates that these optical transitions do not
directly originate from transitions between high-symmetry
point type electronic states.

We conclude our study by a comparison of our current
experimental data to experimental data on zb-AlxGa1−xN
alloys reported in literature so far. While deviations of earlier
cathodoluminescence measurements to the present data24 are
obvious from Fig. 11, the reflectivity measurement band gap
data of Guerrero et al.23 agree rather well with our measured
alloy band gaps. However, a nonlinear band gap fit of the
Guerrero et al. data gives a notable downward bowing of
b� = 1.18 eV larger than the bowing parameter of b� =
0.85 eV from the present ellipsometry data. In consideration
of the photoluminescence data of Nakadaira and Tanaka26

that show a linear increase of the fundamental alloy band
gaps in the Ga-rich composition region, we have additionally
calculated separate nonlinear modHSE band gap fits for the
direct alloy band gap below and above the direct-indirect band
gap crossover. The band gap up to the band gap crossover
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FIG. 11. (Color online) Experimental alloy band gaps of zb-
AlxGa1−xN. Black and gray triangles represent alloy band gaps
determined from the ellipsometry data of this study. Solid and dotted
lines represent nonlinear fits according to Eq. (1) for the direct
�v → �c type and indirect �v → Xc type band gaps. Reflectivity
data (dots) are reproduced from Ref. 23 and cathodoluminescence
(diamonds) and ellipsometry (squares) data from Ref. 24.

point is approximately linear, as indicated by a bowing of
bGa-rich

� = 0.06 eV. In the Al-rich composition range above
the direct-indirect crossover point, the separately calculated
bowing parameter of bAl-rich

� = 0.11 eV also indicates a
weak downward bowing. Obviously, the nature of the direct
zb-AlxGa1−xN alloy bowing parameter appears significantly
different, if only the Ga-rich or Al-rich regimes are considered.

V. SUMMARY

In this study, we have investigated the nature of the funda-
mental zb-AlxGa1−xN alloy band gap. The existence and value
of the critical direct-indirect band gap crossover as well as
band gap bowing parameters have been determined by a series
of calculations of various levels of sophistication and from
the interpretation of critical points in the dielectric functions
obtained from ellipsometry measurements. Our results show
the interpretation of the measured data depends critically on
the quality of the underlying electronic structure calculation.

The ellipsometry data indicate an downward bowing of
the direct �v → �c type alloy band gap of b� = 0.85 eV. The
indirect �v → Xc type band gap shows a linear dependence on

the Al concentration (bX = 0.01 eV). The direct-indirect band
gap crossover in zb-AlxGa1−xN is found at x = 0.71 after
aligning the experimentally obtained E2 transition energies
according to the highest X point valence-state energies in
hybrid-functional DFT.

We have extensively tested the adaptability of the TB-
mBJLDA and LDA-1/2 approaches to calculate approximate
QP energies. Considering the computational cost which is
comparable to (semi)local DFT calculations, both approaches
allow an efficient description of QP band-structure charac-
teristics. Both approaches give highly accurate bulk-band
gaps for zb-AlN and zb-GaN. Nevertheless, they cannot
compete with the HSE-type hybrid-functional description of
the electronic structure of the zb-AlxGa1−xN alloys. This
is especially reflected in overestimated bowing parameters
and a too high Al concentration at the direct-indirect band
gap crossover. Also, the position of valence bands, crucial
to align the experimentally determined transition energies
in order to determine the direct-indirect band gap crossing,
is severely affected by the use of the more approximate
QP approaches TB-mBJLDA and LDA-1/2. Basically, the
observed properties of the TB-mBJLDA functional and to a
lesser extend the results obtained via the LDA-1/2 technique
reflect the limited adaptability of a purely local XC functional.
Even the semilocal PBE functional might give better bowing
characteristics and a significantly more accurate estimation of
the direct-indirect band gap crossover point. Hybrid functional
DFT with an optimized exact exchange fraction reproduces
QP alloy band gaps from G0W0@HSE06 calculations within
0.2 eV over the entire alloy composition range. The calculated
direct-indirect band gap crossover between x = 0.64 and 0.69
in hybrid functional DFT is found in good agreement with our
experimental findings.
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11B. Daudin, G. Feuillet, J. Hübner, Y. Samson, F. Widmann, A.
Philippe, C. Bru-Chevallier, G. Guillot, E. Bustarret, G. Bentoumi,
and A. Deneuville, J. Appl. Phys. 84, 2295 (1998).
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204111 (2012).
66L. Hedin, Phys. Rev. 139, A796 (1965).
67L. Hedin and S. Lundqvist, in Solid State Physics, edited by

F. Seitz, D. Turnbull, and H. Ehrenreich, Vol. 23 (Academic Press,
New York, 1965).

68F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

195210-20

http://dx.doi.org/10.1038/35022529
http://dx.doi.org/10.1038/35022529
http://dx.doi.org/10.1103/PhysRevB.50.8433
http://dx.doi.org/10.1063/1.368296
http://dx.doi.org/10.1063/1.2357587
http://dx.doi.org/10.1063/1.2357587
http://dx.doi.org/10.1016/j.jcrysgro.2010.01.040
http://dx.doi.org/10.1016/j.jcrysgro.2010.01.040
http://dx.doi.org/10.1002/pssa.200983412
http://dx.doi.org/10.1002/pssa.200983412
http://dx.doi.org/10.1063/1.2764557
http://dx.doi.org/10.1016/j.mejo.2008.07.036
http://dx.doi.org/10.1088/1367-2630/11/12/125023
http://dx.doi.org/10.1088/1367-2630/11/12/125023
http://dx.doi.org/10.1063/1.3455066
http://dx.doi.org/10.1063/1.3455066
http://dx.doi.org/10.1063/1.3488819
http://dx.doi.org/10.1103/PhysRevB.83.195301
http://dx.doi.org/10.1063/1.3224914
http://dx.doi.org/10.1063/1.3224914
http://dx.doi.org/10.1063/1.3239516
http://dx.doi.org/10.1063/1.3239516
http://dx.doi.org/10.1002/1521-396X(200112)188:2<695::AID-PSSA695>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1521-3951(199911)216:1<211::AID-PSSB211>3.0.CO;2-J
http://dx.doi.org/10.1103/PhysRevB.85.155207
http://dx.doi.org/10.1063/1.119003
http://dx.doi.org/10.1063/1.3531996
http://dx.doi.org/10.1063/1.360930
http://dx.doi.org/10.1063/1.360930
http://dx.doi.org/10.1016/0038-1098(95)00700-8
http://dx.doi.org/10.1016/0038-1098(95)00700-8
http://dx.doi.org/10.1103/PhysRevB.48.17841
http://dx.doi.org/10.1103/PhysRevB.48.17841
http://dx.doi.org/10.1103/PhysRevB.27.5169
http://dx.doi.org/10.1103/PhysRevB.27.5169
http://dx.doi.org/10.1103/PhysRevB.41.8240
http://dx.doi.org/10.1103/PhysRevB.41.8240
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.68.075203
http://dx.doi.org/10.1103/PhysRevB.68.075203
http://dx.doi.org/10.1063/1.2060931
http://dx.doi.org/10.1063/1.2060931
http://dx.doi.org/10.1007/s00339-006-3810-y
http://dx.doi.org/10.1103/PhysRevB.53.3764
http://dx.doi.org/10.1103/PhysRevB.53.3764
http://dx.doi.org/10.1103/PhysRevB.76.115109
http://dx.doi.org/10.1063/1.1383282
http://dx.doi.org/10.1063/1.1383282
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevB.73.153309
http://dx.doi.org/10.1140/epjb/e2012-21064-9
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.175.747
http://dx.doi.org/10.1103/PhysRev.175.747
http://dx.doi.org/10.1088/0034-4885/71/4/046501
http://dx.doi.org/10.1088/0034-4885/71/4/046501
http://dx.doi.org/10.1002/pssb.200945200
http://dx.doi.org/10.1002/pssb.200945200
http://dx.doi.org/10.1002/pssb.200541265
http://dx.doi.org/10.1002/pssb.200541265
http://dx.doi.org/10.1103/PhysRevB.84.075218
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevLett.38.1030
http://dx.doi.org/10.1103/PhysRevLett.38.1030
http://dx.doi.org/10.1103/PhysRevB.21.5469
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1063/1.2085170
http://dx.doi.org/10.1063/1.2085170
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevB.56.16021
http://dx.doi.org/10.1063/1.476859
http://dx.doi.org/10.1063/1.3702391
http://dx.doi.org/10.1063/1.3702391
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevLett.102.226401


TRANSITION ENERGIES AND DIRECT-INDIRECT BAND . . . PHYSICAL REVIEW B 87, 195210 (2013)

69A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
70F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19,

196208 (2007).
71A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
72A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 131, 044107

(2009).
73Y.-S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Phys.

Rev. B 82, 205212 (2010).
74D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).
75G. Kresse, M. Marsman, L. E. Hintzsche, and E. Flage-Larsen,

Phys. Rev. B 85, 045205 (2012).
76J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).
77J. F. Janak, Phys. Rev. B 18, 7165 (1978).
78S. Sanna, Th. Frauenheim, and U. Gerstmann, Phys. Rev. B 78,

085201 (2008).
79L. G. Ferreira, M. Marques, and L. K. Teles, AIP Adv. 1, 032119

(2011).
80L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78,

125116 (2008).
81M. Ribeiro, Jr., L. R. C. Fonseca, and L. G. Ferreira, Phys. Rev. B

79, 241312(R) (2009).
82M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96,

226402 (2006).
83M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
84M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 (2007).
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