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Abstract
The complex dielectric function for cubic InN is determined by spectroscopic ellipsometry
from the mid-infrared into the visible spectral region. Films were grown by molecular beam
epitaxy on c-GaN/3C-SiC pseudo-substrates. The high electron densities above 1019 cm−3

cause pronounced Burstein–Moss shifts at the gap. Taking into account the non-parabolicity
and the filling of the conduction band, data analysis yields renormalized band edges between
0.43 and 0.455 eV. Including carrier-induced band-gap renormalization, we estimate a
zero-density band gap of ∼0.595 eV for c-InN which is about 85 meV lower than for
hexagonal InN. Values for the electron effective mass, the static and high-frequency dielectric
constant are reported.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent spectroscopic ellipsometry (SE) [1, 2] and absorption
[3, 4] studies emphasized a low band gap E0 for hexagonal
(h-)InN. Zero-density values at room temperature (RT)
between 0.65 [1, 4] and 0.68 eV [2, 3] were reported. The small
differences are attributed to the use of different approaches for
modeling the spectral dependence around the absorption edge
and whether carrier-induced band-gap renormalization (BGR)
and Burstein–Moss shift (BMS) were taken into account. An
additional uncertainty arises from the determination of the
bulk electron concentration (Ne) in the presence of a strong
surface accumulation layer [5]. The usually employed Hall
measurements yield the sheet electron density (including an
accumulation layer) only from which, with the knowledge
of the layer thickness, a volume concentration is calculated.
Optical [1, 6, 7] and electrical [4] studies indicate, however,
that Ne in the bulk-like part of the sample is considerably lower
than those obtained from the Hall studies.

Much less is known about the properties of the cubic (c-)
counterpart. Due to the lack of reliable experimental data,
a gap value of 1.8 eV was used in order to determine the

bowing parameter of the cubic InxGa1−xN alloy system [8].
Theoretical calculations [9–11] predict, however, that the band
gap of c-InN is about 80 to 230 meV lower than for h-InN, i.e.,
the experimental value should lie in the range between 0.42
and 0.60 eV.

Several attempts were made in the past to grow cubic InN
on various substrates such as GaAs (0 0 1) with an InAs buffer
layer [12], 3C-SiC [13] or directly on GaAs (0 0 1) [14]. Cubic
phase purities of 65% [13] to 82% [14] and photoluminescence
(PL) peak energies around 0.7 eV were reported for these films.
Only recently high-quality c-InN layers with a considerably
reduced fraction of hexagonal inclusions became available,
which were deposited on 3C-SiC substrates with a thick c-GaN
buffer layer [15]. A parabolic band structure was assumed in
order to estimate the carrier concentration of the films for the
Stokes shift between PL onset and the absorption edge. The
assumption of a BGR of 50 meV led to a band gap of c-InN of
0.56 eV at RT.

In the current paper, we present for the first time SE
data for the mid-infrared (MIR) spectral range. The fit of
the phonon–plasmon modes allows an accurate determination
of the plasma frequency (ωp) as previously demonstrated for
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Figure 1. (0 0 2) reflection ω − 2θ scans recorded for the InN films
with the largest (A) and the smallest (C) layer thicknesses.

h-InN [1] and thus of Ne. With this knowledge and together
with the dielectric function (DF) data around the absorption
edge, an elaborate analysis of BGR and BMS effects for
non-parabolic conduction bands becomes possible allowing a
re-evaluation of the zero-density band gap.

2. Experimental details

In a recent paper [15], we have investigated the influence of
growth conditions on the structural properties of c-InN films. It
was found that the amount of hexagonal inclusions decreases
with decreasing growth temperature. Therefore, in order to
obtain the optical properties of cubic InN only almost phase
pure c-InN samples were investigated in the current paper.

The three c-InN samples were grown on 3C-SiC substrates
(Ne ≈ 5 × 1017cm−3) by rf plasma-assisted molecular beam
epitaxy at growth temperatures of 434 ◦C (sample A), 431 ◦C
(sample B) and 419 ◦C (sample C). All films were nominally
undoped. Prior to the growth of the 127 nm (A), 122 nm (B)
and 75 nm (C) thick c-InN layers, ∼600 nm thick c-GaN buffer
layers (Ne ≈ 2 × 1017 cm−3) were deposited.

High-resolution x-ray diffraction measurements were
carried out in order to determine the structural properties of
the films. Figure 1 shows ω − 2θ scans of two samples which
differ in the c-InN layer thickness nearly by factor 2. Bragg
peaks were found at 35.8◦, 39.9◦ and 41.3◦ corresponding to
c-InN (0 0 2), c-GaN (0 0 2) and 3C-SiC (0 0 2), respectively.
As expected, the c-InN peaks become sharper with increasing
layer thickness. As shown in [16], the diffraction pattern
for sample B is almost identical to results for A. The lattice
constants obtained from the ω − 2θ -scan are (5.01 ± 0.01) Å,
which are in good agreement to other published values of
4.98 Å [17] and 4.986 Å [18], and also with theoretical
calculations [10, 19]. Reciprocal space maps were recorded
to determine the phase purity of the c-InN layers [15]. The
hexagonal fractions for samples A, B and C amount to 11%,
10% and 5%, respectively. These values are some of the lowest
reported for c-InN.

Two different ellipsometer setups were applied for data
acquisition from the MIR to the visible spectral range. A
Fourier-transform-based spectroscopic ellipsometer was used
to investigate the optical properties in the MIR range (350–
2000 cm −1). The spectral resolution of the setup was 1 cm −1.

a

b

Figure 2. Real and imaginary parts of the complex DF (a) in
comparison to which of the complex refractive index (b) for the
three cubic InN samples. The carrier-induced Burstein–Moss shift
of the onset in ε2 as well as in κ is apparent.

The spectra were measured at room temperature and at angles
of incidence of 60◦, 65◦ and 70◦. From the near-IR to
visible region (0.7–3 eV), the ellipsometric parameters �

and � were measured by a commercially available rotating-
analyzer ellipsometer at RT and at multiple angles of incidence
(� = 62◦, 68◦ and 74◦). The spectral resolution was 10 meV.
The complex DF (ε̄ = ε1 + iε2) was obtained by fitting the
experimental � and � data using a multi-layer model c-InN/c-
GaN/3C-SiC. Surface roughness in the range of 4–6 nm has
taken into account by a Bruggeman effective-medium layer
(50% voids in a c-InN matrix) on top. The reliability and
accuracy of this approach for obtaining bulk DFs has been
demonstrated elsewhere [20]. The PL at 10 K was excited by
the 514 nm line of an Ar–ion laser and detected by a liquid-
nitrogen cooled InSb photodiode.

3. Results and discussion

Figure 2(a) shows the real (ε1) and the imaginary (ε2) parts of
the DF in the vicinity of the band gap for all samples. First,
the spectral dependence of ε2 up to 3 eV is very similar to the
behavior found for h-InN [21]. We observe a sharp increase
of ε2 in the energy range from 0.8 up to 1.3 eV followed by
a plateau. The onset of absorption for sample C is shifted by
about 160 meV to higher energies in comparison to samples
A and B. It indicates that BMS due to band-filling is strongest
for sample C while a lower but similar electron concentration
is expected for the two other samples. Similar to our results,
Kasic et al observed a distinct blueshift of the absorption edge
with increasing electron concentration for h-InN films [1].
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(a) (b)
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Figure 3. Measured (dashed lines) and modeled (solid lines) � spectra (a) and (b) and � spectra (c) and (d) at 65◦ angle of incidence as
well as the IR reflectance spectra (e) and ( f ) for samples B (left) and C (right). The positions of the TO and LO phonon modes are indicated
by arrows.

Table 1. Summary of the determined phonon and plasma frequencies as well as broadening parameters, electron concentrations and
mobilities, and high-frequency dielectric constants of c-InN. The average electron effective masses m∗(Ne) are also given.

ωTO ωp γp Ne µe

Sample (cm−1) (cm−1) (cm−1) (1019 cm−3) (cm 2 V−1 s−1 ] ε∞(Ne) m∗(Ne)/m0

A 468.9 2025 167 2.1 835 6.97 0.067
B 469.3 2061 190 2.2 720 6.95 0.068
C 470.0 2599 212 3.8 580 6.64 0.076

Secondly, Ne influences also the shape of ε1. The peak position
shifts due to Kramers–Kronig consistency of ε1 and ε2, and
the high-frequency dielectric constant ε∞ (extrapolation of ε1

to zero photon energy) becomes sample dependent. In order
to obtain this quantity the spectral dependence of ε1 below the
peak maximum has to be fitted. For this range, we applied the
analytic formula [22, 23]

ε1(h̄ω) = 1 +
2

π

(
A0

2
ln

E2
1 − (h̄ω)2

E2
G − (h̄ω)2

+
A1E1

E2
1 − (h̄ω)2

)
, (1)

which was derived by the Kramers–Kronig transformation
of ε2 which has a constant value A0 between the effective
band gap EG (roughly corresponding to the absorption edge
here) and the delta function at E1 with magnitude A1. The
latter summarizes the contributions of all high-energy critical-
point transitions [22]. The fit yielded for all samples values
of E1 = (4.35 ± 0.22) eV, A1 = (20.26 ± 1.13) eV and
A0 = (3.1 ± 0.1) while EG increases from 0.97 to 1.14 eV
from sample A to C, respectively. With these values ε∞ can
be calculated via equation (1) in the case of h̄ω → 0. The
determined sample-dependent ε∞ values are listed in table 1,
a clear lowering is found for sample C.

A large number of reports on the determination of the band
gap of InN evaluate the spectral dependence of the absorption
coefficient (α) determined by transmission measurements.
The analysis is based on the fact that α is proportional to

the imaginary part of the DF via the relation α = ωε2/(nc0)

(ω is the angular frequency of light; c0 is the vacuum speed
of light). Then, a square-root dependence of α (and thus
ε2) on the photon energy h̄ω is assumed (being only valid
in the case of parabolic valence and conduction bands) and
the spectral dependence of the refractive index n is neglected.
Finally, the absorption edge (or band gap) is estimated by
extrapolating α2 to zero. Such an analysis cannot be applied
in the present case for the following reasons. (i) Figure 2(b)
displays the real (n) and imaginary (κ) parts of the complex
refractive index (N̄ = n + iκ). It clearly emphasizes that n is
not constant around the band edge but considerably depends on
h̄ω. Therefore, it is necessary to analyze directly ε2 around the
absorption edge. (ii) Any semiconductor with a low band gap
exhibits a characteristic non-parabolicity of the conduction
band, i.e. the joint density of states which is the decisive
quantity for the spectral behavior of ε2 and thus α deviates
from the square-root dependence. (iii) No analytic formula can
be derived for the shape of ε2 in the case of conduction band
filling. However, points (ii) and (iii) can be successfully taken
into account by numerical calculation of ε2, which was recently
demonstrated for h-InN films [2]. Fundamental equations are
summarized below.

The most important input parameter for such an analysis
is the electron concentration which can be determined from the
analysis of the coupled phonon–plasmon modes in the MIR.
Figure 3 shows the ellipsometric � (a, b) and � (c, d) spectra
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of the samples B and C, i.e., typical examples for samples with
lower and higher carrier concentration, respectively. For the
fit, the DFs in the MIR range of 3C-SiC, c-GaN and c-InN
layers were analyzed by applying the widely used formula in
which the phonon and free-carrier contributions to the complex
DF were described by a factorized model considering the
anharmonic coupling effects between free-carrier plasmons
and longitudinal-optical (LO) phonons [24, 25]:

ε̄(ω) = ε∞

∏2
j=1

(
ω2 + iγLPP,jω − ω2

LPP,j

)
(
ω2 + iγpω

)(
ω2 + iγTOω − ω2

TO

) , (2)

where ωLPP,j and γLPP,j are the eigenfrequency and the
broadening value of the longitudinal-phonon–plasmon (LPP)
modes, respectively. The γp values are considered as the
plasmon broadening parameters in the long-wavelength limit.
ωTO and γTO are the frequency and the broadening value
of the transversal–optical (TO) lattice mode, respectively.
The needed ε∞ values for each c-InN film are taken from
table 1. The ωLPP eigenfrequencies are related to all
characteristic frequencies via

ω2
LPP,j = 1

2

[
ω2

LO + ω2
p + (−1)j

√(
ω2

LO + ω2
p

)2 − 4ω2
pω

2
TO

]
,

(3)

where ωLO denotes the frequency of the LO phonon mode.
As in previous ellipsometric MIR studies [1], ωLO was kept
constant. Here, a value of 588 cm−1 was adopted which was
obtained from Raman studies of c-InN films [26]. It means
that besides the broadening values the ωp and ωTO frequencies
have to be adjustable. Figures 3(a)–(d) demonstrate the
excellent agreement between the fit and experimental data for
samples B and C. MIR reflectance measurements as shown in
figures 3(e) and ( f ) emphasize the spectral dependence of ε̄(ω)

according to equation (2). The good accordance of measured
and calculated data further confirms the validity of the used
model and proofs the quality of our extracted parameters.

The fitted ωTO and ωp values are summarized in table 1.
For the former we get values between 468.9 cm−1 and
470.0 cm−1 which match well to the Raman results of
ωTO = 470 cm−1 given in [26]. Determination of the electron
concentration and mobility becomes possible from ωp and γp

by applying the following equations [27]:

ω2
p = Nee

2

ε0ε∞m∗(Ne)
(4)

and

µe = e

m∗(Ne)γp
, (5)

where e is the electrical unity charge, and ε0 represents the
vacuum permittivity. The average effective mass m∗(Ne)

accounts for the non-parabolic dispersion of the conduction
band (CB) for a low band-gap material, i.e., only the quantity
Ne/m∗(Ne) can be directly determined from the plasma
frequency [7, 28]. For the further evaluation, m∗(Ne) has
to be calculated via [27]

1

m∗(Ne)
= 1

12π3h̄2Ne

∫
dk

∂2Ec(k)

∂k2
f (Ec), (6)

Figure 4. Schematic illustration of the band alignment in the
vicinity of the � point of the BZ induced by band-gap
renormalization �BGR and band filling effects �Ec(kF) and
�Ev(kF) as explained in the text. Note that EF(kF) represents the
valence-conduction-band spacing at the Fermi wave vector kF.

where f (Ec) is the Fermi distribution function, and Ec(k)

denotes the dispersion of the CB. The integral runs over all
occupied states in the CB up to the Fermi energy EF, this
quantity follows from the fit of the ε2(ω) curves as described
below.

The whole problem has to be solved self-consistently
because the high electron concentration causes a change of
the band structure which is illustrated in figure 4. First,
carrier-induced band-gap renormalization �BGR leads to a
renormalized band gap Eren (see figure 4) due to electron–
electron (�Ee–e) and electron-ionized impurity (�Ee–i)

interaction. Appropriate formulae can be found elsewhere
[29]. Secondly, the energetic position of Fermi level is located
above the CB minimum [�Ec(kF) ] as depicted in figure 4. As
a consequence, the absorption does not occur at the � point
(at k = 0) of the Brillouin zone (BZ) but at the Fermi wave
vector kF because it requires empty states in the CB. Hence, the
energy of the valence band (VB) at kF is lower in comparison to
the � point (this quantity is denoted by �Ev(kF)). This means
that a small amount of the Burstein–Moss shift (�Ecv(kF) =
�Ec(kF) − �Ev(kF) = EF(kF) − Eren) is caused by the
curvature of the VB.

So for the evaluation of the BMS the curvature of the CB
and VB is needed. The VB dispersion (Ev) can be described
by a parabolic approximation with a proposed effective mass
for the holes of mh = 0.5m0 [30]. Since the CB of c-InN is
highly non-parabolic we applied the formula given by Kane’s
two-band k · p model [31] inserting the renormalized band gap
(Eren = E0 + �BGR) instead of the fundamental band gap E0

[2]:

Ec(k) = Eren

2
+

h̄2k2

2m0
+

1

2

√
E2

ren + 4EP
h̄2k2

2m0
. (7)

Note that Kamińska et al [32] employed a similar
approach using the actual band gap instead of E0 for the
investigation of the dependence of InN PL on hydrostatic
pressure.

The analysis of the experimental data starts from a
calculation of the imaginary part of the DF that is proportional
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Table 2. Fermi energies as well as contributions to Burstein–Moss shift and band-gap renormalization used for determining the zero-density
band gaps E0.

EF(kF) �Ec(kF) �Ev(kF) �Ecv(kF) Eren �Ee−i �Ee−e �BGR E0

Sample (eV) (meV) (meV) (meV) (eV) (meV) (meV) (meV) (eV)

A 0.975 464 −56 520 0.455 −86 −54 −140 0.595
B 0.982 475 −57 532 0.450 −87 −54 −141 0.591
C 1.130 618 −82 700 0.430 −108 −65 −173 0.603

Figure 5. Photoluminescence spectrum at T = 10 K as well as the
calculated shape of the imaginary part of the DF (dashed lines) in
comparison to the experimental data (solid lines) for samples A–C.

to the joint density of states via

ε2(h̄ω) ∼ 1

(h̄ω)2

2

(2π)3

∫
BZ

|Pcv|2[1 − f (Ec)]

× δ(Ec(k) − Ev(k) − h̄ω) d3k, (8)

where Pcv is the momentum matrix element. The CB non-
parabolicity is taken into account by inserting equation (7) for
Ec(k). The integration is carried out in the reciprocal (k) space
over the whole BZ, further details can be found elsewhere [2].

A comparison of the calculated and experimental ε2(ω)

curves for all three samples is shown in figure 5. Note
that with an EP parameter of 14 eV only Eren and EF(kF)

(values are given in table 2) were adjusted in order to get the
excellent agreement and to match the ωp values in table 1.
The data correspond to electron concentrations between 2.1
and 3.8 × 1019 cm−3 while mobilities between 835 and
580 cm2 V −1 s−1 are estimated.

It can be seen from table 2 that the renormalized band gaps
for the three highly degenerate InN films are nearly identical.
We assume similarly to h-InN a temperature-dependent band
gap shift of 35–50 meV from RT to 10 K [33]. The onset of

Table 3. Theoretical predicted fundamental band gaps E0 (in eV)
for c-InN and h-InN using equal approximations respectively for
both polymorphs in comparison to our experimental findings.

c-InN h-InN

Furthmüller et al [10] 0.59 0.82
Rinke et al [9] 0.53 0.72
Bagayoko et al [19] 0.65 –
Briki et al [34] 0.57 –
Persson et al [11] 0.59 0.67
Our work 0.595 0.68 [2]

the low temperature PL spectra in figure 5 is indeed found at
approximately these energies. All three samples show nearly
the same PL signal furthermore confirming the equality of our
extracted renormalized band gaps given in table 2.

Now, the zero-density band gap E0 can be estimated from
Eren and the calculated �BGR. The detailed analysis yields
0.595, 0.591 and 0.603 eV for sample A, B and C, respectively,
which is slightly higher than the preliminary value of 0.56 eV
[15]. For comparison, an EP of only 10 eV as for h-InN
[2, 29] increases Eren up to 100 meV and the difference
between the three E0 values becomes much larger; therefore,
a zero-density band gap of 0.595 eV with a corresponding
effective electron mass of 0.041 m0 at the CB minimum is very
likely. Table 3 provides a summary of theoretically calculated
band gaps. While in two cases the c-InN and h-InN gaps differ
about 200 meV, the results of Persson et al agree well with our
finding of ∼85 meV difference.

Finally, the Kramers–Kronig transformation of the
calculated ε2(ω) curve for E0 = 0.595 eV leads to an ε∞ of
7.84 from which one achieves a static dielectric constant εr

of 12.3 by using the Lyddane-Sachs-Teller relation (for values
of ωTO see table 1).

4. Conclusion

We have determined the dielectric function of c-InN layers
from the MIR into the visible spectral region. The evaluation
of the plasma frequency from IR data provides the electron
concentration of the films. We found that the carrier-dependent
high-frequency dielectric constant decreases with increasing
electron concentration. By taking into account the band-filling
effects (BMS, BGR) and non-parabolicity of the conduction
band in the analysis of ε2 in the vicinity of the band gap, we
estimate a zero-density c-InN band gap of 0.595 eV which is
about 85 meV lower than that for h-InN.
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