

Element	S^+_{clean}	α	S^+_{oxide}	α	S^+_{oxide}/S^+_{clean}	Ÿ
Mg	8.5·10 ⁻³	4.10 ⁻³	1.6.10-1	8·10 ⁻²	20	2.1
Al	2·10 ⁻²	1.10-2	2	1	100	2
V	1.3·10 ⁻³	7·10 ⁻⁴	1.2	6.10-1	103	1.9
Cr	5·10 ⁻³	3.10-3	1.2	6·10 ⁻¹	200	1.8
Fe	1.10-3	5.10-4	$3.8 \cdot 10^{-1}$	2.10-1	380	2
Ni	3.10-4	2·10-4	2·10 ⁻²	1·10 ⁻²	70	1.7
Cu	1.3.10-4	7·10 ⁻⁵	4.5·10 ⁻³	2·10 ⁻³	30	2.4
Sr	2.10-4	1.10-4	1.3.10-1	7·10 ⁻²	700	1.3

		;	SIMS –De	tektionsli	mit		ç	9
	Die Na	chweisgrei a) Ma b) Ma c) Hal d)	nze der ein sse des na sse des Pri Ibleiter- ode	zelnen Ele chzuweise imärionens er Metall-m	mente ist a nden Elem strahls aterials	bhängig: ents		
	Table 1.	SIMS Detection	on Limits in ato	ms/cm³				
		GaAs	AlGaAs	InGaAs	InGaP	InP		
	н	1E17	1E17	1E17	1E17	1E17		
	С	3E15	3E15	3E15	3E15	3E15		
	0	3E15	1E16	3E15	3E15	3E15		
	Si	6E13	1E15	6E13	6E13	6E13		
	Те	1E13	1E13	1E13	1E13	1E13		
	Se	1E13	1E13	1E13	1E13	1E13		
	s	6E13	6E13	6E13	1E15	1E15		
	Br	1E14	1E14	1E14	1E14	1E14		
	SIMS	m Größon	ordnung or	opfindlicho				
	Silvis u (t	vpischerw	eise im Pro	izent oder l	Promil-bere	eich)		
	(*	, p. conton W		2011 00011				
api.Prof. Dr. D	J. AS							

 Relative Sensity Faktor (RSF)
 10

 Quantitative SIMS Analyse benutzt auch oft einen relativen Empfindlichkeitsfaktor (RSF) der folgendermaßen definiert ist:
 Image: Comparison of the compar

O ₂ /SIMS Positive Secondary Ion Detection		Cs / Negative Second	/SIMS dary Ion Detection	Cs /SIMS Positive Secondary Ion Detection (CsM+)	
Element	DL (atoms/cm³)	Element	DL (atoms/cm³)	Element	DL (atoms/cm³)
Be	1E+14	H*	8E+16 - 2E+17	Mg	5E+15
Li	1E+14	C*	5E+15 - 2E+16	Zn	1E+16
В	1E+15	O*	1E+16 - 3E+16		
Na	5E+14	Si	3E+15		
Mg	5E+14	As	5E+15		
AI	1E+15				
aries with vacu	um conditions				

Flugzeit-Massenanalyse	16				
Die durch den Primärionenbeschuss emittierten Sekundärionen mit der Ladung q und der Masse m werden für die Flugzeit-Massenanalyse in einem elektrischen Extraktionsfeld zunächst auf eine bestimmte kinetische Energie E = qU(2 keV) beschleunigt, durchlaufen anschließend mit der Geschwindigkeit v eine feldfreie Driftstrecke der Länge L und erreichen das Nachweissystem nach der Driftzeit t.					
$qU = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{t^2} \qquad \qquad t = L\sqrt{\frac{m}{2qU}}$					
Da die Driftzeit proportional zur Wurzel der Teilchenmasse ist, erreichen leichtere Atome oder Fragmente den Detektor früher als solche mit höheren Massen.					
Die Massenanalyse mit einem Flugzeitspektrometer setzt voraus, dass die analysierten Ionen zeitgleich oder mindestens innerhalb eines möglichst kurzen Zeitintervalls in die Driftstrecke eintreten. Deshalb erfolgt der Primärionenbeschuss mit möglichst kurzen Pulsen (Δt ca. 1 – 20ns)					
Nach dem Durchlaufen der Driftstrecke werden die Sekundärteilchen mittels eines Detektors, der aus einem Multi-Channel-Plate, einem Szintillator und einem Photomultiplier besteht, zeitaufgelöst im Einzelteilchen-Zählverfahren nachgewiesen. Das so erhaltene Flugzeitspektrum kann mit obiger Gleichung in ein entsprechendes Massenspektrum umgerechnet werden.					
Während bei einem Massenfilter, z.B. einem Quadrupol, jeweils immer nur eine eingestellte Sollmasse durchgelassen wird, erreichen in einem Flugzeit-Massenspektrometer – im Prinzip – immer alle emittierten Sekundärionen den Detektor, nur eben zu unterschiedlichen Zeiten (Paralleldetektion). Es ist dieser "sparsame" Umgang mit der "kostbaren" Information, die im Fluß der zerstäubten Sekundärionen enthalten ist und die erzielbare hohe Massenauflösung, m/∆m > 5000, welche die Flugzeit-Massenspektrometrie für die Oberflächenanalytik so attraktiv macht.					
apl.Prof. Dr. D.J. As					

Rutherford-Rückstreung 17	
Ernest Rutherford, 1st Baron Rutherford of Nelson	
30. August 1871 – 19 Oktober 1937	
1908 Nobelpreis für Chemie	
Rutherford-Rückstreung:	
Dabei werden die Projektilionen (z.B. ⁴ He) elastisch an den Probenatomen gestreut und erleiden einen charakteristischen Energieverlust, der durch den Energie- und Impulsübertrag auf den Stoßpartner entsteht und dessen Größe durch den kinematischen Faktor des Streuprozesses gegeben ist. Weiterhin verlieren die Ionen auf ihrem Weg durch die Probe sowohl vor als auch nach der Streuung durch die elektronische Abbremsung an Energie.	
apl.Prof. Dr. D.J. As	-

Bestimmung des Defekttyps 30							
Die Wahrscheinlichkeit dP _D /dz des Dechannelings ist gegeben als Produkt aus dem Dechannelingfaktor σ_D und der Defektdichte n_D in Abhängigkeit von der Tiefe: $\frac{dP_D}{dz} = \sigma_D n_D(z).$							
Der Dechannelingfaktor σ_D weist je nach Defekttyp unterschiedliche Einheiten auf, ebenso wie die Defektdichte n _D . Die Einheit von $\sigma_D n_D$ ist dagegen immer durch cm ⁻¹ gegeben.							
Abhängigkeiten der Einheiten vom Defekttyp:							
Punktdefekt Fläche (cm ²) $\frac{\text{Anzahl}}{\text{Einheitsvolumen}}$ (cm ⁻³)							
$\label{eq:Liniendefekt} \begin{tabular}{lllllllllllllllllllllllllllllllllll$							
$\label{eq:volumendefection} \mbox{Volumendefective} \frac{Fläche}{Defectivolumen} (cm^{-1}) \qquad \frac{Defectivolumen}{Einheitsvolumen} (-)$							
Für die verschiedenen Defekttypen findet man verschiedene Energieabhängigkeiten und damit auch die zugehörigen Proportionalitäten zur Halbwertsbreite $\Psi_{1/2} \sim \Psi_e \sim \sqrt{\frac{Z_1Z_2}{E}}$.							
 Punktdefekte mit σ_D ~ ¹/_L ~ Ψ²_{1/2} Flächen- und Volumendefekte mit der Eigenschaft, daß σ energieunabhängig ist 							
• Liniendefekte mit $\sigma \sim \sqrt{E} \sim (\Psi_{1/2})^{-1}$							
apl.Prof. Dr. D.J. As							

NRA - Nuclear Reaction Analysis 35 Grundsätzlich schreibt man solche Reaktionen, bei denen ein Teilchen a auf einen Targetkern A fällt, in der Form A(a,b)B. Dabei bezeichnet B den Kern nach der Reaktion, und b das Teilchen oder auch γ -Quant, das das Target verläßt. Ein Beispiel ist die Wasserstoffnachweisreaktion mit Stickstoff 1H(15Ν,αγ)12C. Dabei gibt es neben der elastischen Streuung noch weitere Reaktionstypen. Das Teilchen kann so gestreut werden, daß es einen Teil seiner Energie auf ein Nukleon im Target überträgt und sich mit verminderter Energie weiterbewegt. Das Energiespektrum der gestreuten Teilchen spiegelt dann das Anregungsspektrum des Targetkerns wider. Der Energieübertrag an den Targetkern kann auch so erfolgen, daß Rotations- oder Vibrationszustände angeregt werden. Oder das Projektil wird eingefangen und überträgt seine Energie auf ein anderes Teilchen, das den Kern verläßt. Diese Reaktionsprozesse laufen in einem Zeitrahmen von etwa 10⁻²² s ab. Helium Ionen mit Energien geringer als 2.2 MeV machen mit den meisten elementen einen elastischen Rückstoß, ähnlich kollidierender Billiardkugeln. Bei höheren Energien können zusätzlich inelastische Prozesse auftreten, d.h. der Streuquerschnitt kann bei bestimmten resonanten Energien viel höher werden. In diesem Fall scheint das He-ion absorbiert und reemittiert zu werden, wozu zur Beschreibung Quantum Mechanik notwendig ist. Ein Beispiel dafür ist der Resonanzeffekt bei 3.045 MeV bei der Streuung von α -Teilchen an ¹⁶O. Bei manchen Resonanzenergien wird das Primärion absorbiert und ein anderes Teilchen (Proton, Neutron, α , oder γ -Teilchen) emittiert. Für leichte Elemente gibt es mehrere nützliche Reaktionen wie $^{19}\text{F}(p,\alpha)^{16}\text{O}.$ In diesem Fall wird von einem ¹⁹F Kern ein 1.25 MeV Proton absorbiert und ein 8.114 MeV α -Teilchen emittiert. Die Energie des α -Teilchens gibt auch Aufschluss über die Tiefe bei der die Reaktion auftrat. apl.Prof. Dr. D.J. As

	PIXE – (particle induced X-ray emission)	36
Ge wir Me Sie Ze Die Na cha in e zur in e	(lonen-induzierte Röntgenemission) eladene He++ Teilchen oder Protonen H+ erzeugen Röntgenstrahlung die spektral aufgelöst gemesse rd und als PIXE Spectroskopie bezeichnet wird. PIXE (Particle induced X-Ray Emission) ist eine ethode, die vor allen Dingen bei dünnen Schichten zur Multielementanalyse eingesetzt werden kann e kann in RBS vor allem schwere Elemente gut identifizieren. Ihre Vorteile sind dabei die rrstörungsfreiheit der Proben und die kurzen Meßzeiten, die normalerweise im Minutenbereich lieger e meisten Elemente, die schwerer als Sauerstoff sind, können nachgewiesen werden, wobei die achweisgrenze teilweise im ppm-Bereich liegt. Die Identifikation gelingt dabei durch die arakteristische Röntgenstrahlung jedes Elements, deren Energie durch den Übergang eines Elektron einem Atom i von einem Zustand I in einen Zustand m festgelegt ist und deren Intensität proportiona r Konzentration dieses Elements im Material ist. Für die Zahl der detektierbaren Röntgenquanten Y einer dünnen Schicht der Dicke d gilt dann:	en n. ns Il
	$Y_{lm}^{i} = N_{0}N_{i}\Omega\epsilon(E_{lm}^{i})T(E_{lm}^{i})\sigma_{lm}^{i}(E)\frac{d}{\cos(\alpha)}$	
Da mi At als be loi	abei wird mit N _i die atomare Dichte des Elements i, mit Ω der Öffnungswinkel des Röntgendetektors it $\epsilon(E_{im})$ die Effizienz des Detektors bezeichnet. T(E ⁱ _{im}) berücksichtigt dabei die Verluste durch einer bsorber bei der Röntgenquantenenergie von E _{im} . Mit σ_{im} wird der Röntgenproduktionsquerschnitt, so das Produkt von Ionisationswirkungsquerschnitt und Quantenausbeute des Übergangs I nach m ei einer Projektilenergie E bezeichnet, und α ist der Winkel zwischen Oberflächennormale und dem nenstrahl.	, I
PI	 IXE hat mehrere Vorteile als Analysetechnik: a) ähnliche Signallevel aber besserees Signal-Rauschverhältnis. b) keine Bremsstrahlung wie bei XPS oder UPShas several advantages as an analytic c) PIXE kann mit isolierenden Substraten arbeiten (gegenüber e-induzierte Spektroskopie d) Protonenstrahl kann durch dünne Fenster und einige cm in Luft durchdringen. e) PIXE hat Anwendungen in Geologie, Archäologie und Konservierung von Kunstwerken 	e)

apl.Prof. Dr. D.J. As

ERD - Elastic Recoil Detection

Die bekannteste Variante der Elastisch gestreuten Teilchendetektion (ERD) ist die Wasserstoff Vorwärtsstreu-Spektroskopie (Hydrogen Forward Scattering (HFS) – Spektroskopie). Ein hochenergetischer He⁺⁺-Strahl fällt dabei unter gleitendem Einfall (75° zur Oberflächennormalen) auf das Target. Wasserstoffatome werden dabei von den He Atomen aus der Probe vorwärtsgestreut. Die He Atome werden an leichteren Atomen ebenfalls vorwärts gestreut. Die H Atome werden in einem Festkörperdetektor gesammelt, während die He Atome durch eine Folie gestoppt werden. Die Anzahl der H Atome liefert Infomation über die H-Konzentration in der Probe und die Energie gibt Auskunft über die Tiefenverteilung.

37