

	Transformationsmatix M	4
Der Zusammenhang zwischen beschrieben durch	n Oberflächen- $ec{a}_{ ext{s}}$ und Volumensoberflächenbasisvektoren $ec{a}_{ ext{b}}$ wird	
	$ec{a}_{_{ m S}}=ec{M}\cdotec{a}_{_{b}}$ bzw. $a_{_{ m si}}=m_{_{ik}}\cdot a_{_{bk}}$	
wobei	$\vec{M} = \begin{bmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{bmatrix}$	
sodass	$ \begin{array}{l} a_{1s} = m_{11} \cdot a_{1b} + m_{12} \cdot a_{2b} \\ a_{2s} = m_{21} \cdot a_{1b} + m_{22} \cdot a_{2b} \end{array} \qquad \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}_s = \begin{pmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}_b $	
Wobei die Fläche der zwei Ein	heitsmaschen gegeben sind durch	
	$A = \left \vec{a}_{1s} \times \vec{a}_{2s} \right $	
	$B = \left \vec{a}_{1b} \times \vec{a}_{2b} \right $	
sodass gilt:	$A = B \cdot \det \vec{M}$	
Der Wert der det M kann zur E flächenmasche \vec{a}_s und der Vol	Definition der Art der Überlagerung verwendet werden, die zwischen de umensmasche $ar{a}_b$ besteht.	Ober-
apl.Prof. Dr. D.J. As		

Der große Atomstreuquerschnitt f sehr empfindlich auf Oberflächen Zusätzlich ist der Radius der ein punktförmiges Beugungsmus Aus den Winkel 20 zwischen den	LEED - Auswertung für Elektronen mit Energie kleiner als 1000 eV bedeutet, dass Leed anordnung ist. Ewaldkugel vergleichbar mit den Atomabständen, sodass LEED Bild ter erzeugt. n gestreuten Strahl und dem einfallenden Strahl kann die Oberfläche	1 n-
einheitsmasche bestimmt werden Aus geometrischen Überlegunger	n gilt: $a = \frac{\left(h^2 + k^2\right)^{1/2}}{2 \sin \Theta \cos(\Theta + \Phi)}$	
Für einen speziellen reziproken G	Bitterstab (hk) mit a $\Phi = 0$ bei normalen Einfall $a = \frac{\left(h^2 + k^2\right)^{1/2}}{\sin(2\Theta)}$	
Und die Steigung einer Darstellur kann zur Bestimmung der Masch	ng von sin(2Θ) versus λ, wobei $\lambda = \frac{h}{\sqrt{2meU}} = \sqrt{\frac{150,5}{U}} \text{ Å} = 0.4 4 h$ enseite a verwendet werden.	Å
Die Symmetrie der atomaren Ano können mit LEED unmittelbar erh bei RHEED der Fall ist (unterschie (je kürzer desto größer ist der rea	rdnung an der Oberfläche und die Plätze innerhalb der Einheitsmasc alten werden, ohne die Beugungsgeometrie zu verändern, wie es z.t edliche Intensitätsverhältnisse). le Abstand)	he

		RHE	EED	21
Fällt ober spez Da die E	ein hochenergetischer flächencharakteristisch ifisch ist, beobachtet. der Elektronenimpuls Eindringtiefe sehr gering	Elektronenstrahl mit stre e Beugungsmuster, die f normal zur Oberfläche se g.	ifendem Einfall auf eine flache ür die jeweilige Anordnung de shr klein ist (wegen dem streife	Oberfläche, so werden r Oberflächenatome enden Einfall) ist auch
Für (Oberflächenstreuung m	üssen jedoch 3 Vorauss	etzungen erfüllt sein:	
1.	Die Auflösung der Ab Materiewellenlänge λ Abstände sein	der Atomabstände liegen, d.h. in der Größenordnung der zu	die messenden	
	LEED RHEED	λ ~ 1.22 Å λ ~ 0.09 Å	E ~ 100 eV E ~ 20 keV	
2.	Damit die RHEED-Me die Probe treffen (α <	thode oberflächenempfir 5°). Daruas ergibt sich e	ndlich ist, muss der Elektronen ine geringe Eindringtiefe	strahl streifend auf
3.	Die Oberfläche darf w des Elektronenstrahls	ahrend der Messung nic muß hinreichend klein c	ht irreversibel verändert werde Jehalten werden (hängt vom je	en, d.h. die Dosis weiligen Material ab)
Der e MBE	einfallende Elektronens -Anlagen verwendet m	trahl kann eine Energie I an meistens Elektronenk	haben, die im Bereich von 3 - anonen mit maximaler Betrieb	100 keV liegt. Bei den spannung von 12-35
KV.		$\lambda = \frac{h}{\sqrt{2meU}} = \sqrt{\frac{150,5}{U}}$	$\text{\AA} = 0.4 \dots 4 \text{\AA}$	
Für B	Beschleunigungsspann	ungen von ca. 5-40 kV ei	ntspricht dies 0.17-0.06 Å	
	Mit U _b =	100 kV -> $\lambda = 0.0037$	nm -> $lk_0 l = 1700 \text{ nm}^{-1}$	
	ingegond oin regioreke	r Cittoryaktor 2-/a typical	honwoige hei 20 pm-1 liggt	

	LEED vs. RHEED	34
	LEED	
	Elektronenergien 50-500 eV	
	 Zeigt das reziproke Gitter direkt an 	
	Informationen praktisch nur von der obersten Atomlage	
	Keine Schädigung (niedrige Elektronenenergie)	
	RHEED	
	Elektronenenergien 10-100 (oder mehr) keV	
	Streifender Einfall	
	Reziprokes Gitter nur teilweise sichtbar/ableitbar	
	Informationen über einige Atomlagen	
	 Zu hohe Elektronenenergie kann Schädigung verursachen 	
	• Epitaktischer Wachstumsprozess in situ überwachbar	
	Anordnung, Schärfe, Intensität der Reflexe	
	Hinweis auf Qualität / Rekonstruktion der Oberfläche	
api.Prof. Dr. D.J	J. AS	

