

τ	transmittance through EP-cavity	
	$T = \frac{T_1 T_2}{1 + R_1 R_2 - 2 \sqrt{R_1 R_2} \cos 2\phi}$	
F	finess of FP cavity:	
<i>F</i> =	$= \frac{\text{Peak separation}}{\text{Peak width}} = \frac{\pi}{2\phi_{1/2}} = \frac{\pi}{1-\sqrt{R_1R_2}} \approx \frac{\pi}{1-\sqrt{R_1R_2}}$	2
Q	quality factor of FP cavity:	
<i>Q</i> =	$= \frac{\text{Peak frequency}}{\text{Peak width}} = \frac{2nL_c}{\lambda} \frac{\pi \sqrt[4]{R_1R_2}}{1 - \sqrt{R_1R_2}} \approx \frac{2nL_c}{\lambda} \frac{\pi}{1 - \sqrt{R_1R_2}}$	₹2
	$Q = \frac{2nL_c}{\lambda} F$	

Internal, extration, external, and power efficiency

$$\eta_{int} = \frac{\# \text{ of photons emitted from active region per second}}{\# \text{ of electrons injected into LED per second}} = \frac{P_{int} / (hv)}{I / e}$$

$$\eta_{extraction} = \frac{\# \text{ of photons emitted into free space per second}}{\# \text{ of photons emitted from active region per second}}$$

$$\eta_{ext} = \frac{\# \text{ of photons emitted into free space per sec.}}{\# \text{ of electrons injected into LED per sec.}} = \frac{P / (hv)}{I / e} = \eta_{int} \eta_{extraction}$$

$$\eta_{power} = \frac{P}{IV}$$

