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Quantum Key Distribution with Bright Entangled Beams
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We suggest a quantum cryptographic scheme using continuous EPR-like correlations of bright optical
beams. For binary key encoding, the continuous information is discretized in a novel way by associating
a respective measurement, amplitude, or phase, with a bit value “1” or “0.” The secure key distribution
is guaranteed by the quantum correlations. No predetermined information is sent through the quantum
channel contributing to the security of the system.
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Quantum key distribution (QKD) is the most advanced
technology in the field of quantum information process-
ing. The conventional arrangements use dichotomic quan-
tum systems to realize the secure information transfer (for
a review, see [1]). These discrete systems have the advan-
tage to be in principle loss insensitive in terms of security.
However, the generation process for entangled photon pairs
needed for QKD based on EPR correlations is spontaneous
and therefore probabilistic. This limits the achievable data
transmission rates.

A new development employs continuous variable sys-
tems [2–5], such as intense light fields, to obtain shorter
key distribution times. The security issues of continuous
variable quantum cryptography have been addressed [6,7]
and it was proven that the secure key distribution can be
achieved using continuous EPR-type correlation or quan-
tum squeezed states.

In this Letter we propose a new key distribution scheme
based on the quantum EPR-like correlations of conjugate
continuous variables. The main novel feature of the pro-
tocol [8] is an assignment of a bit value to the type of
measurement. The binary bits are encoded by the choice
to detect either of two conjugate variables accomplished
independently and randomly by both communicating par-
ties. This serves as a discretization of continuous infor-
mation in the measurement process. The coincidences
in the choices of both parties are revealed by testing the
EPR-like correlations between the beams and contribute
to the key. Thus, in contrast to other continuous variable
systems [2–5], the basis value is not predetermined but
develops in measurements at receiver and sender stations,
resembling the EPR-based Ekert protocol for discrete cryp-
tographic systems. The detection of light statistics per-
formed by both communicating parties plays a decisive
role in the proposed scheme. It comprises bit encoding,
key sifting, monitoring of the disturbance in the quantum
channel, and active control on timing and information flow
during the transmission [9].

The basic ingredient of the scheme is quantum corre-
lations between the amplitude X̂j � â

y
j 1 âj and phase

Yj � i�ây
j 2 âj� quadratures of bright beams j � 1, 2.

Because of the high intensity of the optical fields involved,
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we use the linearization approach throughout this Letter:
X̂j � �Xj� 1 dX̂j , Ŷj � �Yj� 1 dŶj . The entangled ob-
servables are then the quantum uncertainties in the respec-
tive field quadratures. We start with the definition of the
relevant measured quantities and of the conditions for ap-
pling the two-mode correlations as a quantum resource. It
can be done on the basis of the nonseparability criterion
for continuous variables [10,11].

The Peres-Horodecki criterion for continuous variables
provides a sufficient condition for a Gaussian state to be
nonseparable [10,11]. It can be written in terms of sum
or difference squeezing variances [12] of amplitude and
phase of two beams:

V6
sq�X� �

V�dX̂1 6 gdX̂2�
V�X̂1,SN 1 gX̂2,SN�

, (1)

V 7
sq�Y � �

V �dŶ1 7 gdŶ2�
V �Ŷ1,SN 1 gŶ2,SN�

, (2)

where V �A� is the variance �Â2� 2 �Â�2 of an observable
Â. The field modes are denoted by the respective sub-
scripts, SN labels the shot noise limit for a corresponding
beam, and g is a variable gain to minimize the variance
[12]. In the particular case of entirely symmetrical en-
tangled beams the optimal gain is calculated to be g � 1
[11]. The nonseparability of the two-mode quantum state
requires then V 1

sq�X� 1 V 2
sq�Y � , 2 [10,11] and the crite-

rion is necessary and sufficient [11]. From here on we use
Eqs. (1),(2) with the signs corresponding to amplitude an-
ticorrelations and phase correlations. The two-mode non-
separable state is said to be squeezed-state entangled if the
following condition is satisfied for the variances of conju-
gate variables in Eqs. (1),(2) [13]:

V1
sq�X� , 1, V2

sq�Y � , 1 . (3)

Note that in contrast to the nonseparability criterion, the
introduced squeezed-state entanglement requires both vari-
ances of conjugate variables to drop below the respective
limit. This requirement is crucial for the suggested cryp-
tographic system and ensures both the possibility to build
up a binary key string and the security of a transmission.

A key point for the QKD protocol is sum (difference)
measurement (1),(2) testing for the correlation in the
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amplitude and phase quadratures. It is used to determine a
bit value and it ensures an undisturbed transmission. Sup-
pose Alice and Bob both record the amplitude quadratures
of their respective EPR beam. In this case the detected
quantum uncertainties dX̂1 and dX̂2 are anticorrelated
[14]. Bob tests for anticorrelations by recording the vari-
ance of the sum (1) of photo currents of his and Alice’s
measurement. Note, however, that the time interval used
to experimentally determine the photo current statistics
plays a crucial role for the security of the protocol because
it may allow for an undetectable eavesdropping (see
below). At this stage we explain the protocol in terms
of squeezing variances for the sake of clarity in the
presentation of main ideas. If there is a nonlocal anti-
correlation between dX1 and dX2, the sum photo current
will drop below the quantum limit, V 1

sq�X� , 1, to the
extent dependent on the quality of the EPR source.
Analogously, if there is nonlocal correlation between dY1

and dY2 the difference photo current will drop below the
quantum limit V 2

sq�Y� , 1 (2). The quality of the source
is limited by the finite degree of continuous quantum
correlations Vsq�X�, Vsq�Y� (1),(2), perfect correlation
requiring infinite energy resources. For the efficiency of
transmission, noise and losses in the quantum channel
play a significant role. The net quality of both the source
and the channel has an impact on the distance, on which
the quantum correlations are still reliably observable, on
the sensitivity to the disturbance by an eavesdropper, and
on possible achievable bit rates.

The obtained constraint Vsq�X� ø 1 and Vsq�Y� ø 1
serve Bob as a criterion for the generation of the sifted
key and as a test for eavesdropping. A measured normal-
ized noise power of Vsq�X� ø 1 at Bob’s station delivers
a bit value “1” and Vsq�Y� ø 1 a bit value “0.” The ob-
servation of Vsq�X�, Vsq�Y� . 1 means that both parties
have measured different quadratures. These events are dis-
carded. However, Alice and Bob should keep controlling
that the overall rate of the event “no correlation” is statis-
tically close to 50% as is inherent to the protocol (X or Y
quadrature). Vsq�X�, Vsq�Y� , 1 to an extent less than ex-
pected or no correlations in more than 50% measurements
reveals an unexpected disturbance in the line. Note that
there is no need to communicate the obtained constraints
Vsq ø 1 to Alice.

The quantum key distribution protocol for squeezed-
state entangled bright beams based on the measurement
of the EPR-like correlations works as follows. The EPR
source is at Alice’s station (Fig. 1). Alice generates and
distributes the entangled beams keeping beam 1 at her
station and sending beam 2 to Bob. The relevant measured
quantities are the quadrature quantum uncertainties which
a priori carry no information. To establish the right timing
of their recordings Alice and Bob have to synchronize their
clocks and agree upon a set of time intervals Dtk in which
they subdivide their measurements. Alice and Bob proceed
with a series of measurements.
167902-2
FIG. 1. QKD with bright EPR-entangled beams (see text).

The expected quality of quantum correlations Vsq�X�,
Vsq�Y � , 1 is determined experimentally as described
above. Alice and Bob start a key transmission by per-
forming randomly and independently measurements of
either amplitude quadrature (AQ) or phase quadrature
(PQ) each. Hereby they keep recording (1) their photo
currents �dX̂j, dŶj �, (2) the respective time slots �tk�, and
(3) the type of measurement performed (AQ or PQ).

Bob and Alice use two classical communication chan-
nels to evaluate the transmission results. Alice perma-
nently keeps sending the results of her measurements, the
photo current containing dXk

2 or dYk
2 in the time slots tk ,

to Bob via a classical channel I. Bob performs the selec-
tion of “good” bits and the security test. To generate the
sifted key, he checks correlations between the results of
his measurements and the results received from Alice by
recording the variance V 1

sq�X� (1) of the sum of the rele-
vant photo currents for his choice of AQ or the difference
variance V 2

sq�Y � (2) for PQ.
After evaluating his correlation measurements (Fig. 1),

Bob publicly communicates to Alice via the classical chan-
nel II the time points t1, t3, . . . , tk when he detected cor-
relations (3). The choice of the AQ/PQ measurement is
not disclosed. At this stage Alice and Bob can generate
the common secret key. They pick up the measurement
type (AQ/PQ) from their recordings at the time points
t1, t3, . . . , tk and build the secret key string by association:
AQ � bit value 1 and PQ � bit value 0. They discard the
rest of the data. The presence of Eve will be revealed by
distortion of the correlations or by events “no correlations”
occurring statistically more frequent than 50%. This pro-
tocol is summarized in Table I.

The security of transmission against eavesdropping is
guaranteed by the sensitivity of the existing correlations
to losses and by the impossibility to measure both con-
jugate variables simultaneously. The complete security
analysis for the case of continuous variables is nontrivial
and lies beyond the scope of the present Letter. It will be
167902-2
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TABLE I. Generation of the common secret key string.

Time t1 t2 t3 t4 · · · tk

Alice AQ PQ PQ AQ · · · PQ
Bob AQ AQ PQ PQ · · · PQ

Correlation Yes No Yes No · · · Yes

Key 1 · · · 0 · · · · · · 0

considered elsewhere in terms of mutual information and
disturbance of transmission [15] and using noise charac-
teristics like signal-to-noise ratio [9,16]. Here we restrict
ourselves to the optical tap attack of an eavesdropper Eve
and for an idealized case of lossless quantum channel to il-
lustrate the main security mechanisms. The tapping beam
splitter has a transmissivity h.

An eavesdropper Eve will attempt to figure out which
quadrature was measured by Alice by tapping the quan-
tum channel and by trying to relate these measurements
to the photo currents traveling from Alice to Bob through
the classical channel. If Eve has decided to detect the am-
plitude quadrature by tapping, she has at her disposal the
minus and plus channels:

V 7
sq�XE; ZA� �

V�dX̂E 7 gEdẐA�
V �X̂E,SN 1 ẐA,SN�

, ẐA � X̂A, ŶA .

(4)

Subscripts E, A denote the quantum uncertainties, mea-
sured, respectively, by Eve and by Alice, the upper (lower)
sign refers to the minus (plus) channel, and gE is a vari-
able gain used by Eve. To construct the secret key, Eve
must be able to distinguish between two possible events:
dẐA � dX̂A or dẐA � dŶA. An effective strategy for
Eve is to check the difference between her plus and minus
channels D � V 2

sq�XE; ZA� 2 V 1
sq�XE; ZA�. No difference

between recordings in these two channels reveals to Eve
that she and Alice have measured different quadratures. If
Eve records a significant difference D, she knows that she
and Alice have measured the same quadrature:

D � V 2
sq�XE; XA� 2 V 1

sq�XE; XA�

� gE

q
�1 2 h� �V1

sq�X� 1 V2
sq�X�� . (5)

Here V 1
sq�X� is the normalized sum photo current noise for

the amplitude quadratures measured by Alice and Bob dur-
ing the undisturbed transmission. It is given by the squeez-
ing variance [Eq. (1)] with the optimal gain g � gsq �
1. V 2

sq�X� [Eq. (1)] is the difference photo current noise
which is recorded in Bob’s minus channel for an amplitude
measurement. If the beams of Alice and Bob are anticor-
related in the amplitude quadrature, the variance V 1

sq�X�
is well below unity. Because of the quantum penalty the
complimentary variance V2

sq�X� exhibits then substantial
excess noise. Equation (5) thus shows that though Eve
can split off a small fraction of the signal and process ar-
bitrarily her measurement results which are classical photo
currents, she will be limited by inherent noise present in
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the signal. Eve can amplify her signal using the electronic
gain gE, but it will not improve the signal-to-noise ratio of
the detected light field.

We discuss now which means Alice and Bob have at
their disposal to reveal the malicious disturbance caused
by Eve in the quantum channel. First, we review another
criterion for quantum EPR-like correlations introduced by
Reid and Drummond [12]. For the discussions about this
EPR condition and about the nonseparability criterion, see
[13,17] and references therein. The EPR criterion refers
to the demonstration of the EPR paradox for continuous
variables and specifies the ability to infer “at a distance”
either of the two noncommuting signal observables with a
precision below the vacuum noise level of the signal beam
[12]. The relevant inference errors [12] at the optimal gain
are the conditional variances:

V 6
cond�X1 jX2� �

V �dX̂1 6 gdX̂2�
V �X̂1,SN�

, (6)

V 7
cond�Y1 jY2� �

V �dŶ1 7 gdŶ2�
V�Ŷ1,SN�

. (7)

The demonstration of the EPR paradox for continuous vari-
ables [12,14,18] corresponds to

V1
cond�X1 jX2�V 2

cond�Y1 jY2� , 1 . (8)

An interesting tool to control the quantum channel is the
variable gain g in definition of these conditional variances
V 6

cond�X1 jX2� [Eqs. (1),(6)].
Let us consider first the undisturbed transmission with

an example of the amplitude measurement performed
by Bob. Even for symmetrical squeezed-state entangled
beams the optimal gain to minimize the conditional
variance V 1

cond�X1 jX2� [Eq. (6)] differs from unity. It can
be expressed as

gcond �
V 2

sq�X� 2 V 1
sq�X�

V 2
sq�X� 1 V 1

sq�X�
. (9)

With V 1
sq�X� ! 0, the noise variance in the minus channel

V 2
sq�X� ! ` and the optimal gain for V1

cond�X1 jX2� is also
approaching unity gcond ! 1, like the optimal gain for the
squeezing variances [Eqs. (1),(6)].

Consider now how the invasion of an eavesdropper is
reflected in the measurements at Bob’s station. The sum
photo current measured by Bob, V 1

sq�X; h�, becomes more
noisy in the presence of Eve:

V 1
sq�X; h� �

�1 1
p

h �2

4
V 1

sq�X� 1
�1 2

p
h �2

4
V 2

sq�X�

1
1 2 h

2
(10)

containing V 2
sq�X� ¿ 1. Analogously, the signal in Bob’s

minus channel, i.e., the variance V2
sq�X; h�, will also be

changed, both plus and minus channels approaching the
same limit. Note that Eve should be cautious enough to
keep the classical amplitude of Bob’s signal unchanged.
Bob uses, therefore, the unchanged value of the shot noise
167902-3
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level to which the measured noise variances are normalized
to obtain Vsq corresponding to gsq � 1.

The modified noise variances in the plus and minus
channel V 6

sq�X; h� will be reflected in the optimal gain to
minimize the conditional variance gcond (9):

gcond�h� �
V 2

sq�X� 2 V 1
sq�X�

V 2
sq�X� 1 V 1

sq�X�
p

h . (11)

This gain also minimizes the observed unnormalized noise
variance V �dX̂1 6 gdX̂2�. If Bob monitors gcond�h� (11)
in his measurements, he can easily infer h fi 1 in the
quantum channel.

An important issue is the finite time for the confident
experimental determination of the squeezing variance. To
gain some partial information, when decoding Vsq Eve
might go for less time than both legitimate communicat-
ing parties, accepting less confidence in determining the
variance. She will tap the signal for a fraction of Bob’s
measurement time and hence will introduce less distur-
bance as expected for a given beam splitting ratio. The
losses in the channel reduce the correlations and enhance
the time needed for the determination of the variance with
sufficient precision. If Eve is tapping close to Alice, where
the impact of losses is still negligible, she can additionally
profit from less time needed for her measurement com-
pared to that of Bob with a given confidence level. The
optimum strategy for Alice and Bob seems to be to operate
with as short a measurement time as possible, ultimately
with single measurements. The above statistical analysis
in terms of variances should therefore be extended to cope
with single shot measurements. This, however, is beyond
the scope of discussion presented here and will be consid-
ered in detail elsewhere.

To summarize, the scheme presented here possesses sev-
eral novel features and shows the strong sides of continu-
ous variable cryptography. The effect of losses on the
maximum possible transmission distance will have to be
studied further. The bit value is encoded by the type of
measurement, i.e., by the choice of measured observable
amplitude or phase. The information on the key is thus
emerging only a posteriori, at sender and receiver stations.
One of the advantages of the presented scheme is the high
value of the achievable effective bit rates. For example,
for the pulsed EPR source the principal theoretical limit is
given by half of the repetition rate Rrep, the factor 1

2 being
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inherent to the protocol and realistic values of Rrep reach-
ing up to 100 GHz. The implementation of the scheme
with bright EPR-entangled beams [14] is experimentally
simple and robust and well suited for both fiber-integrated
or free-space transmission.
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