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Sub-shot-noise phase quadrature measurement of intense
light beams
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We present a setup for performing sub-shot-noise measurements of the phase quadrature of intense pulsed
light without the use of a separate local oscillator. A Mach–Zehnder interferometer with an unbalanced arm
length is used to detect the f luctuations of the phase quadrature at a single sideband frequency. With this
setup, the nonseparability of a pair of quadrature-entangled beams is demonstrated experimentally. © 2004
Optical Society of America
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For many applications in quantum communication
with continuous variables, such as quantum tele-
portation,1 entanglement swapping,2 and quantum
cryptography,3 it is required that one measure the
amplitude and the phase quadrature of the electro-
magnetic f ield. A homodyne detector4 is usually
applied to perform phase-sensitive measurements by
interference of the signal beam and probing of the
sidebands with a local oscillator, which is required to
be much brighter than the signal beam. However, for
intense signal beams, this requirement gives rise to
technical difficulties because the high intensities may
saturate the detectors. Phase measurements can also
be achieved by rotating the bright carrier (internal
local oscillator) with respect to the sidebands. Such
frequency-dependent phase shifts could be accom-
plished by ref lecting the light of a cavity as a result of
multiple beam interference. This technique was used
in early quantum optical experiments.5,6 However,
for ultrashort light-pulse trains the requirements
for the dispersion properties of the resonator are
quite demanding. In this Letter we present an al-
ternative approach in which the f luctuations of the
phase quadrature are measured at a certain sideband
frequency without the use of any local oscillator or
resonator. An interferometric setup reminiscent of
that used by Inoue and Yamamoto to determine the
longitudinal mode partition noise7 is shown to be
capable of performing quantum-optical measurements
of the phase quadrature below the shot-noise level,
by introducing a phase shift between the carrier and
the sidebands that is due to two-beam interference.
Our setup allows for easy switching between the mea-
surement of the phase quadrature and the amplitude
quadrature and was used to fully characterize quadra-
ture entanglement of a pair of intense pulsed beams.

The basic setup is a Mach–Zehnder interferometer
(see the inset of Fig. 1) with an arm-length difference
DL that introduces a frequency-dependent phase
shift at a certain rf sideband. For frequencies in the
megahertz regime, DL is much larger than the optical
wavelength, typically several meters. To describe the
interferometer in terms of quantum theory, we express
the input f ield mode through annihilation operator
â�t� � a 1 dâ�t�, where a is the classical amplitude
(a is assumed to be real) and where dâ�t� contains
0146-9592/04/161936-03$15.00/0
all classical and quantum-mechanical f luctuations
and has zero mean value. This mode is split at a
50�50 beam splitter and hence mixed with vacuum
dv̂�t�. The two emerging modes, denoted ê�t� and
f̂ �t�, are combined at a second 50�50 beam splitter.
The relative optical phase shift between ê�t� and f̂ �t�
is denoted w, the relative delay between the long
and the short arms of the interferometer is given by
t � DL�c. Output modes ĉ�t� � 1�

p
2 �ê�t� 1 f̂ �t�� and

d̂�t� � 1�
p
2 �ê�t� 2 f̂ �t�� are then given by

ĉ�t� �
1
2

�a 1 dâ�t� 1 dv̂�t� 1 exp�iw�a

1 exp�iw�dâ�t 2 t� 2 exp�iw�dv̂�t 2 t�� , (1)

d̂�t� �
1
2

�a 1 dâ�t� 1 dv̂�t� 2 exp�iw�a

2 exp�iw�dâ�t 2 t� 1 exp�iw�dv̂�t 2 t�� . (2)

For intense states of light the interferometer equations
can be simplif ied by use of a linearization approach.

Fig. 1. Experimental setup of the phase-measuring inter-
ferometer. The orientation of the first l�2-plate deter-
mines the type of measurement: amplitude measurement
(AM) or phase measurement (PM). PBS, polarizing beam
splitter; 50�50, beam splitter.
© 2004 Optical Society of America
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Photon numbers n̂c�t� � ĉyĉ and n̂d�t� � d̂yd̂ in the
two output ports of the interferometer are calculated
by keeping the f luctuating contributions up to linear
terms. Evaluation of the sum n̂c�t� 1 n̂d�t� and the
difference n̂c�t� 2 n̂d�t� of the photocurrents yields

n̂c�t� 1 n̂d�t� � a2 1
1
2

a�dX̂a, 0�t� 1 dX̂v, 0�t�

1 dX̂a, 0�t 2 t� 2 dX̂v, 0�t 2 t�� , (3)

n̂c�t� 2 n̂d�t� � a2 cos w 1
1
2

a�dX̂a, 2w�t 2 t�

2 dX̂v,2w�t 2 t� 1 dX̂a,w�t�

1 dX̂v,w�t�� , (4)

where quadrature component dX̂a,w is defined by
dX̂a,w � exp�iw�dây 1 exp�2iw�dâ.

Then, via Fourier transform, the spectral compo-
nents of the rf f luctuations at sideband frequency V
are obtained. Since the phase shift of the spectral
components is given by Vt � u [note that Fourier
transformation F gives F f �t 2 t� � exp�2iVt�F f �t��,
and the optical phase is adjusted to w � p�2 1 2kp (k
is an integer), the f luctuations of the sum and the dif-
ference photocurrents in frequency space read as

dn̂V
c 1 dn̂V

d �
1
2

a�dX̂V
a, 0 1 exp�2iu�dX̂V

a, 0

1 dX̂V
v, 0 2 exp�2iu�dX̂V

v, 0� , (5)

dn̂V
c 2 dn̂V

d �
1
2

a�dX̂V
a,p/2 1 exp�2iu�dX̂V

a,2p/2

1 dX̂V
v,p/2 2 exp�2iu�dX̂V

v,2p/2� . (6)

For u � p, the sum signal yields dn̂V
c 2 dn̂V

d � adX̂V
v, 0

and the difference signal dn̂V
c 2 dn̂V

d � adX̂V
a,p/2,

which is proportional to spectral component V of
the phase quadrature of the initial f ield. The delay
must therefore be chosen such that a phase shift
of p between the two arms of the interferometer is
introduced at measurement frequency Vm � 2pfm.
Corresponding delay DL is then given by DL � cT�2 �
cp�Vm � c�2fm, where c is the speed of light and T is
the period of the rf signal at frequency Vm.

The experimental setup of the phase-measuring
interferometer is depicted in Fig. 1. It contains a
Mach–Zehnder interferometer followed by a balanced
detection system using high-efficiency InGaAs photo-
diodes (Epitaxx ETX 500). The first beam splitter in
the interferometer is made of a polarizing beam split-
ter and a l�2 plate. It is therefore possible to switch
between phase measurement creating equal intensity
in both arms and amplitude measurement, where all
light propagates through one arm. The latter situ-
ation is equivalent to a balanced detection scheme in
which the sum and the difference signals provide the
amplitude noise and the shot-noise level, respectively.
The variances of the photocurrent f luctuations were
recorded with a pair of spectrum analyzers (8590 from
HP) at a resolution bandwidth of 300 kHz and a video
bandwidth of 30 Hz. The measurement time for each
recorded trace as in Fig. 2 was 5 s. The difference of
the dc powers of the two detectors served as the error
signal and was fed back onto a piezo mirror in the
interferometer to stabilize the optical phase.

The quantum source that we characterize with our
phase-measuring device produces intense quadrature-
entangled light pulses. An optical parametric oscil-
lator pumped by a mode-locked Ti:sapphire laser is
used as a light source. It produces pulses of 100 fs
at a center wavelength of 1530 nm and at a repetition
rate of 82 MHz. The nonlinear Kerr effect experi-
enced by intense pulses in optical fibers8 is used to gen-
erate amplitude-squeezed light pulses employing an
asymmetric fiber Sagnac interferometer.9,10 By use of
the linear interference of amplitude squeezed beams,
intense entangled light was generated with the f iber-
optic setup described by Silberhorn et al.11 To
demonstrate sub-shot-noise performance of the inter-
ferometer each of the entangled beams was directed
into a phase-measuring interferometer. We verified
the correlations of the detected photocurrents and com-
pared them with the corresponding shot-noise level.

Working with a pulsed system, one can perform
phase measurements only at certain frequencies where
interference occurs, as possible delays are governed
by the repetition frequency frep of the laser source,
DL � cnTrep � cn�frep (n is an integer number; Trep is
the time between two pulses). Possible measurement
frequencies are then given by fm � frep�2n. In our
case, with a repetition rate of 82 MHz, the arm-length
difference must be a multiple of 3.66 m, corresponding
to the distance between two successive pulses. For
a frequency of 20.5 MHz an arm-length difference
of 7.32 m is required. To achieve high interference

Fig. 2. Correlations of the (a) phase quadrature and
(b) amplitude quadrature. In each graph the noise level
(traces 1) of the correlation signal is shown together with
the corresponding shot-noise level (traces 2), the noise level
of the individual beams (traces 3), and the signal with the
anticorrelations (traces 4). The traces were corrected by
subtracting the electronic noise, which was at 284.7 dBm.



1938 OPTICS LETTERS / Vol. 29, No. 16 / August 15, 2004
contrast and hence high efficiency of the interferom-
eter, one has to carefully match not only the phase
fronts of the light from the long and the short arms
but also the temporal overlap of the pulses.

To characterize the entanglement source we first
investigated the squeezing resources used to generate
entanglement, using the two interferometers in the
amplitude quadrature settings. In the experiment
2.1 dB and 2.4 dB of amplitude squeezing were ob-
served for the two input beams, respectively. The
level of squeezing is limited by the losses of the
beams in the interferometers by use of four imperfect
detectors and nonoptimum balancing.

In the next step the expected quantum correlations
(anticorrelations) of the phase (amplitude) quadrature
were verif ied. These were checked by looking at
the noise level of the difference (sum) signal of each
of the photocurrents of the two entangled beams for
the phase (amplitude) measurement. The phase
correlations are 21.2 dB below the shot-noise level
[see trace 1 in Fig. 2(a)], corresponding to a squeez-
ing variance ��dX̂V

1,p/2 2 dX̂V
2,p/2�2��2 � 0.76 6 0.02,

whereas the amplitude correlations were at 22.0 dB
[see trace 1 in Fig. 2(b)] corresponding to a squeezing
variance ��dX̂V

1, 0 1 dX̂V
2, 0�2��2 � 0.63 6 0.02 (indices 1

and 2 refer to two entangled modes). The discrepancy
between the noise level of the amplitude and the
phase quadrature measurement comes from imperfect
mode matching in the latter case. We achieved a
visibility of 85%, introducing additional losses of 28%
for the phase measurement. Thus, instead of 22 dB
of correlations as in the amplitude measurement,
we do not expect correlations stronger than 21.3 dB
in the phase measurement, which agrees with the
measurement results.

The noise level of the phase quadrature measure-
ment of the individual entangled beams [traces 3 in
Fig. 2(a)] is 6 dB below the corresponding sum signal
of these two beams (trace 4), which is due to the quan-
tum correlations of the entangled beams. The same
applies for the noise levels of the amplitude quadra-
ture. Note that the noise level of the individual beams
is �18 dB above the shot-noise level because of the
high degree of excess phase noise of the initial squeezed
light introduced by self-phase modulation as well as by
guided acoustic wave Brillouin scattering.12

In this experiment, for the f irst time to our knowl-
edge nonclassical correlations in the phase quadrature
have been observed directly for intense pulsed light.
No additional interaction between the individual en-
tangled beams11 is necessary to demonstrate sub-shot-
noise correlations in the phase quadrature. According
to the nonseparability criterion by Duan et al.13 and
Simon14 for Gaussian systems, the existence of non-
classical correlations implies that D � ���dX̂V

1,p/2 2

dX̂V
2,p/2�2� ��dX̂V

1, 0 1 dX̂V
2, 0�2��4�1�2 , 1. Since D �

�0.76 3 0.63�1�2 , 1, we can conclude qualitatively
that the state is nonseparable. Because our bi-
partite Gaussian state is symmetric we can also
quantify the entanglement of formation EF by
use of proposition 2 in Ref. 15, and we find that
EF � 0.22 6 0.02.
The implemented phase-measurement device opens
the possibility of performing a variety of experiments
in the f ield of quantum information and communica-
tion, where intense light beams are used and phase
measurements are required. For example, a quantum
key distribution scheme relying on quadrature entan-
glement16 could be implemented without sending a local
oscillator together with the signal beams. Also, the
full experimental demonstration of continuous vari-
able entanglement swapping using intense light beams
seems to be possible.2

In conclusion, we have experimentally demonstrated
a setup for measuring the quantum f luctuations of
the phase quadrature of intense, pulsed light with-
out using a separate local oscillator or a resonator.
We prove sub-shot-noise resolution by resolving phase
correlations below the shot-noise level for a pair of
quadrature-entangled beams.
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