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We propose a novel experimental technique based on the process of parametric
downconversion for the generation of photon pairs characterized by ultra-high
dimensional spectral entanglement. It is shown that a superlattice of nonlinear
and linear segments can be exploited to obtain states exhibiting a remarkably
large entanglement, with a Schmidt number in the region of 107. We furthermore
consider the application of such highly entangled photon pairs for the violation of
a Bell inequality constructed from a measurement of the transverse wavevector
Wigner function; such an approach eliminates the need for filtering the photon
pairs and consequently eliminates an important potential loophole.

1. Introduction

Entanglement is the essential feature which differentiates quantum from classical

systems and has been the core ingredient in many recent experiments and proposals

designed to test the validity of quantum mechanics and to develop quantum-

enhanced technologies. Continuous variable bi-partite quantum systems present

the possibility of dramatically larger entanglement (as quantified for example by

the Schmidt number) compared to systems described by low-dimensional Hilbert

spaces such as those based on spin. An important physical system exhibiting

both kinds of structure is that of photon pairs. Here polarization plays the role of

spin, and the transverse and longitudinal degree of freedom are continuous.
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While idealized polarization-entangled photon pairs have a Schmidt number of 2,
photon pairs exhibiting entanglement in a continuous degree of freedom, such as
frequency or transverse wavevector, have in principle no upper limit to the attainable
Schmidt number [1]. In this paper we explore the generation of photon pairs
characterized by a particularly large Schmidt number, generated by the process of
parametric downconversion (PDC) in specific geometries. Such states constitute
extreme examples of light characterized by non-classical properties and have a
number of exciting applications, apart from fundamental interest in the study of
high-dimensional entanglement. They have, for example, been shown to lead to a
particularly large flux of photon pairs retaining a measurable non-classical character
[2]; likewise they have been shown to lead to the shortest possible time of emission
difference distributions between signal and idler, useful for metrology [3].
As described in [4], such states furthermore lead to a drastically boosted mutual
information between the signal and idler modes, which leads to quantum commu-
nication and cryptography protocols exploiting the richness of the continuous
degrees of freedom to enhance the information transmission capacity. In this
paper we present a specific experimental technique designed to yield photon pairs
with an ultra large Schmidt number at essentially arbitrary PDC wavelengths.
We likewise show that such highly entangled photon pairs can yield the violation
of a continuous variable Bell inequality without recourse to projective measurements
to a subspace of the full Hilbert space, thus closing a potentially important loophole
in the validation of quantum mechanics versus local realism.

In general, PDC photon pairs exhibit complicated correlations between the
spatial and spectral degrees of freedom, as a consequence of the fact that the energy
and momentum conservation constraints are not independent of each other due to
dispersion in the nonlinear medium. In practice narrowband filters (spectral or
spatial) are often used to restrict attention to one degree of freedom or another in
order to bring out the general characteristics of the entanglement in each particular
case of interest. As interest grows in states exhibiting more complicated
entanglement involving more than one degree of freedom (sometimes referred to
as hyper-entanglement), it will become important to consider spectral and spatial
correlations simultaneously. In this paper, however, we restrict attention to one
degree of freedom at a time. While in section 2 we deal with states characterized
by very large spectral entanglement; in section 3 we consider states highly entangled
in the spatial degree of freedom.

2. Two photon state engineering via crystal sequences with linear compensators

In this section we focus on the generation of photon pair states exhibiting ultra-high
dimensional entanglement in the spectral (temporal) degree of freedom. It will be
shown that the use of type-I phasematched PDC coupled with the use of a quasi-
monochromatic pump can result in highly entangled photon pairs in the spectral
degree of freedom. It will be shown, additionally, that by employing a superlattice
of nonlinear and linear crystals chosen so as to eliminate the overall group velocity
dispersion, the Schmidt number can be enhanced further.
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In order to describe PDC states generated by a quasi-monochromatic pump, it is
convenient to define the frequency variables �� ¼ 2�1=2ð�s � �iÞ in terms of the signal
(s) and idler (i) frequency detunings �� ¼ !� � !0 (where � ¼ s, i) from the degen-
erate PDC frequency !0. It can be shown that the PDC state can then be expressed as

j�i ¼ A

ð ð
d�þ d���ð�þÞ��ð��Þj2

�1=2ð�þ þ ��Þisj2
�1=2ð�þ � ��Þii, ð1Þ

where A is a normalization constant and j . . .i� (with �¼ s,i) represents single photon
Fock states in the signal and idler modes. �ð�þÞ��ð��Þ (see equation (1)) represents
the joint spectral amplitude given in terms of the pump envelope function (PEF)
�ð�þÞ and a one-dimensional phasematching function (PMF) ��ð��Þ defined in terms
of the full PMF �ð�þ, ��Þ ¼ sinc ½�kð�þ, ��ÞL=2� (where �kð�þ, ��Þ denotes the
phasemismatch and L is the crystal length) by

��ð��Þ ¼ lim
�þ!0

�ð�þ, ��Þ: ð2Þ

Let us note that the spectral width along �þ is determined by the pump
bandwidth which for a quasi-monochromatic pump (e.g. in the MHz range) is
typically orders of magnitude smaller than the width of the PMF along �þ.

The cooperativity parameter (also known as the Schmidt number) K is a
convenient quantifier of the effective dimensionality of the Hilbert space describing
the continuous variable structure of the PDC photon pairs. Following the arguments
in [5], if each of �ð�þÞ and ��ð��Þ are described by Gaussian functions with widths
�þ and �� respectively, it is possible to obtain an analytic expression for K. In the
limit where �þ � ��, we obtain the expression K ¼ ��=2

1=2�þ. Thus, it becomes
clear that in order to obtain highly entangled states of the kind discussed above,
we require the narrowest possible pump bandwidth (which determines �þ) and the
widest possible PDC bandwidth, quantified by ��. In what follows we develop a
specific technique designed to enhance the PDC bandwidth [6] while employing a
particularly narrow pump bandwidth. We will show that ��=�þ ratios of � 107 are
possible, representing states with an extraordinarily high dimensional entanglement
in the spectral degree of freedom.

We exploit nonlinear crystal superlattices [7], where the dispersion exhibited
by thin crystal segments is compensated for by that in appropriately chosen linear
optical media. Such a technique has proven powerful for the generation of a variety of
states including those optimized for Hong–Ou–Mandel interferometry [8], those
characterized by spectral decorrelation crucial for the successful concatenation of
multiple heralded single photon sources [9] and time-bin qudits [10]. While in the cases
described above, it suffices to consider group velocity crystal dispersion terms,
high dimensional entangled states can be enhanced by control over group velocity
dispersion (GVD) terms; specifically, as will be shown below, when the GVD
coefficient at the degenerate PDC wavelength vanishes, the PDC spectrum can be
significantly broadened. Specific materials meet this condition only at certain wave-
lengths, thus limiting the usefulness of such an approach. We will show, however, that
through the use of crystal superlattices, the overall GVD term can be made to
vanish provided a certain condition (see below) is met by the superlattice materials.
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A source engineered in this way dramatically enhances the range of wavelengths at
which it is possible to obtain two photon states characterized by particularly high
dimensional entanglement.

Consider the arrangement shown in figure 1 consisting of N identical �ð2Þ crystals
and N� 1 linear optical �ð1Þ spacers. Each of the crystals is assumed to be cut and
oriented for degenerate collinear type-I PDC while the compensators are assumed
not to exhibit a �ð2Þ nonlinearity. It is further assumed that each crystal has length
L while each spacer has length h. The phase mismatch in each of the crystals is
given by

�k ¼ ks þ ki � kp, ð3Þ

where k� (with � ¼ p, s, i) denotes the wavenumber for each of the three fields taking
into account dispersion in the crystal. The phase mismatch introduced by each of the
spacers is equivalently given by

�� ¼ �s þ �i � �p, ð4Þ

where �� (with � ¼ p, s, i) now represents the wavenumber for each of the three
fields taking into account dispersion in the birefringent spacer. For an assembly of
N crystals and N� 1 spacers the overall phasematching function can then be
calculated as

�Nð�k,��Þ ¼
XN�1

m¼0

exp ½imðL�kþ h��Þ� sinc
L

2
�k

� �

/ exp
i

2
N�kð�s, �iÞLþ ðN� 1Þ��ð�s, �iÞh½ �

� �
�N

�

2

� �
sinc

L�k

2

� �
,

ð5Þ

where we have defined the quantity � as

� ¼ L�kþ h�� ð6Þ

and where

�NðxÞ ¼
1

N

sin ðNxÞ

sin ðxÞ
: ð7Þ

Hence, apart from an overall phase factor the crystal assembly phasematching
function is composed of the product of two distinct functions: one corresponds to the

Figure 1. Sequence comprised of N �ð2Þ crystals interspersed with N� 1 birefringent
spacers.
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phasematching function of a single crystal and the second factor incorporates the
combined effect of the crystal and spacer dispersion. In order to carry out more
explicit calculations, it is helpful to write down the crystal and spacer phase
mismatch as a Taylor expansion where we omit all terms of higher order than
quartic in �. Thus, we obtain, in terms of the frequency variables ��:

� ¼ L�kð0Þ þ h��ð0Þ þ 21=2T�þ þ Bð�2þ þ �2�Þ � Bp�
2
þ

þ Cð3�2��þ þ �3þÞ � Cp�
3
þ

þDð�4� þ 6�2þ�
2
� þ �4þÞ �Dp�

4
þ þ #ð�5Þ, ð8Þ

where L�kð0Þ and h��ð0Þ denote the constant terms of the Taylor expansions and
where T, B, Bp, C, Cp, D and Dp denote the coefficients of the linear, quadratic, cubic
and quartic expansion terms and where #ð�5Þ denotes quintic and higher order terms.

We now impose the condition

h ¼
2pm

2�ð!0Þ � �pð2!0Þ
, ð9Þ

where m is any integer which guarantees a vanishing constant term due to the
superlattice. We furthermore assume that �kð0Þ ¼ 0 as required for each crystal
segment to exhibit phasematching.

The joint spectral amplitude is then given by the product of the phasematching
function and the pump envelope function, as in equation (1). In the limit of a quasi-
monochromatic pump (see equation (2)) odd order dispersion terms in � drop out;
we thus obtain

��ð��Þ�ð�þÞ ¼ �N ðB�2� þD�4�Þ=2
� �

sinc ��2�=2
� �

exp �2�2þ=�
2

� �
ð10Þ

in terms of two GVD coefficients:

B ¼
1

2
½Lk00ð!0Þ þ h�00ð!0Þ�, ð11Þ

� ¼
L

2
k00ð!0Þ ð12Þ

and a quartic dispersion coefficient

D ¼
1

48
½Lkð4Þð!0Þ þ h�ð4Þð!0Þ�, ð13Þ

where 00 denotes a second derivative and ð4Þ denotes a fourth derivative. In order to
gain physical insight, let us first consider the case h¼ 0, i.e. the case where the
superlattice reduces to a continuous crystal of length ‘ ¼ NL. In this case, the joint
spectral amplitude becomes

��ð��Þ�ð�þÞ ¼ sinc �0�2�=2þ #ð�
4Þ

� �
exp �2�2þ=�

2
� �

ð14Þ

with �0 ¼ ‘k00ð!0Þ=2. Let us note that the PDC spectral width is determined by the
GVD coefficient �0; it is clear that if �0 is made to vanish, the width is now determined
by a quartic dispersion coefficient, typically leading to a drastically boosted PDC
bandwidth. As has been discussed above, the condition �0 ¼ 0 occurs for some
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materials at specific wavelengths. Here we show, however, that through the use of a
superlattice the overall GVD coefficient B (see equation (11)) can be made to vanish
at arbitrary wavelengths independently of the underlying crystal dispersion, which
can result in high dimensional entangled states at arbitrary wavelengths if short
crystal segments are used.

Thus, the technique presented here relies on imposing the condition B¼ 0 so that
the lowest order term in the argument of the �N function is quartic in ��. Note that
for this to be possible: (i) k00ð!0Þ and �

00ð!0Þ must exhibit opposite signs and (ii) the
thicknesses L and hmust be chosen such that the overall GVD coefficient B vanishes.
If, in addition, short crystal segments are employed, the superlattice contribution
dominates over the single-crystal contribution in equation (10). Note that in this case
the dominant term is quartic and proportional to parameter D, which for typical
crystals is small resulting in an extraordinarily broad joint spectral intensity
along ��. Note that along �þ the joint spectral profile is determined by the pump
bandwidth, which we are here assuming to be extremely small (in the region
of MHz).

For concreteness, let us consider a specific example. Consider the use of lithium
niobate (PPLN) crystal segments periodically poled for degenerate type-I PDC
centred at 1:55 mm, a useful wavelength for fibre communications. We assume all
three fields to be ‘e’ waves and a quasi-phasematching periodicity of 18:7 mm. In
addition, let us consider calcite spacers aligned so that the signal and idler
photons experience the ordinary index of refraction. It turns out that while for the
PPLN segments k00ð!0Þ ¼ 1:0� 10�31 s2 mm�1, for the calcite segments
�00ð!0Þ ¼ �2:1� 10�32 s2 mm�1. Thus, the calcite thickness h to PPLN thickness L
ratio must be � 4:9 to guarantee that the overall GVD term B vanishes. In the plots
below we assume h ¼ 487 mm (corresponding to m¼ 10 in equation (9)) and
L ¼ 100 mm; we assume a superlattice comprised of 10 nonlinear crystals and 9
linear spacers. We furthermore assume a quasi-monochromatic pump with 5MHz
bandwidth. Figure 2 shows the resulting joint spectral intensity. Given the extremely
high aspect ratio of the resulting two-photon state, for graphical clarity we plot
diagonal slices along the directions !s þ !i and !s � !i. Thus, figure 2(a) shows the
joint spectral intensity evaluated at !i ¼ 2!0 � !s and plotted as a function of
wavelength in mm; the solid line results from the superlattice described above while
the dashed line represents the case of a continuous PPLN crystal of length equivalent
to 10 crystal segments (as can be seen, the superlattice results in approximately a
threefold increase in PDC bandwidth). Figure 2(b) shows the joint spectral intensity
evaluated at !s ¼ !i as a function of frequency in MHz. Note that along !� the
signal extends roughly from 1.25 to 2 mm, which represents an extraordinarily large
bandwidth. At the same time, the bandwidth along the !s þ !i is some 7 orders of
magnitude smaller (5MHz versus �90THz), which translates into a state with
exceptionally large spectral entanglement.

The very large information content in a two-photon state of the sort described
here is unfortunately not easily accessible. The information resides in the spectral and
temporal entanglement of the two photons—that is in their negative frequency
correlation and their positive temporal correlation. To make use of this requires
nonstationary optical elements, such as shutters, phase modulators or detectors
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whose response time is comparable to the correlation time between the two photons

(i.e. to the width of the signal–idler time of emission difference distribution), which

for the state in figure 2 is in the order of a few femtoseconds. Such components do

not exist at present. Similarly, very high spectral resolution, on the order of the pump

bandwidth is also required. If such devices are available then slow detectors may

in principle be used, the number of which is equal to the number of bits of mutual

information between the pair of photons.
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Figure 2. (a) Slice along !� of the joint spectral intensity for superlattice (solid line) and for
equivalent continuous crystal (dashed line). (b) Slice along !þ of the joint spectral intensity.
Notice the extremely high ratio of the two bandwidths, resulting in an exceptionally large
spectral entanglement.
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Massive entanglement of this kind has also been discussed for the spatial domain,
for which elements with high spatial and angular resolution are available [1, 11, 12].
This therefore seems a more plausible approach. Unfortunately, the number of
Schmidt modes that is realistically accessible is limited by the extent of the optical
imaging system and the dimensions of the nonlinear media and pump beam to be
substantially smaller than the �107 available in the spectral case.

In conclusion, we have presented a novel technique based on a superlattice
of nonlinear crystals and linear compensators coupled with the use of a quasi-
monochromatic pump which can yield states, centred at arbitrary wavelengths,
characterized by extraordinarily high dimensional entanglement in the spectral
degree of freedom. It is expected that this work will facilitate the further exploration
of highly entangled quantum systems.

3. Violation of a continuous variable Bell inequality based on the spatial

Wigner function

The nonclassical character of entangled states of particles with a 2-dimensional
Hilbert space are well understood and are the basis for numerous applications.
However, the non-classical features of this kind of state in continuous spaces have
not attracted much attention. In this section, we show that highly entangled states
can be used to test the nonlocality of quantum theory by violating Bell inequalities.
For the convenience of experiment, we consider the spatial structures of the PDC
photons generated by bulk crystals.

Bell inequalities provide one measure of the nonclassicality of a composite
quantum system, by testing whether a local realistic model can describe the results
of measurements on the system. The original Bell inequality relies on dichotomic
outcomes of measurements on each of the subsystems [13, 14]. Recently there have
been discussions on the generalization of Bell inequalities to N-value observables
with N� 3 [15–17]. When N increases this requires large detector arrays, which
makes it challenging for experimental realizations. In this section we restrict our
attention to the Bell inequalities based on dichotomous observables. Therefore it is
necessary to identify a way in which a given state may yield only two possible results
for the specified measurement.

The first Bell inequality violation was shown with a singlet state of two spin-1/2
particles [13, 18]. Since then, it has been considered whether it is possible to violate
the Bell inequality using the original, continuous-variable entangled EPR state [19]
with the wave function

 ðx1, x2Þ ¼

ð1
�1

exp ½ð2pi=hÞðx1 � x2 þ x0Þp� dp: ð15Þ

Although this state has some mathematical problems due to its singularity, it can
be regarded as the limit of an appropriate class of smoothed normalizable states [20]
to overcome this difficulty. Since an arbitrary system can be separated into
dichotomous observables, these realistic states can be used to demonstrate violations
of Bell inequalities. An easier approach is to operate on only one two-dimensional
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subspace, and discard the photons that do not fall into it. For example, Cohen [20]
shows that a Bell state can be produced by selecting two pairs of correlated
space–time modes from the continuum occupied by each EPR particle. This allows
the momentum-entangled photons to be treated exactly like polarization-entangled
photons. However, this procedure works by throwing away nearly all the amplitude
of the EPR state, creating a spin-like state by projecting onto a dichotomic
subspace of the original, continuous Hilbert space. This idea was, in fact, the basis
for a practical realization by Tapster and Rarity of Bell inequality violations
using frequency and momentum entanglement of photon pairs [21]. In these
experiments, pinholes were used to select just two pairs of correlated modes, thus
discarding most of the correlated particles produced by the quantum source.
This severely limits the signal-to-noise ratio of the experiments, and provides an
obvious loophole.

Losses have proven to be a most difficult obstacle to any loophole free experiment
that violates nonlocality. Therefore it would be a significant achievement to
demonstrate that a Bell inequality is violated with continuous degrees of
freedom, without discarding any of the photons used to provide the information.
This can be done by measuring the joint Wigner function of the two-photon state.
Although Bell argued that a positive definite Wigner function allows for a
local hidden variable description of the correlations [22], it has been shown that
the positivity or negativity of the Wigner function has a very weak relation to the
locality problem [23]. In fact, it has been proven that the Wigner function is
equivalent to the expectation value of the parity operators [24]. As the measurement
of the parity operator only yields two values: þ1 and �1, the Wigner function
satisfies the condition for constructing Bell inequalities. Now let us examine the
spatial degree of freedom of a two photon state (cf. equation (1), which considers
only the frequency part)

j i ¼

ð
dk1 dk2  ðk1, k2Þ jk1ijk2i, ð16Þ

where  ðk1, k2Þ plays the role of a two-photon wavefunction [4]. The Wigner
function is given by

Wðx1, k1; x2, k2Þ ¼
4

p2
�ðx1, k1; x2, k2Þ, ð17Þ

where �ðx1, k1; x2, k2Þ is the Wigner transform of the biphoton wavefunction:

�ðx1, k1; x2, k2Þ ¼

ð
d	1 d	2 exp ð2ix1	1Þ exp ð2ix2	2Þ 

	

� ðk1 � 	1, k2 � 	2Þ ðk1 þ 	1, k2 þ 	2Þ: ð18Þ

Using the method in [14], we can construct the combination

B ¼ �ð0, 0; 0, 0Þ þ�ðJ1=2, 0; 0, 0Þ þ�ð0, 0; � J1=2, 0Þ ��ðJ1=2, 0; � J1=2, 0Þ, ð19Þ

where J1=2 characterizes the magnitude of the displacement. For local hidden
variable (LHV) theories, B should satisfy the inequality �2 
 B 
 2.

Generation of highly entangled photon pairs 715

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
ts

bi
bl

io
th

ek
 P

ad
er

bo
rn

] 
at

 1
3:

17
 0

5 
D

ec
em

be
r 

20
12

 



For degenerate PDC with collinear phase matching in a bulk crystal, the
joint probability amplitude of the two photon state has a expression similar to
equation (1) [25]

 ðk1, k2Þ / exp �
w2
0

4
k1 þ k2ð Þ

2

� �
sinc

L

4kp
k1 � k2ð Þ

2

� �
, ð20Þ

where w0 is the spot size of the pump, L is the length of the nonlinear crystal and kp
is the wave vector of the pump. We should indicate that in contrast to Gaussian-
correlated states [20], the PDC state has negative values for the Wigner function at
some points. From equations (18), (19) and (20), we can calculate B for the entangled
photon state. Similar to the Schmidt number K, the maximum value of B is
determined by k1=2p w0=L

1=2, which plays a similar role to ��=�þ in section 2.
By selecting proper configurations, Bell inequalities can be violated. Figure 3(a)
shows the relation between Bmax and k1=2p w0=L

1=2 for the Gaussian correlated state
with the same parameters as the PDC state in equation (20)y

 ðk1, k2Þ / exp �
w2
0

4
k1 þ k2ð Þ

2

� �
exp �

L

4kp
k1 � k2ð Þ

2

� �
: ð21Þ

Although there is entanglement between the two photons when k1=2p w0=L
1=2 < 1,

the combination in equation (19) will not violate the Bell inequality. When
k1=2p w0=L

1=2 � 1, Bmax increases with k1=2p w0=L
1=2 and approaches its limit 2.19.

Figure 3(b) shows the calculated B for a realistic PDC source with L¼ 3mm,
w0¼ 2mm and a monochromatic pump at 400 nm. For this configuration, when
jJ1=2j < 2:5 mm, the Bell inequality is violated.

Therefore it is possible to violate the Bell inequality using the correlations of
continuous spatial variables of a realistic PDC source without discarding any
photons. Rather than manipulating the input state using a projection in order to
obtain a Bell state, we instead construct a dichotomic observable that is non-zero for
any biphoton state. Furthermore the use of the spatial degree of freedom of the
entangled photon pairs overcomes one of the main obstacles for realizations of CV
entanglement in field quadratures [23, 26]: the degradation of the quantum correla-
tions due to inevitable, optical losses and inefficiencies in real systems. Experiments
using photon pairs are not hampered by losses, since the photon number is
decoupled from the observed correlated variables such that viable results can be
post-selected.

Another advantage of using the Wigner function in real space is that it can be
measured directly using Sagnac interferometers. The proposed experimental setup is
shown in figure 4(a). The apparatus consists of two Sagnac interferometers shown
in figure 4(b). Before entering each interferometer, the input photon is steered by a
mirror (M1 in the figure). The displacement and tilt of the mirrors determine the
point at which the Winger function is measured [27]. Each interferometer includes an

yWith the same parameters, the Schmidt numbers of the Gaussian correlated state and
the PDC state will vary in a similar way, i.e. both of them meet the minimum value
k1pw0=L

1=2
¼ 1 [1].
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image rotator, which acts as the spatial inversion of the photon. Multiplying the

difference signals from each of the interferometers recorded at coincident times gives

the joint Wigner distribution for the two points in space. By selecting appropriate

configurations of the PDC source and displacements of the mirrors, the results of

J µm

Limit of LHV

(a)

(b)

Figure 3. (a) The relation between Bmax and k1=2p w0=L
1=2 for Gaussian correlated states.

(b) Plot of the combination B for a realistic PDC source. The photons are generated in a 3mm
thick BBO crystal which is pumped by a monochromatic beam 
¼ 400 nm with a 2mm spot
size.
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measurements will violate local realism. Nevertheless, there will likely be some
restrictions on the possible states testable in this way due to the finite numerical
aperture of the Sagnac interferometer. This would need more study before it can be
properly claimed that the selection loophole can be closed in this way.

4. Conclusions

We have proposed a novel technique for the generation of highly entangled photon
pairs, based on the use of a quasi-monochromatic pump together with the suppres-
sion of group velocity dispersion via a superlattice source comprised of adequately
chosen linear and nonlinear segments. We have shown that this technique permits
the synthesis of states characterized by extremely large spectral entanglement; we
have furthermore shown that for realistic experimental parameters Schmidt numbers
in the region of 107 are possible. Highly entangled states of this type enable a number
of crucial applications. In particular, we have shown that a highly entangled state in

M1
∆x

∆θ

Rotator

BS
Detector

M1Source Rotator DetectorBS BS

(b)

Lens

Ψ Ψ Ψ
Ψ ΨΨ

Lens
Detector

Wi(x,k)

(a)

Correlated
Source

−W1(x,k)

−W2(x,k)

Figure 4. (a) Apparatus for measuring the spatial joint Wigner function of the PDC source.
Each arm consists of a Sagnac interferometer shown in (b).
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the spatial degree of freedom leads to the violation of a continuous variable

Bell inequality based on the complete two-photon amplitude (without recourse to

selection or filtering), thus in principle closing an important loophole.
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