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Abstract
Avalanche photo-detection is commonly used in applications which require
single-photon sensitivity. We examine the limits of using avalanche photo-
diodes (APD) for characterizing photon statistics at high data rates. To identify
the regime of linear APD operation, we employ a ps-pulsed diode laser with
variable repetition rates between 0.5 MHz and 80 MHz. We modify the mean
optical power of the coherent pulses by applying different levels of well-
calibrated attenuation. The linearity at high repetition rates is limited by the
APD dead time and a nonlinear response arises at higher photon-numbers due to
multiphoton events. Assuming Poissonian input-light statistics we ascertain the
effective mean photon-number of the incident light with high accuracy. Time
multiplexed detectors (TMD) allow us to accomplish photon-number resolution
by ‘photon chopping’. This detection setup extends the linear response function
to higher photon-numbers and statistical methods may be used to compensate
for nonlinearity. We investigate this effect, compare it to the single APD case
and show the validity of the convolution treatment in the TMD data analysis.

1. Introduction

Studying distinct quantum properties of light has initiated a multitude of new developments
in quantum optics and fundamental physics. In recent decades it has actually triggered the
evolution of quantum technologies and quantum communication, which are based on genuine
quantum effects that have no classical counterpart. For such applications the interest in the
performance of detectors has shifted: while for fundamental research the quantum efficiency
essentially defines solely the quality of a measurement setup, the benchmark for detectors in
quantum communication systems also comprises the experimental complexity, detector noise
and the maximum speed of possible data rates in single-shot operation (Bienfang et al 2004,
Gordon et al 2005, Thew et al 2006, Takesue et al 2006).
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Two general approaches are currently in use to characterize quantum states in
communication systems: single-photon schemes rely on avalanche photo-diodes, while
continuous variable (CV) systems employ homodyne detection. Time-resolved homodyne
detection setups utilize conventional photo-diodes to realize single-shot measurements of
quadrature uncertainties (Smithey et al 1993, Raymer et al 1995, Hansen et al 2001, Zavatta
et al 2002, Wenger et al 2004). Thus, CV communication promises quantum key exchange
at high repetition rates (Grosshans et al 2002, Hirano et al 2003, Lance et al 2005, Lorenz
et al 2006); though it requires a more intricate data post-processing with reduced sifted
secure bit rates. In contrast, various techniques have been realized up-to-date to observe
single photons: photomultiplier tubes, avalanche photo-diodes (APDs), visible light photon
counters (VLPCs) and superconducting sensors, like the superconducting edge sensor or
superconducting bolometers (Cabrera et al 1998, Fujiwara and Sasaki 2006, Hadfield et al
2005, Kim et al 1999, Rosenberg et al 2005, Somani et al 2001). In the visible regime
avalanche photo-diodes however combine reasonable quantum efficiencies of about 60% and
comparatively low dark-count noise with an operation at room temperature and commercial
availability. Neglecting the difference in quantum efficiency, the APDs seem to gather
many advantages, but unfortunately they are binary detectors. Thus they are not capable
to distinguish directly between different photon-numbers. In order to achieve photon-number
resolution with APDs, schemes as ‘photon chopping’, e.g., by beam splitters (Paul et al
1996, Kok and Braunstein 2001), or time-multiplexing have been proposed and implemented
(Banaszek and Walmsley 2003, Fitch et al 2003, Achilles et al 2004). The basic idea is
to split the pulse under investigation into several pulses and to measure them subsequently
with APDs. The influence of losses and their treatment in the data analysis have been
theoretically and experimentally investigated in previous work (Achilles et al 2004, 2006).
Further distortion of measurement results arises from photons, which are not separated into
different bins and thus get still masked by the non-photon resolving nature of the APD. For
the characterization of photonic states with one single APD multi-photon contributions have
been assessed by attenuation measurements with variable quantum efficiencies. In principle,
this method allows the complete reconstruction of the photon-number statistics (Wenger et al
2004, Zambra et al 2005).

In this paper, we investigate the limits of characterizing photon statistics with commercial
APDs at 800 nm for moderate to high bit rate applications. In this context, a specific parameter
of the APDs is their dead time, which ultimately restricts the speed quantum systems can be
driven at. Other schemes have suggested to use active, high-speed switches in combination
with an APD array to overcome correction which arises from detector dead time (Castelletto
et al 2006). Our attempt is to keep the complexity of the detection to a minimum by
utilizing pico-second pulsed light at appropriate repetition rates to lessen dead-time limitations.
Furthermore, for pulsed systems dark-count contributions can be largely suppressed by
applying a narrow time gating. This is only limited by the jitter of the APDs and the duration
of the light pulses. The full characterization of APDs involves their count-rate response, dark
counts, dead times after a detection event and the detection efficiency. Methods of measuring
the quantum efficiency of APDs have been proposed and are well established (Klyshko 1977a,
1977b, Rarity et al 1987, Penin and Sergienko 1991, Ware and Migdall 2004). However, they
do not consider effects arising from the dead times for higher count rates.

We use only passive optical elements and restrict the number of APDs to two. In all
experimental configurations we employed coherent light with different intensities, repetition
rates and pulse power. While for cw-light the monitored count rates can only be modified
by changing the intensity, pulsed light also allows us to control the time slots of possible
detection events. For comparison, we start our analysis by recording the APD response in
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dependency on well-calibrated intensities of cw-light. We then perform different measurement
sets in the pulsed regime with variable repetition rates to separate dead-time effects from the
influence of multi-photon contributions of the incident light. For photon-number resolved
measurements with time-multiplexed detection (TMD) the theoretical treatment of higher
number contributions is given in Achilles et al (2004). We show experimentally that for
higher power levels the inclusion of the described convolution effect is essential for the apt
interpretation of measured data. Though appropriate theoretical modelling enables a reliable
reconstruction of impinging photon statistics. This complements the experimental TMD
detector characterization and shows in combination with the loss inversion (Achilles et al
2006), the capability of TMDs for quantum communication systems.

2. Theory of APD photo-detection

Due to the charge carrier avalanche in the detection process, APDs can resolve individual
photons, but as a drawback they saturate already at the single-photon level. This binary
response reads: either no detection event (NO CLICK) or at least one photon is detected
(CLICK). The corresponding POVM elements are given by 11−|0〉〈0| and |0〉〈0|, respectively.
As long as the photons arrive at the detector individually and well separated in time, the
detected counts scale linearly with the number of incident photons as intuitively expected.
Timing control can be ensured in the pulsed regime. The response of a binary detector then
depends only on the probability that at least one photon is present in an incident pulse. This
probability is given by P1 = 1 − P0, where P0 denotes the probability that the input light
contains no photon. For a detector with quantum efficiency ηAPD and a dark-count rate Rdark

we can calculate an expected count rate of

Rcnt = frepηAPD (1 − P0) + Rdark, (1)

if a pulse repetition frequency frep is assumed for the input signal states.
In order to characterize the responding behaviour of the APDs, we have to ensure that we

control precisely the influence of the photon statistics of the input light. We used coherent
light which is represented in the photon-number basis as
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i.e. it obeys a Poissonian photon-number distribution. As usual we model the attenuation
1 − η2 as a beam splitter such that the coherent state transforms like
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The probability for no photons present in a pulse is then given by

P0 = exp(−|η|2|α|2). (4)

Assuming a constant quantum efficiency of the APDs, (1) rewrites to

R̃cnt = frep(1 − exp(−|η|2|α|2)) + R̃dark, (5)

with effective values R̃cnt and R̃dark.
If the influences on the count rates are known, a count-rate-dependent correction factor

C (Rmeasured) can be introduced. With knowledge of the correction factor the real count rates
Rreal can be determined from the measured count rates Rmeasured:

C(Rmeasured) = Rreal

Rmeasured
. (6)
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Figure 1. Scheme of the optical setup we used for characterizing the APDs in cw and pulsed
operation: QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam splitter; BS,
beam sampler; PM, power meter; GT, Glan–Thompson polarizer; ND, neutral density filter.

The designation of this factor depends on the calibration of the real photon-number. We
explored different possibilities to retrieve the real input photon-numbers for high count rates
including the data sheets provided by the manufacturer for the specific APD modules.

3. Optical setup

The general experimental setup is illustrated in figure 1. We employed a PicoQuant diode
laser system (PDL-800B) for the generation of pulsed coherent states. Our system permitted
adjustable repetition rates between 1 and 80 MHz and delivered ps-pulses with a centre
frequency at λ̄centre ≈ 805.3 nm. The maximum mean power reached up to 1 mW. To realize
the cw-case we used a diode laser with an optical output power of Pcw ≈ 8 mW at the centre
frequency λ = 800 nm. For most measurements we utilized a half-wave plate in combination
with a polarizing beam splitter to implement a variable attenuation with a dynamical extinction
ratio of around 1:35. For the measurements with the cw-laser we used an additional Glan–
Thompson polarizer, which allowed to access an extinction ratio of more than 1:300. To
ascertain the attenuation factor, part of the light was reflected out by a beam sampler with
constant splitting ratio and monitored by a power meter. In the signal arm, a fixed attenuation
of several orders of magnitude was necessary to reduce the laser power down to the low photon-
number regime. Hereby, special care had to be taken to suppress reflection and interferences
between the neutral density filters. These could otherwise falsify the calibration for different
filter sets needed to change the mean optical powers. Furthermore, the power meter used to
measure the attenuation showed offsets between its different linearity regimes. Hence, all
measurements had to be taken with one fixed filter setting and a sufficiently high range of
variable attenuation. Finally, the signal light was coupled into a multimode patchcord fibre
cable, connected to the APD modules (Perkin&Elmer SPCM-AQR-13-FC) and a computer-
based counter card was used to monitor the resulting count rates.
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Figure 2. (a) Measured count rate for cw-light against optical power, i.e. transmission of the
variable attenuation. The linear fit is included and for higher count rates a significant deviation of
the measured data from a linear dependency is visible. The errors in the measured count rates are
too small to be visible in the graph. (b) The correction factor calculated according to (6) against
the measured count rate (�) in comparison to interpolated values from the data sheet (◦).

4. Experimental results

Before recording the data sets for the count rates of various experimental configurations we
determined the APD dead times by taking a histogram of the time difference between two
consecutive electronic signals produced by the APDs. We found a measured APD dead time
of ≈53 ns, which was independent of the count rates. With the APDs in a shielding box, we
measured the count rates without any incident light. This absolute dark-count level was well
below the specified limit of 250 cnt s−1.

4.1. CW-light

According to their data sheet (SPCM-AQR 2005), APDs show the first signs of a nonlinear
response at count rates as low as 15.5 kcnt s−1. Hereby, the manufacturer implicitly assumes
cw input light. We recorded APD count rates for cw-light at different levels of calibrated
attenuation and observed increasing count rates up to 296 kcnt s−1. In this regime a noticeable
correction is already expected. In figure 2, we plot the measured count rates against the
optical power, i.e. the transmission of the variable attenuation. At low power levels a linear
dependency is confirmed such that we can specify a linearity regime for count rates up to
6.5 kcnt s−1. The corresponding linear fit is included in the graph. At higher optical power,
the measured count rates are significantly lower than predicted by the fit. The estimated mean
photon-number—estimated by the observed optical powers at the monitoring power meter—is
still very low, such that the probability of multi-photon events is negligible at these low count
rates.

The discrepancy of these observed count rates from the linear behaviour can thus not be
explained by multi-photon contributions. If we assume that only the zero-photon and single-
photon components are significant, we can use the linear fit to evaluate the real count rate Rreal.
According to (6), we can now estimate the correction factor C for our experimental data and
compare it with the values given in the data sheet of the manufacturer. Figure 2 depicts the
corresponding correction factors in dependence of the detected count rates. Our experimental
measurement results show the same general features as the APD data sheet, but they appear
to be lower than the specified correction factors of the manufacturer. The instability of the
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Figure 3. Measured count rates for pulsed light at constant repetition frequency against
transmission of the variable attenuator (◦). For low transmission a linear fit (grey, dotted) is
still a valid approximation, while for higher transmission the photon-number distribution and
binary nature of the detector must be taken into account. A fit following (5) is included (black,
dot-line) and shows good agreement with the measured data. The errors in the measured count
rates are too small to be visible in the graph.

measured values and the global offset are likely to be due to difficulties in the calibration of
the absolute power level for the extremely low light levels we operated at. Note by comparing
the equations (2) and (3) that the attenuation of a coherent state yields another coherent state
with reduced field amplitude. If the APD detection efficiency is not exactly known, it is only
possible to determine the absolute value of field amplitude α of the coherent input state up to
the factor ηdet. Since the manufacturers only specify a minimum ηmin

APD and moreover a precise
assessment of the coupling losses is also extremely difficult in this power regime, we have to
introduce an effective detection loss parameter ηdet to include unspecified coupling and APD
efficiencies.

The early nonlinearity for the estimated low power level evinces that other effects than
the high photon-number contributions cause the nonlinear behaviour. For cw-light the arrival
times of the photons are not restricted to specific time slots. After each detection event the
APDs are blocked for the duration of their dead time and pulses arriving in this period are not
counted. This can happen at any count rate, independently of the higher order photon-numbers
and gives rise to the early nonlinearity.

4.2. Pulsed light at constant repetition frequency

In order to distinguish the impact of the APD dead times on the count rates from the nonlinear
response caused by the photon-number statistics of the input light, the influence of these two
effects needs to be separated in the experiment. The optical power of pulsed light is determined
by two degrees of freedom: its pulse energy and its repetition rate. For repetition rates lower
than the inverse dead time of the APDs no pulses are lost during the inactive time of the APDs.
A repetition frequency of 1 MHz provides pulses which are further separated in time than the
APD dead time. Thus we expect that the count rates reflect directly the quantum properties of
(5) for variable attenuation.

Figure 3 shows the detected count rates against the optical transmission with detected
values ranging from 124 kcnt s−1 up to 571 kcnt s−1. For low transmission levels the linear
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fit included in the figure indicates that a linear behaviour is again observable. For higher
transmission the observed count rates are significantly lower than those predicted by the linear
fit. Taking into account the repetition frequency frep = 1 MHz and the photon-number
statistics of a coherent state we can estimate the mean photon-number according to (5).
We find an effective mean photon-number of |ηdetα|2 = 0.836, with a dark-count level of
9.9 kcnt s−1. While the fitting accuracy of ±0.002 is very good, the absolute precision of
the |α|2 determination suffers again from the missing information of the absolute quantum
efficiency of the APDs.

The fitted dark-count level of 9.9 kcnt s−1 is much higher than the absolute dark counts
of the APDs; however, the fitted dark-count levels are strongly influenced by stray light.
These should not be confused with the values obtained for a completely shielded APD during
the characterization of the APDs. The measurement results along with the corresponding
fitting curves are shown in figure 3. The graphs according to (5) provides excellent
agreement with the measured data. The linear fitting demonstrates that for count rates up to
≈230 kcnt s−1 APDs can be linearly approximated. For higher mean photon-numbers the non-
photon-number resolving nature of the detection process becomes eminent and the number of
counts does not correspond directly to the number of photons any more. Nevertheless, the
count rates confirm nicely the Poissonian photon-number distribution of coherent light and our
modelling of the APD response such that an effective mean photon-number can be retrieved
with high accuracy if Poissonian statistics are presumed.

4.3. Pulsed light at constant pulse energy

If the energy of a single pulse is kept constant, the mean optical power of a pulsed system
can also be adjusted by varying the repetition frequency of the laser. Though, the number of
photons per pulse is solely determined by the pulse energy. Hence increasing the mean optical
power by going to higher repetition rates corresponds to preparing a larger sample of quantum
states with equal properties. In this experimental configuration nonlinear changes in the count
rates cannot are not related to different photon-number properties, but must be attributed to
the limited speed of APD detection.

If the repetition time, which is the inverse repetition frequency, is greater than the dead
time of the detector, no pulses are masked by a blocked detector. For low pulse energies we
expect with (1) a linear dependency of the count rate on the repetition frequency. For higher
repetition frequencies the detector might be in the recovery phase from a previous pulse when
a new pulse arrives. This pulse is not counted; we need to introduce a correction for the count
rate such that follows

Rcnt = frepηAPD(1 − P0)Cpuls + Rdark, (7)

where the additional correction Cpuls is now included. Note that Cpuls is not a constant factor,
but depends itself on the repetition rate and the photon statistics.

An event will not be registered if the APD is blocked by a previous detection event. The
relevant time scale for the APDs being blocked is their dead time. In order to determine
whether a pulse can be detected we need to calculate the probability that no APD counts
occurred prior to a potential detection event during one dead-time interval. The repetition rate
defines a time grid for possible detection events: for Tdead

n
� Trep > Tdead

n+1 we find n time slots,
which fit into the detector dead time. These must be considered for calculating Cpuls. We
define pγ as the probability of an APD CLICK for low repetition rates pγ = ηAPD (1 − P0),
which also depends on the input photon-number statistics. The probability of n consecutive
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(a) (b)

Figure 4. The measured count rates for pulsed light at constant pulse energy are plotted against
the laser repetition frequency. (a) The linear fit (light grey) shows the linearity regime up to
approximately 15 MHz, while for higher count rates the correction needs to be applied (black line)
to explain the nonlinear count-rate response. (b) The simulated count-rate response (black line)
reproduces the measured data, if dead-time effects are taken into account. For both graphs the
errors in the measured count rates are too small to be visible.

time slots being empty—and thus the detector being ready to fire for a consecutive pulse—is
then given by (1 − pγ )n. This defines the correction factor to first order as

Cpuls =




1 if Tdead <
1

frep
= Trep,

1 − pγ if Tdead � Trep >
Tdead

2
,

...

(1 − pγ )n if
Tdead

n
� Trep >

Tdead

n + 1
.

(8)

We would like to point out that this analysis requires low pγ . We neglect effects arising from
the possibility that pulses can get registered if more than one potential detection event fall
within twice the dead time before the considered APD count. For higher pγ such higher order
effects must be taken into account and (8) overestimates the actually necessary correction.

For intervals of the repetition frequency that are defined by multiples of the inverse dead
time, the correction factor does not change. We expect linear dependencies within the defined
segments. According to (8) the different intervals are interrupted by a transition region with a
step function. While we were able to reproduce the predicted linearity regimes for repetition
frequencies up to 80 MHz, we restrain our plots to the first two linearity regions in order to
improve readability. In figure 4, we plot the measured count rates against the laser repetition
frequency. To cope with power fluctuation we renormalized with respect to the pulse energy
at a repetition frequency of 1 MHz. Two linearity regimes can be identified in the intervals
(0.5 MHz; 15 MHz) and (23 MHz; 36 MHz).

The first linearity regime is valid to repetition rates up to nearly 20 MHz, showing count
rates of more than 800 kcnt s−1. If we apply the correction factor of the APD data sheet in a
naive manner also for pulsed light, it would suggest that significant corrections of up to 10%
are needed to correct for the real count rates. However, the observed linearity thus rules out
the necessity and applicability of the standard APD correction to pulsed systems. In contrast,
our results show that for pulsed light we can use APDs without any objections for repetition
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rate up to their inverse dead times. In the transition region between the two linearity regimes
a drop of count rates can be observed and the transition regime covers the inverse dead time
of the detectors.

We use a binary model for the correction: it takes effect at a certain time and does not take
into account dead-time jitter. Thus in the transition regime itself the measured data differs
from the corrected plot. For the following linearity regime we find good agreement again
with the measured data again. We apply our correction factor according to (8) to the linear fit,
which is included in figure 4. The break-in of count rates is clearly accounted for, although
the correction slightly underestimated the resulting count rate. After-pulsing and dark-count
effects scale linearly with the repetition frequency and thus result in an overestimation of
pγ . Eventually, this leads to an overestimate of the necessary correction, which can be
understood by recalling that our model is to first order and actually neglects more than two
consecutive pulses. As already mentioned it is only valid for low probabilities and relies on
the knowledge of the correct value of pγ . Still, our results demonstrate clearly the linearity of
APDs when operated at frequencies below their inverse dead time at constant pulse energy and
the correction estimated from pγ and (8) is actually in good agreement with the experimental
data up to a small discrepancy.

4.4. Simulation

We designed a Monte Carlo simulation to validate the predicted influence of the APD dead
time. We included cw-light sources by modelling the cw count rates as a pulsed system with
infinite repetition frequency. A crucial point in this approach is to carefully calculate the pulse
energy in order to keep the average optical power constant. For increasing repetition rates the
pulse energy must be adjusted using the Poissonian photon-number distribution of coherent
light. We simulated the pulsed case first, in order to verify our simulation with the measured
data. The simulation reproduced the measured linearity regimes and transition regions. In
figure 4, we compare the measured count rates for a simulation using similar parameters as
given in the experiment. Since we used a binary model for the initiation of the correction,
the transition region shows a small deviation from the simulation. The linearity regimes
are reproduced well by the simulation, but the correction is also overestimated. Since the
simulation was initialized with an initial pγ taken from the measurement data, this indicates
again that after-pulsing and dark-count contributions actually caused the overestimation of this
crucial parameter. The significantly lower deviation between simulation and our analytical
model arise from some higher order contributions. Next, we increased the repetition frequency
and observed a convergence of the correction factors for high repetition frequencies. These
reproduce the shape of the detected correction factor against counts curve in the cw-case. An
offset is introduced due to insufficient measurement accuracy of the power meter, which is
needed for absolute calibration.

The performed experiments in combination with the simulated results provide a complete
understanding of the APDs and show the independence of the detection quantum efficiency
from the count rate. Corrections only arise from the binary nature of the detector and detector
dead time, which might be mistaken as a change in detection efficiency at first glance. Thus
for quantum information applications data rates up to the inverse dead time are reasonable.

5. Application in time-multiplexed detection

TMD measurements rely on the fact that APDs can be driven at rates defined by the inverse of
their dead times while showing no drop of their quantum efficiencies. We have experimentally



3918 H B Coldenstrodt-Ronge and C Silberhorn

confirmed these assumptions with the results presented in the previous sections. The concept
of TMDs offers the distinct advantage of low experimental complexity while the speed of
operation is only limited by the minimum time APDs require to measure consecutive detection
events.

In TMD detection, the photon-number resolution is achieved by using temporal modes
for ‘photon chopping’: a pulse signal which is under investigation is split into several pulses,
which get partially delayed in time and detected with individual binary detectors. For the
practical realization of a TMD an important issue is the setting of the base delay between
expected detection events. This must be at least the APD dead time in order to prevent the
temporal modes from being masked by the APD dead time. To test the applicability of TMDs
for higher bit rate applications we implemented a two-stage TMD with eight outgoing modes.
We actually chose a delay around �Tbase = 100 ns to restrain also after-pulsing influences.
Additionally to previous realizations, we implemented an electronic gating to inhibit noise
contributions and a computer-controlled data acquisition system. The data acquisition speed
above 2 MHz in our system is only bounded by physical constraints, i.e. four times the base
delay.

For light with non-negligible higher multi-photon contributions multiple photons may
still be transmitted into the same mode when leaving the TMD fibre network. They do not get
discriminated by the subsequent detection with the binary APDs, resulting in a lower count rate
than the actual photon-number of the input light. While this introduces an uncertainty for one
single-shot measurements, for ensemble measurements this experimental imperfection can be
included in the post-processing of the data analysis for studying photon-number statistics. As
shown previously (Achilles et al 2004) a photon-number distribution �ρ transforms to click
statistics �p according to

�p = C�ρ, (9)

where the convolution matrix C accounts for the probabilities of n incident photons resulting
in 0, . . . , n detectors firing.

Losses in the optical system and the non-unity detector efficiency also result in lower
click rates than photons in the initial pulse. All losses in the system can be combined in an
effective single-beam splitter in front of the fibre network (Silberhorn et al 2004, Achilles
et al 2006) and represented by an additional matrix L. The initial photon-number distribution
is then retrieved from the detector click statistics using an ordinary matrix inversion:

�ρ = L−1C−1 �p. (10)

While the effects of losses and the usage of the TMD detection for the characterization
of arbitrary photon statistics are thoroughly investigated in previous work (Achilles et al
2006, 2004), we concentrate on the influence arising due to the convolution. We utilized an
optical setup similar to the experiments with APDs shown in figure 1 to feed coherent light
of different power levels into the TMD. We would like to point out that that the usage of
coherent light in these studies is crucial in order to be able to distinguish effects arising from
attenuating the input-state statistics from distinct characteristics, which are intrinsic to the
TMD detector response. As stated earlier, attenuation only changes the mean photon-number
of the Poissonian statistics while effects on the shape of the photon-number distribution caused
by introducing losses are eliminated. The mean number of photons depends linearly on the
attenuation. Though in analogy to a single APD being illuminated with more than a single
photon per pulse, masking of higher photon-numbers due to photons, which stay together in
one outgoing mode, is expected.

In figure 5, we plot the mean number of clicks before and photons after deconvolution
against the applied attenuation. Similar to the result of figure 3 a linear dependency is visible
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Figure 5. (a) The mean number of clicks (�) and the mean number of photons after deconvolution
(◦) are plotted against the transmission. For the deconvoluted data the expected linear fit holds
over the full range of transmission, while for the click data nonlinear behaviour is visible for higher
transmission. The clicks follow (12), which can be verified looking at the light grey fitting line.
(b) For the deconvoluted data (◦) the Mandel Q-parameter against the transmission shows the
expected value of 1 for all transmission levels. For the click data Mandel Q-parameters less than
1 falsely indicate non-Poissonian nature.

for low transmissions, corresponding to a low mean number of clicks or photons, respectively.
For higher click rates a significant deviation from the linear fit develops, while the deconvoluted
data increases linearly with increasing transmission. More photons are distributed into the
same time slot, triggering less clicks than photons in the pulse. Thus the raw data will give
an underestimate of the mean photon-number, which can be modelled by assuming k perfect
beam splitters in the fibre network. The coherent input state with the mean photon-number
|α|2 is split into 2k modes with corresponding mean photon-numbers |α|2/2k . For each mode
the detection rate is given by (5) and summing these rates yields the effective count rate after
the fibre network as

R̃cnt =
2k∑

i=1

frep

(
1 − exp

(
−|η|2 |α|2

2k

))
+ R̃dark. (11)

The expected mean number of clicks is obtained by dividing by the repetition frequency and
for a TMD with eight time bins we expect a mean number of clicks

c̄ = 8

(
1 − exp

(
−|η|2 |α|2

8

))
+

R̃dark

frep
. (12)

In figure 5(a), we also display a fit of this expected click rate to the data, which shows perfect
correspondence for values of R̃dark = 16 ± 3 kcnt s−1 and an effective |α|2 = 2.232 ± 0.006.
The graphs indicate that we are able to demonstrate experimentally convolution utilizing well-
known quantum states. Moreover, the use of the deconvolution method to retrieve the original
statistics is experimentally verified by retrieving the linear dependence.

The value of the Mandel Q-parameter σ 2/n̄ is often used to characterize the non-
classicality of a photon-number distribution(Mandel and Wolf 1995). In figure 5, we plot
the Q-parameter against the variable transmission and compare the results for the raw click
statistics with the deconvoluted data. A Poissonian distribution of a coherent state always
results in a Q-factor of 1. Our experimental data confirm this expected Q-factor for the
deconvoluted data at all transmission levels. For low photon-numbers, i.e. transmission,
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the raw data still show values near 1. This value, however, drops significantly below 1 for
higher transmission rates, indicating falsely a non-Poissonian nature of the assumed photon-
number statistics. Higher photon-numbers are more strongly affected by the decrease in
clicks than lower photon-numbers. Thus the raw click statistics show non-Poissonian features
indeed, which must not be mistaken for non-Poissonian photon-number statistics. From our
measurements—depicted in figure 5(b)—we ascertain that the deconvolution of the measured
click statistics is essential to obtain correct photon-number statistics when utilizing TMD
detection for quantum state characterization. Contrariwise, we demonstrated experimentally
that using the deconvolution matrix approach the correct statistics can be deduced.

Since the Q-parameter is regarded as an indicator for the non-classicality of light, it
is crucial to consider the impact of detectors on measured outcomes. At first glance—
without taking detector saturation into account—a source might appear to exhibit non-classical
Q-parameters which might then be falsely interpreted as photon-number squeezing. In
our parameter regime, we demonstrated that the TMD detector saturation can be perfectly
compensated by applying the deconvolution in the data post-processing. This is verified by
the constant Q-factor of 1 after the application of the deconvolution. The computation power
for calculating the convolution matrix numerically rises exponentially with the number of
photons resolved by the detector. For more than eight TMD bins only the idealized case
of perfect splitting ratios can be easily calculated analytically (Fitch et al 2003). Thus we
investigated the effects of using symmetric splitting ratios for deconvoluting simulated data
with unbalanced splitting ratios. We found that the convolution matrices are surprisingly
independent of the splitting ratios of the beam splitters used in the TMD fibre network—
which, in turn, enables the extension of the TMD to higher numbers of bins without any major
problems in the mathematical treatment. In practice, the deviations due to convolution effects
will be much less than errors caused by imperfections in the optical loss calibration.

6. Conclusion and discussion

In summary, we characterized APDs in the context of testing the limits of their application
in quantum information processing. A major challenge is the extremely precise calibration
of the used attenuation, which contributes most to the errors of the experiment. In particular,
the cw-light measurements require optical power spanning several orders of magnitude in
order to start measuring in the linear regime, while getting significant nonlinearities at higher
power levels. With the simulation being extremely sensitive to errors in the calibration, better
methods for even more precise calibration are needed and should close the gap between
simulation and measured correction factors.

By using pulsed light we could differentiate two sources of nonlinear APD response:
intensity and pulse repetition frequency. For quantum communication at high data rates an
essential characteristic of an APD is its dead time where we verified for repetition frequencies
up to its inverse dead time a linear APD behaviour. With dead times of 50 ns for commercially
available APD modules this allows for data rates up to 20 MHz.

An important application of APDs is the TMD, where we complemented the detector
description by verifying experimentally that saturation effects can be compensated in the
post-processing data analysis. We can now operate the TMD at the data acquisition speed
limit given by the APDs dead time. This is a powerful tool to quickly characterize quantum
states in the photon-number bases allowing the collection of large number of statistical data
in short measurement time. We expect that this provides the basis for photon-number-based
characterization of highly non-classical quantum states where the number of recorded data
points during the stability of an optical setup becomes crucial.
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