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We propose a quantum key distribution scheme which closely matches the performance of a perfect single
photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally
achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and
present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors
are included. We select decoy states by classical postprocessing. This allows one to improve the effective
signal statistics and achievable distance.
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Quantum key distribution �QKD� allows two parties �Al-
ice and Bob� to communicate securely even in the presence
of an arbitrarily powerful eavesdropper �Eve� who tries to
listen undetected. To prove unconditional security, Eve must
not be restricted by any technological limitations, but must
only be bounded by the laws of quantum physics. A multi-
tude of protocols has been suggested in the last decades,
where the Bennett-Brassard 1984 �BB84� protocol �1� is the
best-known and most-studied protocol. It was shown to be
secure both in principle ��2� and references therein� and in
the presence of experimental imperfections, e.g., �3�. Unfor-
tunately, the maximum distance and the bit rates over which
secure communications can be guaranteed are strongly con-
stricted if experimental imperfections are taken into account:
lossy channels, imperfect detectors with finite efficiency,
dark counts and misalignment errors, as well as nonideal
signal sources—which do not provide the required single
photon states �4,5�—degrade the performance of the proto-
col. Decoy-state QKD, which was recently introduced by �6�,
analyzed in �7,8�, and adapted for practical use in �9,10�,
could mend this. Still, implementations using coherent-state
laser pulses achieve only about 70% of the maximum secure
distance imposed by fundamental physics.

In this paper, we show how we can close the gap between
practical QKD implemented with state-of-the-art devices and
idealized QKD assuming perfect single-photon signals. Our
protocol reaches up to a few percent the performance of a
single-photon source in terms of distance, while the key gen-
eration rate is on par with the best available schemes. In our
approach, we utilize a parametric downconversion �PDC�
source �11� in conjunction with a photon number resolving
detector �12� to substitute an idealized single-photon source.
The strict photon-number correlations between the two PDC
outputs allow us to infer the complete statistical information
about one of them by measuring the photon number distri-
bution of the other. Thus passive decoy-state selection can be
accomplished without the need for any active optical ele-
ments; our system becomes independent of intensity calibra-
tion errors. Furthermore, the passive data analysis enables us
to generate optimized effective signal statistics without

physical blocking. Otherwise, our scheme—as depicted in
Fig. 1—is based on the standard BB84 protocol, where Alice
actively encodes her qubits for two different basis sets on the
signal states. Note that, contrary to other QKD schemes em-
ploying PDC sources, our protocol does not rely on polariza-
tion entanglement with passive information coding.

Since our work is based on the decoy state method, we
review briefly the underlying basic idea. The security of
BB84 with binary detectors rests on single photons. For pro-
tocols with active information coding, signals with more than
one photon are insecure because Eve can avail herself of a
photon-number splitting �PNS� attack, which has been
shown to be optimal �13�. For this, Eve performs a quantum
nondemolition measurement of the photon number, taps one
photon, and delays the measurement until Alice and Bob
announce the bases. If Eve replaces the lossy channel with a
perfect one and passes on signals mimicking the statistics of
a lossy channel for a binary detector, she cannot be detected
in a standard BB84 scheme. For a quantum channel with
transmission �=10�/10l �where � describes the loss param-
eter and l the fiber length�, the probability that at least one
photon of an n-photon signal arrives at Bob’s side is given by
�n=1− �1−��n. This implies that different loss characteris-
tics arise from signals with different photon numbers. The
core idea of the decoy method is to exclude a PNS attack by
verifying that the signal losses behave as expected for differ-
ent photon numbers. This can be accomplished if Alice in-
tersperses the stream of signal pulses with decoy states
whose intensity differs slightly from the signal states, but
share all other characteristics like wavelength and timing. A
more detailed description can be found in the work of Lo
et al. �7�.

The security analysis in �7� proves that a lower bound on
the secure key generation rate is given by

S � max„0,q�− QN̄f�EN̄�H2�EN̄� + Q1�1 − H2�e1���… . �1�
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FIG. 1. Setup of the proposed QKD scheme. The PDC source
emits photon number correlated bipartite states; the time-
multiplexed detector �TMD� records photon statistics.
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In Eq. �1� the overall gain QN̄ depends on the mean photon

number N̄ of the signal pulses and denotes the ratio of Bob’s
detection events to Alice’s number of submitted signals after
sifting. The yield Yn is defined as the conditional probability
that Bob receives a signal if Alice has sent an n-photon sig-
nal. The parameter EN̄ describes the overall, and en the pho-
ton number resolved quantum bit error rate �QBER�, i.e., the
fraction of signals which contribute false key bits although a
signal was received. The quantities are related as follows:

QN̄ � �
n=0

�

Qn = �
n=0

�

Ynp�n� , �2�

EN̄QN̄ � �
n=0

�

Ynp�n�en. �3�

The function f in Eq. �1� accounts for nonideal practical
error correction which does not reach the Shannon limit, and
H2 is the binary Shannon entropy. The sifting factor q cor-
rects incompatible bases, i.e., for standard BB84 q=1/2. In
the asymptotic limit of a large number of transmitted signals,
it is possible to reach values of q	1 �5�, which is used in the
remainder of the paper. Conventional QKD schemes employ
binary detectors. Thus, only the gain QN̄ and QBER EN̄ can
be measured during transmission. Source characterization
guarantees that the probability p�n� of an n-photon signal is
known. The decoy state idea exploits that the linear system
of Eqs. �2� and �3� can be solved for Yn and en, if states with

different mean intensities N̄ are employed. While Yn and en
are identical for the signal and all decoy states in case of a
regular quantum channel, it is proven that any PNS attack
will modify these quantities, i.e., Eve’s attempt of a PNS
attack will be detected �7�.

The original security proof for BB84 given in �14� uti-
lized local operations and one-way classical communication
�1-LOCC�. While many security analyses retain with
1-LOCC, enhanced security proofs employing 2-LOCC �2�
have been elaborated recently and adapted to the decoy
method in �15�. In two-way postprocessing, Alice and Bob
compare parities for random bit pairs of their key. If the
parities match, they keep the first bit, otherwise they discard
both. One iteration of this procedure is called a B-step; re-
peating it for several rounds is possible and allows to in-
crease the maximum secure distance. For comparison we
consider both cases, 1-LOCC and 2-LOCC.

Consider the setup in Fig. 1. In the source, we use a
standard PDC process to obtain the photon-number corre-
lated state


�� =
1

N�
n=0

�

�n
n,n� , �4�

where � and the normalization factor N depend on the physi-
cal boundary conditions �16�. The distribution exhibits Pois-

sonian ��n= �n

�n!
, N=e−�2

� or thermal ��n=tanh2n N̄, N
=cosh2 N̄� statistics in the extremal cases, so we will con-
sider both possibilities. Since Eve has no phase reference, the
phase can be assumed to be totally randomized, and an ef-

fective mixture of photon number eigenstates with density
operator �=�n
�n /N
2�n is transmitted.

In our protocol, Alice and Bob follow the standard BB84
protocol �4� for the encoding and analysis of the transmitted
information. The qubits can be represented by polarization,
time, or any other suitable coding. The analysis is not af-
fected by any particular choice. Additionally, Alice performs
a photon number resolved detection on one conjugate PDC
mode to obtain additional information about the signal pho-
ton statistics. Note that Alice will run the PDC source always
with constant pump intensity without any active optical ma-
nipulation. There are several methods to perform photon
number resolved detection, but we focus on time multiplexed
detection �TMD� �12� since it is cost effective and easy to
handle experimentally. The measured TMD statistics can be
related to the impinging photon number statistics by

p� source = L−1 · C−1 · p�meas � R�p�meas� , �5�

where the matrix L accounts for photon loss in the detection,
and the convolution matrix C models the effect of a finite
number of detected modes in the TMD design �for details:
see �12��. In Eq. �5�, p� source and p�meas describe the original
photon number distribution of the source and the measured
statistics. The matrix C ·L with its entries p��m 
n� can be
determined by measurement, or calculated analytically as
given in �17�. It represents the probability to obtain an
m-photon detection outcome conditioned on n photons enter-
ing the detector with total loss �. Using Eq. �5�, the TMD
measurement can be inverted such that the real statistics of
the source are reconstructed with high fidelity �18�. Note that
this inversion is only possible for an ensemble of states but
not for a single signal; hence Alice needs to record the mea-
surement results of the TMD for every time slot.

The essential step of our passive decoy state selection
follows after the data transmission with a sufficiently large
number of signals is completed. Alice utilizes the measured
photon statistics to separate signal from decoy states. Figure
2 provides an overview about the process: The measured
probabilities p�meas= are given by pmeas�n�=

#ntot

Ntot
, where #ntot

denotes the number of n-photon measurement outcomes
from the TMD. This distribution can be inverted by Eq. �5�;
the strict photon number correlations of the PDC states en-
sure that Alice’s measurements coincide with the signal sta-
tistics. The decoy state protocol employs signal states of dif-
ferent intensities, such that the linear system of Eqs. �2� and
�3� can be solved.

Assume that we start with a random selection of a set
containing M �Ntot signals to construct decoy states, which

Measured

Distribution

Decoy

Subsets
Probability

Distribution

0 1 2

0 1 2

0 1 2

t t

fr
e
q

u
e
n

c
y

(m
e
a
su

re
d

)

fr
e
q

u
e
n

c
y

(d
e
c
o

y
)

fr
e
q

u
e
n

c
y

(i
n

v
e
rt

)

n

nn 0 1 2

0 1 2

FIG. 2. �Color online� Passive decoy state selection. Apt subsets
of the recorded TMD measurements are selected and inverted to
form the decoy states which are similar to the signal state �see text�.
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have exactly the same statistics as the remaining signal
states. Alice then additionally picks �n slots with an n-photon
measurement result such that

#ndecoy = # ntot
M

Ntot
+ �n, �6�

where �n is a small positive or negative offset which results
in a photon number distribution of the decoy subset differing
slightly from the distribution in the signal. The decoy subset
can be inverted to obtain the proper probability distribution
p�decoy. Different distributions of �n for different subsets en-
sure that the generated decoy signals are sufficiently distinct
from each other as required to solve the system of linear
equations �2� and �3�. We would like to stress that our pas-
sive method for “generating” decoys provides distinct advan-
tages: during signal transmission it is still undecided which
states will become signal or decoy states. Therefore a distinc-
tion between signal and decoy states by Eve is impossible,
even in principle. Furthermore, our decoy selection mecha-
nism inherently eliminates many experimental challenges
�e.g., different spectra for signal and decoys which introduce
distinguishing side information for Eve� which arise in pro-
posals with the same hardware, but a different analysis pro-
cedure ��19,20��, which do not draw maximum use of the
TMD’s capabilities. The remainder of the protocol is identi-
cal to a standard decoy scheme: Alice and Bob check en and
Yn as described above. Error correction and privacy amplifi-
cation need to be performed to generate a final secure key.
The inset in Fig. 3 presents our simulation results �for details
see below�. The key generation rate and maximum secure
distance closely match a perfect single photon source.

The TMD results cannot only be used to generate decoy
states, but also provide improved effective signal statistics.
While the error rates en for n�1 are the order of 10−2, the

contribution by vacuum signals is e0=1/2 �25�. Thus, it is
desirable to remove such events as well as possible. We
would like to emphasize that this is not possible with present
day technology when a weak coherent laser is employed as
source since only a single signal copy is available in this
case.

Decreasing the dark count rate on Bob’s side is hard be-
cause it requires refinement of the detectors, while fine-
grained time triggering can be used on Alice’s side to reduce
the dark count probability in the TMD to a negligible level,
i.e., p�n 
m�=0 for n	m �12�. Note that due to losses and
imperfect detection, filtering multiphoton contributions does
not work perfectly and results in comparatively small rate
improvements �19�. The benefits are negligible in contrast to
filtering zero photon contributions. Alice has recorded the
TMD measurement for every signal. Hence, she can easily
discard all zero events in the postprocessing phase which
leads to a better effective probability distribution given by

pf ,meas�n� = 
0, n = 0,

1

Ntot − �
n=1

�

# n

#n

Ntot
,

n � 0,� �7�

where pf ,meas denotes the measured, filtered distribution; the
effectively sent distribution is p� =R�p� f ,meas�. Since p�0 
n�
�0 for n	0, some usable signal states are also removed
from the distribution, but this does not endanger the total
positive effect of the filtering. To implement the operation,
Alice and Bob need to discard all slots in the postprocessing
stage where the TMD result was zero and use the inverted
probability distribution in the rate calculations. Since this
type of filtering is applied in the postprocessing phase, it
does not modify the actual signal transmission and no physi-
cal blocking is required.

Figure 3 and Table I present the results of the numerical
evaluation for all cases discussed above. In order to demon-
strate the influence of our different postselection methods we
consider four cases: signals with and without filtering empty
pulses for both 1- and 2-LOCC. In our analysis, we apply an

optimization for both, the best value for N̄ and the ideal
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FIG. 3. �Color online� Simulation results for two-way and one-
way �inset� classical communication. Both graphs were obtained by

a numerical evaluation of Eq. �1�; the optimal values for N̄ and the
number of B steps which maximize the key generation rate have
been used for all distances. The right border represents the principal
upper bound at 208 km given by the intercept-resend attack.

TABLE I. Comparison of the obtainable distances for different
signal sources and postprocessing methods with the limits set by a
perfect single photon source and the principal physical upper
bound. A perfect single photon source achieves 170.9 km for
1-LOCC and 195.2 km for 2-LOCC. 
1,f denotes the difference to
this distance. 
2,f denotes the the difference to the principal
intercept-resend upper bound. Both refer to the effectively filtered
source. At most, 4 B steps were used.

Source
Distance
unf./filt. 
1,f 
2,f

Thermal �one way� 130.8/169.7 0.7% 18.3%

Thermal �two way� 174.5/194.5 0.4% 6.3%

Poissonian �one way� 141.2/166.0 2.9% 20.0%

Poissonian �two way� 180.8/193.8 0.7% 6.6%
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number of B steps for every distance. To allow comparison
with other proposals, we use the set of experimental param-
eters given in �21� �the same data are used for the idler de-
tection which is not part of the referenced scheme�. The up-
per bound on the secure distance caused by the undetectable
intercept-resend attack at a QBER of more than 25% �5� lies
at 208 km, i.e., the right border of the graph. The lower
bound on our rate closely approaches this upper limit, and
reaches the single photon performance. One also needs to
keep in mind that this upper bound is not even tight but can
be replaced by smaller ones �e.g., �22��.

The filtering transformation in Eq. �7� modifies the effec-
tive signal distribution so that a different rate is obtained
although the sent statistics remain unmodified. Thus, a pen-
alty factor ppen=1−�n=0

� p�0 
n�ps�n� needs to be introduced

into Eq. �1�. To find the optimal value of N̄, the quantity

ppenS must be maximized. The optimal values for N̄ depend
on the simulation parameters and the source statistics; a com-
prehensive set of results for different combinations can be
found elsewhere �23�. We would like to mention that the

optimization yields values for N̄ in the range �0,0.5�, which
can well be realized with current PDC sources �24�. Existing
sources provide better performance than actually required.

As explained above, two-way processing with B steps can

increase the achievable distances. Ma et al. �15� calculated
that after performing a B step, a lower bound on the secure
key generation rate is given by S�=max[0,qQN̄( 1

2sn�1

��−f�E
N̄
� �H2�E

N̄
� �+���1−H2�e1,p� ���)]. The primed quantities

represent the error rate, etc., after the B steps have been
performed. A detailed derivation of the formula is beyond the
scope of this paper, but can be found in Refs. �15,23�. Mul-
tiple rounds of B steps apply the transformation multiple
times. The difference between the lower bound on the maxi-
mum secure distance and the principal limit shrinks to about
6.5% with 4 B steps as shown in Table. I.

In summary, we have shown how to use the photon num-
ber correlations of a PDC source to implement a BB84
scheme which nearly reaches the performance of a single
photon scheme. This removes the predominant imperfection
from real-world QKD implementations. Since the lower
bound on the key generation rate coincides up to a few per-
cent with the principal upper bounds, further improvements
need either come from new protocols or improved hardware.
Refinements of security proofs will likely be unfruitful by
comparison.

We acknowledge helpful comments by N. Lütkenhaus,
H.-K. Lo, and J. Lundeen.
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