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In honour of Max Planck (1858–1947) on the occasion of his 150th birthday.

Quantum key distribution is among the foremost applications of quantum mechanics, both in terms of fun-
damental physics and as a technology on the brink of commercial deployment. Starting from principal
schemes and initial proofs of unconditional security for perfect systems, much effort has gone into provid-
ing secure schemes which can cope with numerous experimental imperfections unavoidable in real world
implementations. In this paper, we provide a comparison of various schemes and protocols. We analyse
their efficiency and performance when implemented with imperfect physical components. We consider how
experimental faults are accounted for using effective parameters. We compare various recent protocols and
provide guidelines as to which components propose best advances when being improved.
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1 Introduction

During the last decade, quantum key distribution (QKD) was established among the most active and pro-
ductive research fields in quantum physics. Sharing secret information between remote parties is not only
a practical problem, but has interesting outreach into numerous fields ranging from information theory
to fundamental physics. Although the fundamental ideas of QKD were already laid out around 1970 by
Stephen Wiesner, they were not published until a decade later, in 1983 [63]. The year 1984 brought the
seminal proposal of Charles Bennett and Gilles Brassard in form of the BB84 key distribution protocol [6].
It was followed by numerous alternative variants and improvements (e.g., [7, 13, 25, 51]), but the methods
usually remain closely related to the original proposal.

The basic idea of QKD is as follows. Two parties, which we name Planck and Bohr (it is also common
to refer to them as Alice and Bob), establish a shared secret key between them because they want to
discuss sensible facts about their theories. The malicious eavesdropper Einstein (alternatively called Eve
in a cryptographic context) who possesses unlimited technological power – only restricted by the laws
of quantum mechanics – does not believe in Planck’s and Bohr’s theory. He would like to listen to their
communication in order to prove their arguments wrong. Fortunately, their quantum theory is right, and he
is not able to gain any information about the shared secret key. This key is used to encode information, and
the encoding can be shown to be perfectly secure provided the key is only known to Planck and Bohr. Thus
quantum cryptography is referred to as unconditionally secure.

Security proofs for QKD schemes are solely based on the laws of physics and do not use any assump-
tions about computational complexity – in contrast to purely classical schemes. Real world effects like
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Fig. 1 (online colour at: www.ann-phys.org) Typical performance diagram for a QKD system. The dashed
line represents a lower bound on the secret key rate. This means it can be proven that at a given distance, at
least this number of secret bits can be transmitted per pulse. The solid line provides fundamental physical
upper bounds, and it is known that no secret key can be established beyond this distance respectively that no
larger number of secret bits per transmitted pulse can be obtained. The region between the lower and upper
bound is unknown terrain: It is still undecided if secure QKD is possible in this area. The aim of current
research is therefore to increase the lower bounds (e.g., [18, 25, 28, 49]) and decrease the upper bounds
(e.g., [28, 46, 47]). Section 3.3.2 introduces one scheme which nearly closes this gap. The key rate is given
in secret bits per pulse, and must be multiplied with the repetition rate of the source to obtain the proper
data rate. With current technology, the maximal repetition rate is not limited by the source, but mainly by
the dead time of detectors, cf. [9].

lossy transmission or imperfect detectors are unavoidable in practice. Nevertheless, security can also be
proved under these circumstances. The obtainable key rates and achievable transmission distance highly
depend on the utilised hardware. It is important to select components such that optimal performance is
achieved. In this paper, we will present a survey of a number of available protocols. We will also discuss
how imperfections affect their performance, and how to choose the best hardware. This includes advice on
which components need to be optimised in various practical settings to obtain best results.

General reviews about QKD can be found in Refs. [11, 19], and we will therefore not try to provide a
detailled elementary introduction in this paper, but refer the reader to the mentioned references to become
acquainted with the basic concepts. The principal setting of every QKD protocol between two parties is
depicted in Fig. 2. The performance of QKD systems is usually visualised in terms of diagrams which plot
the secret key rate over transmission distance. Figure 1 shows an example, and the reader is referred to the
caption for information on how to interpret such a diagram.

2 QKD hardware

We now turn our attention to the hardware used for signal generation, transmission and reception. Security
proofs require idealised components. Unavoidable experimental imperfections are handled by introducing
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effective error parameters, and we will concentrate on these in the following.1 Note that Table 1 provides a
hardware comparison for recently performed QKD experiments.

Before we commence further, we would like to point to “equation” (77) from [19]:

Infinite security ⇒ Infinite cost ⇒ Zero practical interest. (1)

This means that practical usability is required for every QKD system – cryptography is no good if everyone
sends everything unencrypted because no one can afford to use encryption. Therefore, it is especially
important to consider real-world applicability. This means especially cost and technological feasibility.
While there may often be better (research) alternatives for a given component, we concentrate on the
solutions which are not only available in quantities, but also come at a reasonable price.

2.1 Photon sources

Transmitting quantum signals requires a signal source. With few exceptions, the protocols considered in
this paper ideally require single photons. This can be achieved in practice, but only at a great expense and
experimental effort, see, for instance, [26]. In current practice, two sources for QKD are conventionally
employed: attenuated lasers and parametric downconversion (PDC) sources.

2.1.1 Attenuated laser beams

The quantum state emitted by a laser is a coherent state which can be uniquely characterised by a complex
value α. A representation in the Fock basis is given by

|ψ〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!

|n〉 . (2)

Under the assumption that no phase reference for the state exists once it has left Planck’s control [19], we
can write α = μeiθ for μ, θ ∈ �, and the corresponding phase averaged density operator becomes

�̂ =
1
2π

∫
dθ |μeiθ〉 〈μeiθ| =

∑

n

p(n) |n〉 〈n| . (3)

The probability distribution p(n) is given by

p(n) = e−|α|2 |α|2n

n!
, (4)

i.e., a Poissonian distribution, and the density operator represents a classical mixture of photon number
states.

To approximate the desired single-photon source, the intensity (i.e., μ) is chosen such that the probability
of emitting a two-photon Fock state is low. Unfortunately, with less intensity, vacuum contributions (i.e.,
Fock states with zero photons) become more and more frequent. In a laser pulse based system, it is therefore
essential to optimise the intensity such that key rate and transmission distance are maximised.

2.1.2 Parametric downconversion

In a PDC process [42], an optical medium with nonlinear susceptibility χ(2) is pumped by a laser to
generate photon-number entangled states of the form |ψ〉 ∝ ∑∞

n=0 cn |n〉S |n〉I. The subscripts S and I
refer to two spatial modes which are conventionally denoted by “signal” and “idler”. If the spectrum of

1 Obviously imperfect components must be described by a physical model. Aditional attacks can become feasible – possibly
even classical attacks – if side effects arise which are not included in the model.
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the state is approximately a single frequency mode, the distribution p(n) is thermal, i.e., cn = λn. Current
results however indicate that the photon number distribution will shift to a Poissonian distribution the more
frequencies contribute to the state, cf. [38, 55]. Irregardless of the statistical distribution, PDC sources
provide two distinct advantages in comparison to lasers.

• The second spatial mode can be used as a trigger, resulting in a heralded photon source [4, 56, 57].
This enables to filter out vacuum contributions, resulting in considerably increased maximal secure
distance [3, 23, 24].

• In combination with the decoy method (refer to Section 3.3), several techniques have been devised to
gain higher transmission rates and distances [3, 43].

• Entanglement-based protocols as introduced by Ekert in 1991 [13] become possible.

Note that the advantage of parametric downconversion comes only into play if a satisfactory source
efficiency can be achieved. This has not been the case for crystal-based sources which used to be state of
the art a couple of years ago [36]. The technique of waveguided parametric downconversion [5, 14, 29, 54]
and photon pair generation by four-wave mixing in dispersion-shifted and photonic crystal fibres [17, 33]
could provide many improvements in the future. By now, the brightness of PDC is larger than required,
cf. [16, 57].

2.2 Detectors

The detection process poses two requirements. Firstly, different orthogonal signals need to be distin-
guished. Secondly, the detector needs to announce if a signal arrived or not.

The decoding of orthogonally polarised signals depends on the particular protocol, but can always be
achieved by a polarising beam splitter or an interferometer. Experimental imperfections can, for instance,
arise from a geometric misalignment of components. With a certain probability, Bohr receives a logical
“zero”, but detects a “one” instead, and vice versa. The error is conventionally referred to as misalignment,
and the probability with which such an error occurs is denoted by edet. Note, that errors which occur in the
preparation stage can, as well as transmission errors, be subsumed into detection misalignment.

The detection problem is usually more involved. Although Planck might have sent off a pulse, losses
during the transmission can have led to complete extinction, especially at longer distances. Owing to dark
counts, a detector can nevertheless click although no signal is present. The probability for this to happen
is denoted by pdark. With current technology, it is hard to reliably detect single quanta of light because of
non-unit quantum detection efficiency. A number of possibilities are available. Most commonly avalanche
photo diodes (APDs) are employed, but there are alternatives, e.g., quantum dot detectors, visible light
photocounters, superconducting detectors etc. [11]. All suffer from quantum efficiencies much below one.
In the following, we will denote the probability to detect an incoming single photon with ηdet. The typical
value depends highly on the wavelength used. While devices operating at 800 nm provide efficiencies of
up to 80%, the typical level for telecommunication wavelengths (≈ 1550 nm) is only around 5%.

Click detectors with 100% quantum efficiency would allow to distinguish between different orthogonal
polarisations using a single detector: A click represents one specific polarisation, and no click ensures that
the orthogonal polarisation was present. Under the influence of loss, this will not work anymore: When a
“no click” event takes place, it is impossible to distinguish between the second polarisation mode and a
lost signal. Therefore all practical QKD systems use two detectors to analyse the basis of the transmitted
signal.

2.3 Information encoding

Albeit arbitrary quantum systems can be used to encode information on them, the use of light is a natural
choice for present-day systems. Since binary systems are the canonical fundamental of information sci-
ence, the two-level property is also carried into the quantum domain – and called qbit accordingly. Two
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orthogonal states are required to encode one classical bit with values 0 and 1. The polarisation of a pho-
ton (which is equivalent to a spin- 1

2 system) provides two orthogonal states, for instance horizontal |↔〉
and vertical |
〉 polarisation. It is possible to form arbitrary superpositions of these states. Physically, the
preparation of polarised light is a standard task easily achieved by wave plates. On the detection side, a
polarising beam splitter is sufficient to distinguish between orthogonal polarisations.

Transmitting four differently polarised photons across fibres is challenging: Polarisation mode disper-
sion leads to polarisation rotation. Although there are polarisation maintaining fibres which preserve a
single polarisation mode well, these cannot be used for QKD because states with different, non-orthogonal
polarisations need to be transmitted. Fibre-based polarisation coding can in general only be employed at
short distances.

To remedy this drawback, an equivalent of a two-level system which is not based on polarisation needs
to be employed. Phase encoding [19] is mathematically equivalent to a two-level system, and thus to photon
polarisation. By providing a phase reference to Bohr, Planck can prepare signals with a defined phase, and
Bohr can detect this phase using an interferometric setup. Certain phase differences are assigned to one
bit value, and others to the conjugate value. One particular problem arising here is phase mismatch of the
interferometer, but this problem can be controlled with current technology.

2.4 Transmission

There are basically two alternatives to transmit light from Planck to Bohr: Over fibres, and across free
space. It highly depends on the wavelength which method is more favourable to deploy. For the telecom-
munication wavelengths around 1550 nm, much research and engineering effort has gone into optimising
fibre transmission. Current damping rates are at 0.21 dB/km. This is quite close to the technological lim-
its2 [19] , and huge improvements are not to be expected.

The second wavelength region commonly employed is 800 nm, but fibres in this region display large
damping. Free space transmission is therefore the most reasonable option. However, signal transmission
only works when a sight contact can be established, and weather conditions have a significant impact on
the attenuation. On a clear, calm night at best weather conditions, the damping can be comparable to fibre
transmission at 1550 nm, but storm, clouds and mist can make damping rise to levels of over 20 dB/km [11].
It is crucial to observe that the detection benefits at 800 nm are compensated by the disadvantages of
transmission, and vice versa for 1550 nm.

3 Quantum key distribution protocols

A two-stage strategy is employed to establish a secret key between Planck and Bohr which can be used to
encrypt messages with perfect security.

• In the first stage, Planck transmits quantum mechanical signals to Bohr via a quantum channel. Since
the signals obey the laws of quantum mechanics (especially the no-cloning theorem [64]), measure-
ments by Einstein will inevitably modify the state. These modifications manifest themselves as noise
on the receiver side. If the noise exceeds a certain threshold, Einstein has potentially gained too much
information about the signal, and the honest parties abort the protocol. Usually, the first stage of a
QKD protocol is called quantum stage.

• The key shared between Planck and Bohr still contains errors, and Einstein may possess partial knowl-
edge. Classical methods (error correction (EC) and privacy amplification (PA), see [11, 19]) are used
in the second stage to remedy these. This stage can also include a sifting step, cf. Section 3.1, in which

2 In principle, loss-less transmission would be possible by using teleportation. For this reason, we must assume that Einstein
has quantum channels capable of transmitting signals without any loss, since no fundamental physical reason prevents the
existence of such channels.
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Fig. 2 (online colour at: www.ann-phys.org) General structure of quantum key distribution. Planck provides a number
of quantum mechanical signals to Bohr, and the eavesdropper Einstein tries to listen undetected. Employing various
techniques described in this paper, Planck and Bohr can, however, generate a string of secret bits about which Einstein
has no information whatsoever. Starting from this key, classical mathematical methods can be employed to communi-
cate in perfect security.

inconclusive measurement results are removed. Conventionally, the second stage is called classical
stage of a QKD protocol.

Once a perfect secret key between Planck and Bohr is established, a classical method can be employed
to perform the actual encryption: the one-time pad, also called Vernam cipher. This method has been known
for a very long time [58], and provides perfect, unbreakable security irregardless of any technological con-
straints. The bits of a message m are added (naturally modulo 2) to the bits of the secret key k, generating
the cipher text c = k⊕m. The encrypted message c is then sent to Bohr, and the plain text can be recovered
if and only if the key k is known:m = c⊕ k.

In this paper, we restrict our attention to discrete variable protocols.3 They use single quanta (or a
very low number of quanta) of the electromagnetic field which are most conveniently described in a Fock
space. Spin 1

2 -like properties are usually used to encode and transmit information. Obviously, this approach
requires dark light beams with very low intensities and provides corresponding experimental challenges,
but is well suited for security proofs. Discrete variable protocols come in two flavours.

• In a prepare and measure (p&m) protocol, Planck prepares a quantum state and sends it to Bohr, who
performs a measurement. A random choice of non-orthogonal encoding and measurement bases (see
Section 3.1) guarantees that Einstein cannot obtain perfect information about the transmitted states.

• On the other hand, in an entanglement based scheme, entangled photon pairs are utilised for key
generation. One photon is given to Planck, and another to Bohr. Note, that the source of entangled
states need not be located with the honest parties, and can even be placed under Einstein’s control [41]!

Planck and Bohr must ensure that they share a maximally entangled state. This can, for instance, be
generated from a number of noisy non-maximally entangled states via entanglement purification and

3 Continuous variable protocols where key distribution is achieved by employing conjugate quadratures for bright beams are an
alternative. We refer the reader to the review [8] for more information.
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distillation [19] (however, the physical operations required can effectively be replaced by EC and PA).
Measurements on both sides will result in perfect correlations and Einstein cannot infer information
at all.

It is interesting to observe that security proofs for p&m schemes are often founded on an entanglement
based protocol operating on maximally entangled states, followed by stepwise reduction to the p&m situa-
tion, cf. [53]. Experimental implementation differs in quite many details though. We consider both, prepare
and measure schemes as well as entanglement based key distribution.

Classical communication between Planck and Bohr is necessary to perform various tasks required for
QKD. This communication is made publically available such that Einstein cannot modify it once it has
been sent off. Nevertheless, it remains a problem to ensure that the origin of communication is really the
intended person. This can be solved classically by using authenticated channels. Since implementing an
authenticated channel requires a shared secret key, a causality dilemma arises: How can the key required
for authentication be transmitted? A short initial secret key shared between Planck and Bohr is required.
Because of this dependency, QKD is thus referred to more exactly as quantum key growing.

3.1 BB84

BB84 is a p&m scheme which relies on two sets of orthogonal bases, provided by any two-level quantum
system, for instance photon polarisation, phase encoding, or even Spin 1

2 systems [11, 19]. Set 1 consists
of the two states |
〉 and |↔〉 with 〈
|↔〉 = 0. Set 2 contains the states |+〉 ≡ 1√

2
(|
〉 + |↔〉) and

|−〉 ≡ 1√
2
(|
〉 − |↔〉), again with zero overlap. In every set, one state is identified with the logical bit

value zero, the other with the logical bit value one.
Since |+〉 and |
〉 are non-orthogonal, their overlap is non-vanishing: 〈+| 
〉 = 1√

2
. The same non-

orthogonality holds for any other combination of states from different sets. Given a state from any of the
two sets, the very laws of quantum mechanics render it impossible to perfectly distinguish between the
states! Planck and Bohr proceed in the quantum stage as follows.

• Planck randomly chooses a bit value, and also randomly chooses one of the two sets to encode the bit.
The encoded state is sent to Bohr without announcing the set which is used for encoding.

• Bohr randomly chooses one of the two sets, and detects the signal in the appropriate basis.

After a number of bits have been transmitted this way, Planck and Bohr announce which encoding/mea-
surement bases they have chosen. Incompatible events where different sets were utilised are ignored, and
only compatible events are kept for further processing. This is commonly referred to as sifting. Assuming
perfect hardware, Bohr’s measured results should completely agree with the states sent by Planck, and they
can easily check this by announcing a small number of sent/received values. If Einstein has interacted with
the signals, he will have introduced noise because of the indistinguishability of non-orthogonal quantum
states. This leads to discrepancies of the bit values in the selected subset, and thus his presence can be de-
tected. We emphasise that this is impossible in a purely classical scenario where signals can be measured
without introducing additional noise.

3.2 SARG04

Introduced two decades later than BB84, SARG04 [51] keeps the tradition of naming QKD protocols by
their inventors. The same hardware components as for BB84 are required. The whole quantum stage of
SARG04 is identical to BB84. What differs, however, is how bit values are extracted from the quantum
measurements. The four states available are now denoted by |S0〉 , . . . , |S3〉, and the relation
|S(n+m) mod 4〉 = Rn |Sm〉 (R denotes an apt rotation) holds. Four sets {Rk |S0〉 , Rk |S1〉}, k ∈
{0, 1, 2, 3} are declared.

After the quantum stage is finished, Planck does not announce his bases to Bohr, but only reveals one
of the subsets that contains the state which has been sent. If Bohr’s measurement outcome is orthogonal
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to one of the two states in the set, he can conclude that the other state in the set has been sent, and he has
obtained a conclusive result. It is also possible to obtain non-conclusive results, namely if the result is not
orthogonal to all states in the set. After repeating this procedure for all signals, Bohr announces where he
has found conclusive and inconclusive results, and the protocol commences as for BB84.

3.3 Decoy state variants

The main advantage of QKD is the ability to detect eavesdroppers on the line. If imperfect and lossy
components (which cannot be avoided in reality) are used to implement such systems, opportunities may
arise for Einstein which allow him to mimic the behaviour of imperfections as a hideout (we will discuss
usual weaknesses of QKD systems and corresponding attacks further below). It is thus essential to test and
characterise the utilised hardware not only when a setup is installed, but also during the quantum stage of
a running protocol. One method to perform these tests is the decoy method. In Section 4.1, we introduce
an attack which can at present only be detected by these means.

3.3.1 Active decoy state selection

Decoy states are an extension to p&m QKD protocols. In addition to the transmitted quantum states used
for signal generation, Planck actively inserts another set of states – called decoy states [25, 32, 35, 39,
43, 59–62] – at random times. It is essential that the decoy states have slightly different intensities than
the signals, but are indistinguishable from the proper signals in any other property. Since Einstein cannot
distinguish between signal and decoy states, he will perform the same attacks on both, but owing to the
slightly different intensities, the attack has varying effects on signals and decoys.

Following the quantum stage, Planck announces the position of the decoys in the signal stream, and
Bohr announces his measurement results. By comparing the error rates for signal and decoy states, Planck
and Bohr can infer photon-number resolved characteristics of the channel without using photon-number
sensitive hardware. This yields very good estimates which are required for security proofs.

3.3.2 Passive decoy state selection

It is crucial that signal and decoy states are experimentally indistinguishable. In a laser-based implementa-
tion, the exact intensity can be difficult to control if it is varied for different signals. Great care is required
to ensure that intensity modifications do not inadvertently modify other, unrelated parameters. However, it
is possible to perform the generation of decoy states in the classical stage after the quantum transmission is
finished, thus rendering a distinction between signal and decoy impossible in principle. The setup required
for this is depicted on the left hand side of Fig. 3.

A PDC source on Planck’s side generates two output states with strict photon number correlations
from an incident laser pulse. The time multiplexing (i.e., approximately photon number resolving) [1, 15]
detector (TMD) in one output arm is used to trigger on the spontaneous emission of PDC photons and
also to choose decoy states in the signal arm. Information encoding is performed on the signal arm, and
afterwards, the state is sent to Bohr via a quantum channel and analysed there as usual.

While photon number resolution cannot be obtained for single signals, it becomes very reliable for a
large number of measurements. An inversion process can transform the measured statistics into the real,
sent statistics [2]. This allows to select decoy states after the quantum stage [43]. Even Planck and Bohr do
not know which states are decoys and which states are signals during transmission. Thus it is impossible in
principle for Einstein to distinguish between signal and decoy states. The state selection is demonstrated
on Fig. 3.

The TMD records the measured photon number for each signal such that a measured statistics can be
obtained. The connection between sent statistics 
p = (p0, p1, . . . , pN) and measured statistics 
� is given by

� = C · L · 
p, where L is a matrix which compensates for lossy detection and C accounts for convolution
effects in the detector. See [1] for more details.
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Fig. 3 (online colour at: www.ann-phys.org) Schematic implementation of the passive decoy QKD scheme
(top), and how passive decoy state selection is performed (bottom). Refer to the text for further information.

This inversion process is not only possible for the whole set of transmitted states, but also for (suffi-
ciently large) subsets. To generate decoys, a measured subset with a slightly different probability distribu-
tion as the global set is selected. Inversion leads to a slightly different real statistics than for the global set.
The states in the selected subset are then interpreted as decoys.

3.4 Entanglement based schemes

PDC sources also allow to implement entanglement based QKD schemes. While the states generated by
PDC sources are always photon number correlated, is is also possible to include other degrees of entangle-
ment, e.g., in frequency or in polarisation [30, 31]. In [41], a QKD scheme based on entangled PDC states
was introduced. The state emitted from the source has the form

|ψ〉 ∝
∞∑

n=0

p(n)
n∑

m=0

(−1)m |(n−m) 
,m↔〉 |m 
, (n−m) ↔〉 . (5)

For instance, n = 1 delivers the Bell state |ψ1〉 ∝ |
〉 |↔〉 − |↔〉 |
〉. A crucial point is that the source
needs not be placed on Planck’s side, but can also reside in the middle between Planck and Bohr. While
this may sound insecure at a first glance, it is indeed possible to show that this method is completely secure
if Planck and Bohr can proof the entanglement of the state [10].

Although entanglement based systems tend to provide a better theoretical performance than p&m im-
plementations, their physical realisation can be challenging, cf. p. 176 in [19].

4 Security proofs

The basics of QKD protocols are easy to understand, but proving unconditional security has shown to
be very hard when imperfections are included. The first proof by Mayers [44], for instance, required 56
pages filled with calculations! Nowadays, proofs which employ rather different techniques are available.
We should like to emphasise two particular methods.

• Information-theoretic techniques (ITT), most notably developed in [49], provide mathematically so-
phisticated methods to prove the security of QKD under very general assumptions. However, involved
methods [28] are required to compute actual numerical values for key rates and alike.
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• The security proof by Gottesman, Lo, Lütkenhaus, and Preskill (GLLP, [22]) might be less elegant
than the aforementioned method, but facilitates easy calculation of actual performance data.

Results and performance achieved by GLLP-type methods are approximately identical with ITT results,
and have a more direct and accessible physical interpretation. We will therefore concentrate on these in
the following. Note, that all proofs rely on the law of large numbers. This requires transmission of a
nearly infinite number of pulses. For obvious reasons, this is hard to achieve in practice. The key rates for
comparably small numbers of transmitted signals (≈ 104) will thus decrease in comparison to the numbers
presented here, cf. [45] for a detailed analysis.

4.1 Possible attacks

Owing to the historical development of security proofs, three different types of attacks are conventionally
distinguished.

• Individual attacks restrict Einstein to attaching an independent probe system to one signal after an-
other, and measuring these probes also one after another.

• Collective attacks similarly restrict Einstein to attaching an independent probe to each pulse, but allow
him to measure several probes collectively.

• Coherent attacks are the most general form where Einstein can process an arbitrary number of qbits
at one time.

We mention that all rate formulae used in the remainder of this paper hold against coherent attacks.
One particular example for an individual attack often employed in proofs is an intercept-resend attack.

Einstein measures each signal coming from Planck. He stores the result, and prepares a fresh pulse with
his measurement result which is sent to Bohr. Assuming the BB84 protocol, only 50% of his bases choices
will be compatible with the signal. These measurements lead to the correct result. The remaining 50%
of the results will be random. Bohr finds that 25% of all signals are erroneous. This is no problem if the
hardware induces an error rate below 25%. The protocol is aborted if this threshold is exceeded. If the
errors caused by the hardware alone are above 25% percent, Planck and Bohr will not be able to detect
an intercept-resend attack, and security cannot be guaranteed any more. The upper bound on the distance
shown in Fig. 1 actually arises due to the intercept-resend attack. It should however be noted that this is
not the smallest upper bound, cf., for instance, [46, 47] on how to compute smaller bounds.

One particularly powerful attack in p&m schemes is photon number splitting [37]. After replacing the
lossy quantum channel by a loss-less one, Einstein performs a non-destructive measurement of the photon
number and then adapts her action accordingly. He blocks all single photon pulses. For multi-photon pulses,
he strips off one photon, stores it, and sends the remaining ones to Bohr. After Planck has announced his
encoding bases, Einstein measures the stored photons and obtains full information. This strategy does not
increase the error rate at all if the photon number distribution sent by Einstein is identical to the distribution
which would have been expected after transmission through a lossy channel. In fact, the attack can only be
detected in p&m schemes if the decoy method is employed.

4.2 Anatomy of GLLP-style proofs

We now discuss the results of the GLLP security proof in order to apply it to practical QKD setups to
estimate the performance of such systems. Without going into details of the derivation (which can be found
in [22]), we analyse the contributions to the rate equation. An adaption of the GLLP lower bound on the
secret key rate to BB84 with decoy states and one-way communication as derived by Lo and coworkers [35]
in 2005 is given by

Sone-way ≥ qQN̄︸︷︷︸
Conclusive signals

(−f(EN̄)H2(EN̄ )︸ ︷︷ ︸
Error correction

+ Ω · (1 −H2(e1))︸ ︷︷ ︸
Privacy amplification

)
. (6)
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Note that the value of S denotes the key generation rate, i.e., the fraction of secret bits which can be
extracted per signal. The bit rate per second can be obtained by multiplying S with the repetition rate of
the scheme. N̄ specifies the mean photon number of the source in use. EN̄ is the overall bit error rate,
and en the photon number resolved bit error rate. We emphasise that the formula holds for sources with
arbitrary photon number distributions.

First of all, secret bits can only be extracted from events where Bohr has obtained a conclusive result.
Cases where signals are lost in the channel are excluded by the prefactor QN̄ . This factor denotes the
fraction between successful detection events on Bohr’s side and the number of pulses sent by Planck. The
rate of conclusive single-photon events over all conclusive events is given by Ω = Q1

QN̄
. Since the detection

bases need to be identical to obtain a conclusive result, the sifting factor q specifies the probability that
Planck and Bohr choose identical bases. The sifting stage is not necessary, though, if a very large number
of signals are transmitted, cf. [34]. This also holds for any other p&m protocol considered in the following.
Two operations need to be performed on the raw bits (a visual summary of these operations can be found
in Fig. 2).

• Error correction ensures that Planck and Bohr share a completely correlated string of zeroes and
ones. This can be achieved by classical error correction algorithms (cf. [11,19]). A certain number of
bits needs to be sacrificed to perform the correction. The Shannon entropy H2(EN̄ ) quantifies how
many. Since the Shannon limit is not constructive, practical codes will perform less efficient. This is
accounted for by a compensation factor f(EN̄ ), f ≥ 1.

• Although Planck and Bohr share an identical key after error correction, Einstein may still be correlated
with the key. To remove these correlations, privacy amplification [11, 19] is employed. Since only
single photon signals are secure, Ω is the base quantity for privacy amplification. Additionally, only
error-free single photons can contribute, which is accounted for by the factor 1 −H2(e1).

While error correction can be performed equally efficient irregardless of one- or two-way communica-
tion, PA is more powerful if Planck and Bohr can perform bidirectional classical communication. The rate
equation which includes two-way communication is as follows [21, 40].

Stwo-way ≥ qr̃BQN̄

(
−f(ẼN̄ )H2(ẼN̄ ) + Ω̃ · (1 −H2(ẽ1,p)

))
. (7)

Equation 7 is structurally similar to Eq. 6, but differs in some details. First of all, bidirectional PA works
in steps on the classical bit string. In each step, roughly half of the total bits survive, but Einstein has less
information on the shortened bit string. After n PA steps, rB ≈ 2−n. Additionally, symmetry between bit
(en,b) and phase (en,p) error rates is lost. Bidirectional PA reduces the overall error rates EN̄ as well as Ω,
and makes the combination en,b and en,p more favourable. Quantities with a tilde represent the new values
after performing the PA steps. We do not want to list the transformation equations, but refer the reader
to [40].

4.3 Koashi-Preskill proof for entangled states

The key generation rate formula for the entanglement-based PDC QKD as introduced in Section 3.4 is not
based on the GLLP proof. Instead, Ma and co-authors [41] founded their proof on a technique introduced
by Koashi and Preskill [27]. The resulting formula is as follows

S ≥ q (QN̄ [1 − f(EN̄ )H2(EN̄ ) −H2(EN̄ )]) . (8)

Again, the structure is similar to Eqs. (6) and (7), with one important difference. The error rates need not
be known for single photons, it suffices to know the overall error rate. Intuitively, one reason for this is that
entanglement-based schemes are not affected by photon-number splitting operations, cf. [19].
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5 Performance analysis

Having introduced various protocols and how experimental imperfections are included in their security
proofs, we now discuss how these imperfections influence the performance quantitatively. We will compare
the benefits which arise when the individual components of a QKD system are improved. This will aid
experimental researchers in finding where physical and technical improvements will pay off most.

5.1 Numerical methods

To facilitate systematic comparison of various QKD schemes, we have developed a universal simulation
tool which performs the necessary numerical computations. Care was taken to ensure that no special knowl-
edge about security proofs or the numerics associated with them is necessary. A graphical user interface
enables to conveniently obtain all data of interest. The tool will be made available for download on our
group’s web page.4

5.2 Comparison between protocols

First of all, it is desirable to know how the protocols perform compared to each other when the same
hardware is employed. Figure 4 provides a series of performance plots for all protocols discussed in this
paper. All use the hardware described in the GYS experiment [20].

The largest distance is achieved by the entangled PDC protocol, which exceeds the tolerable loss of
other protocols by more than 25 dB. The achievable key rate, however, is two orders of magnitude lower
than for BB84 decoy protocols with and without source filtering. It can also be argued that entanglement
based protocols are harder to implement than p&m protocols, cf. [19].

Using SARG04 instead of BB84 does not provide any advantages when the security proofs utilised in
this paper are employed.5 Both, secret key rate and secure distance are smaller than for BB84 with decoy
states. For these reasons, we focus on the BB84 decoy protocol in the following.

4 http://www.optik.uni-erlangen.de→ Max Planck Junior Group IQO → Quantum Cryptography.
5 Note, however that this can change when different security analyses are employed. With the methods introduced in [51],

SARG performs better than BB84, but the analysis does not employ decoy states.
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Fig. 5 (online colour at: www.ann-phys.org) Comparison of achievable secure distances when experimental imper-
fections are varied. The standard parameters are pdark = 1.7 · 10−6, α = 0.21 dB/km, edet = 3.3 · 10−2, q = 1, λ =
1550 nm, ηdet = 4.5 · 10−2, and the protocol is decoy based BB84. Refer to the text for further information.

5.3 Quantitative influence of imperfections

Before we discuss any specific scenarios, we would like to present a general summary how the achievable
secure distance changes with experimental imperfections. The corresponding graphs can be found in Fig. 5.

Little improvement can be expected when the detector misalignment is improved. The current experi-
mental standard is edet = 0.03. If this value were reduced to 0.02, the increase in secure distance is only
around 3 km. Even a very large misalignment of 10% causes only approximately 8 km decrease.6 This also
implies that slightly different efficiencies or dark count rates of the two detectors can be mostly neglected.

Improving channel attenuation would be highly beneficial as the bottom right graph in Fig. 5 demon-
strates. However, the damping for telecommunication fibres is quite close to the optimal technological
possibilities as we have explained before. Bad weather drastically increases free space damping and thus
shortens the secure distance considerably. Furthermore, the constantly varying conditions need to be mon-
itored during signal transmission.

Moderate possibilities for improvement are provided by optimised detection efficiency. Observe the
top right graph in Fig. 5. Improving ηdet from, say, 10% to 60% results in a increased secure distance of
approximately 30 km.

We find that the best possibility to increase the secure distance is to suppress dark counts, as can be seen
in the top left side of Fig. 5. Decreasing this rate by one order of magnitude delivers 40 additional secure
kilometres. Considering the development over the last years, it is realistic to assume that better time gating

6 Note, that for simplicity we neglect weakly basis dependent attacks [22] here.
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Table 1 Summary of parameters used in recent QKD experiments.

Protocol λ [nm] Mean photon # α ηdet edet pdark Enc. QBER

[12] BB84 + 1550 signal: 0.55 unspec. 5.62% unspec. 1.4 · 10−4 Pol. unspec.

Decoy decoy: vac., 0.098

[20] BB84 1550 0.0042 – 0.046 0.21 4.5% 3% 8 · 10−7 Phase 3 – 6%

dB/km

[48] BB84 + 1550 signal: 0.6 0.2 unspec. unspec. 6.7 · 10−6 – Pol. 3.2% –

Decoy decoy: vac., 0.2 dB/km 9.2 · 10−6 3.6%

[65] BB84 + 1550 signal: 0.6 unspec. unspec. unspec. 5 · 10−7 Phase 1 – 2%

Decoy decoy: 0.2

[66] BB84 + 1550 signal: 0.425 4.7 dB/ 5.6% unspec. 9.4 · 10−5 Pol. 1.72%

Decoy decoy: 0.204 25.3 km

[50] Entangled 810 unspec. 1.4%/ 15% unspec. 800 s−1 Pol. 9.9%

7.8 km

[52] BB84 + 850 signal: 0.27 24 dB/ 10% 3% unspec. Pol. 6.48%

Decoy decoy: vac., 0.39 144 km

and new detectors with increased single photon sensitivity will allow to improve pdark by approximately
three orders of magnitude.

6 Example scenarios

Let us finally turn our attention to four practical scenarios. We base our analysis on a number of QKD
experiments performed in recent years. The parameters of components employed for them is collected in
Table 1.

6.1 Radio link free space transmission

Short distance QKD between buildings in a city, for instance, can conveniently be realised via radio links
operating at 800 nm. Because of stray light at daytime, such schemes will only be operational at night.
Another crucial factor is signal attenuation. Weather conditions impose serious differences in loss per
length. This in turn has a considerable effect on the achievable key generation rate. Figure 6 shows the
performance for a wide range of attenuation values. While the key rate at best conditions gives values in
the satisfactory range of 10−3 bits per pulse, performance will rapidly decrease with increasing attenuation.
In bad weather, the channel loss can be in the range of 20 dB/km, and the secure distance will only be
around 10 km, which is often not sufficient for any communication at all.

6.2 Satellite-based QKD

Recently, experimental free space QKD implementations [52] have reached transmission distances which
would allow to communicate with geostationary satellites.7 This is an important break-through because
it would enable a world-spanning secure QKD network. Since transmission losses from the earth into
space cannot be actively influenced, the detector efficiency is the main parameter which can be improved.
The implementation from op. cit. employed a detector with a quantum efficiency of 10%. Figure 7 shows
how the secure key rate would develop with better detection efficiency (clearly, the absolute value of the
maximal transmission distance is not of interest because the path length from a ground station to the

7 The attenuation between earth and a geostationary satellite is around 35 dB.
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satellite is fixed). While the quoted detection efficiency barely suffices to reach the desired distance, a
increase by 20 to 30 absolute percent would move the rapidly declining part of the key rate to distances
beyond the satellite. The desired transmission distance now lies in the slowly falling part, resulting in a
secret key rate increased by many orders of magnitude.

6.3 Long-Distance fibre based transmission

The most promising candidate for intermediate to long range terrestrial communication are fibre-based
systems operating at 1550nm. Several experiments in this regime have been performed recently [12,20,48,
65, 66]. The key parameter which provides room for improvement is the dark count probability. While the
detectors in the quoted papers provide probabilities in the range between 10−5 and 10−6, it can reasonably
be expected that the probability will be as low as 10−9 in future detectors. Figure 8 demonstrates that while
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the rates are unaffected by the dark count rates, the secure distance increases considerably with decreasing
dark count probability.

6.4 Passive decoy QKD with two-frequency downconversion

Transmission over fibres is advantageous for wavelengths in the 1550nm regime, but good detectors are
only available for 800nm. Particular advantages gained by employing one wavelength region are always
negated to some extent in conventional QKD setups. A proposed setup is a variation of the scheme in-
troduced in Section 3.3.2. It tries to overcome this limitation by picking advantageous features from both
worlds. As long as energy and momentum are conserved via (quasi)-phase-matching, downconversion
sources can well be built to emit signal and idler photons at different wavelengths. Signals are emitted at
1550 nm and transmitted over a quantum channel with little loss. The idler arm emits photons at 800 nm;
these can be detected by the TMD with good quantum efficiency (around 70%). Figure 9 presents the per-
formance prediction for the proposed scheme. The graph is based on a source repetition rate of 20 MHz, [9]
has shown that this is the maximum for TMD detection with current technology. While the maximal secure
distance is identical in both cases, the mixed wavelength scheme provides a bit transmission rate which is
one order of magnitude higher than for identical wavelengths.

7 Conclusions

In summary, we have presented a selection of discrete variable quantum key distribution systems. After
analysing the structure of the rate formulae obtained from security proofs, we have given a systematic
comparison of experimental tunables and their influence on the performance. The areas where experimental
improvements will bring maximal benefit have been exposed. Finally, we have performed an analysis of
four practical scenarios under consideration of current experimental possibilities.
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image preparation.
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