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Abstract. We demonstrate a method for determining the spectral purity of
single photons. The technique is based on the Hong–Ou–Mandel (HOM)
interference between a single-photon state and a suitably prepared coherent field.
We show that the temporal width of the HOM dip is related not only to the
reciprocal of the spectral width but also to the underlying quantum coherence.
Therefore, by measuring the width of both the HOM dip and the spectrum, one
can directly quantify the degree of spectral purity. The distinct advantage of our
proposal is that it obviates the need for perfect mode matching, since it does not
rely on the visibility of the interference. Our method is particularly useful for
characterizing the purity of heralded single-photon states.
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1. Introduction

The Hong–Ou–Mandel (HOM) interference is one of the most famous phenomena studied in
quantum optical experiments [1]. The effect can be observed by coherently combining two
indistinguishable photons at a beam splitter. As a result of interference in the Hilbert space,
the photons bunch together and depart at the same beam splitter output port. Therefore, the
effect not only relies on the linear superposition of electric fields, but also highlights the specific
quantum characteristic of the input states.

Originally, the HOM effect was observed by interfering two strongly correlated fields
produced by parametric down-conversion [1]–[3]. High visibility was achieved by tight spectral
and spatial filtering due to the incoherent nature of the light fields. Nowadays the two-photon
coalescence effect constitutes the core mechanism of many quantum information protocols,
such as linear-optics quantum computation [4] and teleportation [5, 6]. This fact has boosted
efforts towards the experimental generation of pure single-photon states [7], culminating in the
observation of HOM interference between single photons emitted by a semiconductor quantum
dot [8] or dissimilar sources [9].

Given the current demand for preparing high-quality single-photon states as a resource
for quantum information tasks, the experimental determination of their degree of purity
and underlying spectral properties becomes paramount. At present, the standard benchmark
adopted is the visibility of the HOM interference. However, since it indicates the degree of
indistinguishability between the quantum states [10, 11], it renders a pessimistic estimate for the
photon purity as it is highly sensitive to mode mismatching. Although a complete mapping of the
spectral properties could be realized [12, 13], we are here concerned with the characterization
of a single quantifier, i.e. the degree of purity.

As already noted in the seminal HOM paper [1], the fourth-order interference experiment
provides a way of determining the properties of the interfering photons with extremely high
temporal resolution, of the order of femtoseconds. In earlier experiments, the temporal width
of the dip was mainly determined by the inverse bandwidth of the employed spectral filters,
which was indeed equal to the coherence time. This fact was just a consequence of the choice
of input state—an incoherent parametric down-converted one. In a more general situation, the
width of the HOM dip can greatly differ from the coherence time. Still, the properties of the
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temporal width of the HOM interference have been mostly ignored. We show here that the latter
is related to both the reciprocal of the spectral width and the underlying quantum coherence,
thus providing crucial knowledge of the state’s spectral purity.

In this paper, we present a method for characterizing the degree of spectral purity in a
robust way and with few measurements. In order to do that we analyze the temporal profile of
the HOM interference between a single-photon state and an auxiliary weak coherent field, used
as a reference. The advantage of our proposal is that it enables the quantification of the purity
without the need for perfect mode matching, thus greatly reducing the technical demands on
the experimental conditions. In the simplest case, our method requires only the knowledge of the
spectral widths of the reference and single-photon state, together with the temporal width of the
HOM dip. The first two quantities are in general easily measured by standard high-sensitivity
spectrographs [14, 15].

Our technique gives exact results when two assumptions commonly found in the literature
are made. Moreover, it provides good results even in the most general case. Our proposal is
well adapted for photon-pair sources, which we discuss theoretically, showing the expected
performance under different conditions. The best situation occurs when employing a practical
and popular strategy to generate pure states, the one relying on tight spectral filtering. For
other situations an error limited to about 10% may occur in a worst case scenario. To provide
concrete results that illustrate the applicability of our technique, we also present an experimental
investigation. Our findings corroborate the usefulness and benefits of the method.

This paper is organized as follows. In section 2, we present general results relating the
width of the HOM dip with the spectral purity of the single-photon state. We define the
photon spectral density function and show that in a Gaussian scenario it can be parameterized
by two widths. While the major one is the spectral width, the minor one is related to the
reciprocal of the HOM time duration. The purity acquires a simple geometrical interpretation,
and is shown to be the ratio between those two widths. The first order coherence time, on
the other hand, is the inverse of their difference. Therefore, as is well known, spectrally pure
states have a coherence time that tends to infinity. Impurity, by contrast, leads to a broader
spectrum, thus shorter coherence time, resulting in a wavepacket that is not Fourier transform
limited. After establishing those concepts, we introduce our method for characterizing the
purity. In section 3, we discuss the validity of our proposal when applied to states arising from
photon-pair sources. Section 4 covers an experimental investigation, where we employ our
technique to characterize the spectral purity of signal and idler photons generated in a wave-
guided parametric down-conversion source. Further theoretical details of photon-pair sources
are provided in the appendix.

2. Purity, temporal coherence and the Hong–Ou–Mandel (HOM) interference

Before explaining how to retrieve the spectral purity from the HOM interference, we first define
a pure single-photon state prepared with a spectral shape u(ω) as [16]

|9〉 =

∫
dω u∗(ω) b̂†(ω)|0〉. (1)

From its corresponding density operator, one observes that the spectral density function is
simply gpure(ω, ω′) = u∗(ω)u(ω′), which is symmetric with respect to ω and ω′. Considering a
field with a Gaussian spectral shape the function gpure presents a circular symmetry in frequency
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Figure 1. Contour lines of the density function |g(ω, ω′)|. Left: pure state
with the Gaussian spectral profile. Right: pictorial representation of an impure
spectral density function, with major and minor widths denoted by σg1 and σg2,
respectively. This particular form of g is separable along the ±45◦-axis.

space, as illustrated in figure 1 (left). To include the description of impure states, a more general
representation for the single-photon state is used

ρs =

∫ ∫
dω dω′ g(ω, ω′) â†(ω)|0〉〈0|â(ω′). (2)

Since density operators are Hermitian, any spectral density function g is symmetric about the
45◦-axis, i.e. about (ω + ω′). As usual, the diagonal elements of the density matrix correspond to
the populations. In the present case, those compose the spectrum of the field, which is directly
measured with a spectrograph and whose width we denote by σg1, as depicted in figure 1 (right).
As a final remark, we recall that the degree of purity is calculated as

Ps = Tr(ρ2
s ) =

∫ ∫
dω dω′

|g(ω, ω′)|2. (3)

Therefore, the shape of |g(ω, ω′)| offers direct intuitive insights into the purity of the quantum
state. In particular, if |g(ω, ω′)| is a two-dimensional (2D) Gaussian function, the purity is just
the ratio between minor and major axes, as derived later.

To provide further intuition on those physical concepts, we can also calculate the first-order
correlation function [17]

G(1)(ω, ω′) = Tr[ρsâ
†
s (ω)â(ω′)] = g(ω, ω′). (4)

We realize that the spectral density function is equal to the non-normalized first-order frequency
correlation function. The condition of purity as the separability of g in the {ω, ω′

} frequency
space corresponds to the condition of perfect first-order coherence, as defined by Glauber [17].
Thus, the techniques for tailoring the spectral properties of single photons also apply for
engineering wavepackets with a specific temporal coherence [18].

The method we propose for characterizing the spectral purity Ps relies on the HOM
interference between a single-photon state ρs (called signal) and a highly attenuated coherent
state |β〉 with a spectral shape u(ω) (called reference) [19]–[22]. The experiment is
schematically shown in figure 2. Both fields interfere in a 50/50 beam splitter, after which
avalanche photodiodes (APDs) record the number of click events. The measurement of
coincident events versus the time delay τ between signal and reference fields reveals the HOM
interference dip. The reference field can be provided by any independent laser, since there is no
need for phase stabilization in this kind of interference.
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Figure 2. Scheme for realizing the HOM interference between two fields with a
relative optical delay τ . APD: avalanche photodetector.

Given that the coherent state |β〉 contains higher photon number contributions, to calculate
the probability of coincidences we consider the weak power regime in which the interference
between the reference and signal comes mostly from single photons in each mode. So
far we have ignored the photon number purity of the signal state. Generally, this one is
well characterized by the second order coherence [23, 24], which can be measured with a
Hanbury–Brown–Twiss interferometer. For photon-pair sources in particular, it is known that
the prepared state presents a small probability of two photons. We include the degrading effect
of multiphoton components in a first-order approximation, i.e. they are assumed not to interfere,
resulting only in background events.

The joint probability of registering photons at detectors APD1 and APD2 at times t1 and t2

is given by

P12(t1, t2) = 〈Ê (−)

1 (t1)Ê (−)

2 (t2)Ê (+)

2 (t2)Ê (+)

1 (t1)〉, (5)

where the average is calculated over the state of the single-photon source and the reference field.
The fields Ê (+)

1 and Ê (+)

2 are related to the reference Ê (+)
β and signal Ê (+)

s by the beam-splitter
transformation

Ê (+)

1 (t1) =
1

√
2

∫
∞

0
dω1[âs(ω1)e

−iω1τ + âβ(ω1)]e
−iω1t1, (6)

Ê (+)

2 (t2) =
1

√
2

∫
∞

0
dω2[âs(ω2)e

−iω2τ − âβ(ω2)]e
−iω2t2 . (7)

Since the detection response time is much slower than the correlation time between the fields,
we integrate P12(t1, t2) over all possible times. This leads to a probability of coincidences given
by

Pc(τ ) = B +S[1 − I(τ )], (8)

with

I(τ ) =

∫ ∫
dω dω′ u∗(ω) g(ω, ω′) u(ω′)eiτ(ω−ω′). (9)

The parameter B is a constant proportional to the probability of vacuum and two photons in both
signal and reference fields, whereas S is proportional to the single-photon contributions [25].
The function I(τ ) accounts for the interference between the single-photon components of both
fields. Its value at zero delay T = I(0) gives the overlap between the spectral density functions
of the signal and reference.
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The visibility of the HOM interference is defined as the fractional reduction of the
probability of coincidence from its uncorrelated value, i.e.

V = 1 −
Pc(τ = 0)

Pc(τ → ∞)
=
S T

B +S
. (10)

We note in particular that by removing background events from Pc(τ ) one obtains a ‘corrected’
visibility that is equal to the spectral overlap factor T . Experimentally, mode mismatch in other
degrees of freedom decreases even further the value of V from the best one T . We emphasize
that the latter is only constrained by the spectral overlap between the density functions, which
includes the property of mixedness in the signal state.

One observes from (9) that perfect interference is only achieved when the spectral density
function g(ω, ω′) is separable, i.e. the signal photon is pure and matches the spectrum of
the reference u(ω). In this special case, I(τ ) is nothing but the convolution of the temporal
distributions of the reference and signal. In a general situation, however, the width of the HOM
dip will depend not only on the diagonal elements of g(ω, ω′) but also on the complete spectral
density function. It is precisely the shape dependence of the latter with the purity that we
explore.

2.1. Method for characterizing the spectral purity

Our aim is to find a simple relationship between (3) and (9). Given the symmetry of this problem,
we analyze it in a 45◦ rotated frequency basis and denote by {x, y} the new reference frame. The
latter follows the direction of the major and minor axes of g(ω, ω′), as illustrated in figure 1
(right). Our first assumption consists in considering that the spectral density function of the
analyzed state is separable in the {x, y} basis, thus described by g(ω, ω′) = g1(x) g2(y). In this
case, the purity and the HOM interference dip are, respectively, given by

Ps =

∫ ∫
dx dy |g1(x)|2|g2(y)|2, (11)

I(τ ) =

∫
dx u∗(x)g1(x)

∫
dy u(y)g2(y)eiτ y. (12)

We observe that the temporal shape of I(τ ) is only affected by the elements of the spectral
density function lying at −45◦. Performing the Fourier transform of the HOM dip allows one
to recover the function g2(y). In particular, if both I(τ ) and the spectrum of the reference are
Gaussian functions, then g2(y) must also be. We recall that the spectrum of the studied signal is
determined by the elements of the g function lying at + 45◦, in other words by g1(x). Therefore,
the shape of the latter can be verified with a spectrograph.

Our second assumption consists in approximating the spectral density function by a
Gaussian distribution and considering only linear phase terms. This approximation is valid in
many experimental situations, as we discuss later on. Another possibility, more realistic for
quantum dot sources, would be to assume a Lorentzian profile. Such a modification would lead
to similar conclusions. Under this condition,

g(x, y) =
1√

2π σ 2
g1

exp

(
−

x2

4 σ 2
g1

−
y2

4 σ 2
g2

+ iκy

)
, (13)
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with κ being a constant that depends on the physical system under consideration. For a photon-
pair source the phase term depends only on the difference in frequencies ‘y’. The normalization
factor takes into account the condition of positivity that any physical density operator has to
satisfy. With this definition of g, the standard deviation of the spectrum (field amplitude) is
precisely σg1, and the spectral purity is given by

Ps = σg2/σg1. (14)

Lack of purity acquires a simple geometrical interpretation: the g function becomes compressed,
displaying an elliptical shape in the frequency space. To characterize the purity, one needs to
access the values of σg1 and σg2. While we have already discussed that the first can be measured
with a spectrograph, for the second one we analyze the HOM interference.

To solve (12), we consider a reference field with a Gaussian spectrum characterized by
a standard deviation σβ . The HOM dip is determined by I(τ ) = T exp[−τ 2/(2δ2)], with the
following overlap factor,

T =
1

δ

√
2

σ 2
g1 + σ 2

β

, (15)

and temporal width

δ2
=

1

2 σ 2
g2

+
1

2 σ 2
β

. (16)

Firstly, we emphasize that the overlap factor characterized via the width of the HOM dip
quantifies exclusively the amount of spectral overlap between u∗(ω)u(ω′) and g(ω, ω′). This
would not be the case when employing the visibility via equation (10), given its sensitivity
to mode mismatch in all degrees of freedom. Secondly, the width of the dip enables the
characterization of σg2. Since σg2 = σg1Ps , the width of the HOM dip is related not only to
reciprocal of the spectral width, as generally believed, but also to the purity of the single-
photon quantum state. Hence, the knowledge of very few—directly measurable—parameters
completely determines the purity of the interfering photon,

Ps =
1√

2σ 2
g1 [δ2 − 1/(2σ 2

β )]
. (17)

For completeness, we also calculate the coherence time tc of the single-photon state.
Using the generalized Wiener–Khintchine theorem [26], the temporal correlation function is
determined by γ (t, t ′) = 0(t, t ′)/

√
0(t, t)0(t ′, t ′), with

0(t, t ′) =

∫ ∫
dω dω′g(ω, ω′)ei(ωt−ω′t ′) . (18)

The coherence time is proportional to the standard deviation of γ (t, t ′), which results in
tc ∝ 1/(σ 2

g1 − σ 2
g2). Thus a pure state has a coherence time that tends to infinity, while incoherent

chaotic sources have a coherence time that is equal to the inverse of their spectral bandwidth.

3. Application to photon-pair sources

By employing nonlinear processes such as three- and four-wave mixing, one can generate
photon pairs from an intense pump beam. The fundamental physical constraints governing
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Figure 3. Illustration of the joint-spectral distribution (ellipse), determined from
the properties of the pump beam (α) and PM (8). The standard deviation of the
pump spectral function and PM is denoted by σp and σ8, respectively. In what
follows we will use the notation w to refer to the full-width at half-maximum
(FWHM) of the pump (p), PM (φ), spectral filter ( f ) and reference field (β),
which is indicated by the appropriate subscript.

these processes are energy conservation and phase-matching (PM) of pump and down-converted
(signal and idler) waves. The first results in a strict photon number correlation between the twin
photons. Therefore, one of them can be used to herald the existence of the other. Moreover, those
conservation laws lead to a two-photon state characterized by a complex, highly correlated joint-
spectral function [27]. In our context, the spectral correlations, together with the fact that the
triggering photon is measured with a conventional frequency-blind APD, lead to an effect akin to
dephasing and the heralded photon ends up in a mixed state. One possibility to produce highly
pure single-photon states relies on careful engineering of the PM condition of the nonlinear
material [28]. Progress in this direction has been described in several recent experiments
([29]–[31] and references therein). Nevertheless, a more common strategy to generate pure
states still relies on spectral filtering.

We analyzed the performance of our method for considering a single-photon state produced
by parametric down-conversion. To follow our analysis it is only necessary to know that the
joint-spectral function φ(νs, νi) of the photon-pair state is the product of the PM condition
8(νs, νi) and the pump envelope α(νs + νi). The first has a spectral shape determined by a sinc
function and a slope θ ; the latter is assumed to be a Gaussian. The parameter νs (νi) denotes
the frequency detuning of the signal (idler) with respect to the central frequency of the pump.
Figure 3 allows us to quickly overview the relevant parameters. We recall that the spectrum
of one field is just the marginal distribution obtained by integrating φ over the frequencies of
the other. Finally, considering that the idler photons are used as a trigger, the spectral density
function of the signal is given by [25]

g(νs, ν
′

s) ∝

∫
dνi φ(νs, νi)φ

∗(ν ′

s, νi)
√

fs(νs)
√

fs(ν ′
s) fi(νi) , (19)

with fµ(νµ) being the intensity transmission function of the applied spectral filter. We note that
the joint-spectral function φ determines the frequency correlations between the signal and idler,
being a property of two fields. The density function g, although connected to φ, is a property of
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Figure 4. Left: filtered highly correlated joint-spectral function. (Middle)
Contour lines of |g(ν, ν ′)| as a function of wavelengths. Right: the HOM dip
obtained by interfering the signal with the reference field: (circles) calculated
using (9); (solid line) Gaussian fit. The following parameters were used: wp =

2 nm, w8 = 0.8 nm, θ = 55◦, wf = 1 nm and wβ = 1 nm.

a single beam and has a meaning directly connected to the degree of spectral coherence. Thus
care must be taken to avoid confusing these two functions.

To test our technique, we simulated several conditions, resulting from different choices
of the joint-spectral function and eventual use of Gaussian spectral filters. Those define the
spectrum and purity of the signal field. Taking a reference beam with similar spectral width,
we evaluate (9) for several temporal delays, resulting in a specific HOM dip. Fitting Gaussian
functions to the fields’ spectra and HOM dip, we obtain the necessary parameters to evaluate
the purity via (17), which will be denominated as Pwidth. Finally, we explicitly compare the
value obtained from our method with the one found from a direct calculation of the purity as
P = Tr[ρ2] (3). In what follows, we considered the HOM interference of signal photons; thus g
will never refer to the density function of the idler.

3.1. Performance of the method with different wavepackets

As a general rule, the shape of the HOM dip is dominated by the function with the smallest
spectral width. Thus a very narrow PM function leads to a squared profile for the temporal dip
(Fourier transform of the sinc). If, on the other hand, the width of the pump field is decreased
such that it becomes of the order or narrower than the PM (in frequency units), then the shape
of the HOM dip tends to a Gaussian. Below we discuss the main factors to be considered when
applying our method, illustrating our proposal with concrete results for three different situations
of great interest.

(I) Highly frequency correlated joint spectrum. In this case, to increase the degree of
spectral purity of the heralded single photon it is necessary to apply tight filtering. High purity
is achieved when the filter bandwidth is of the same order as the intrinsic width of the joint
spectrum (minor axis). We show in figure 4 (left) a filtered joint-spectral function that closely
resembles the one found in our experiment, which will be discussed later. The corresponding
spectral density function of the signal |g(ν, ν ′)| is presented in figure 4 (middle). Its shape
is very close to a function that is separable along the major and minor axes. Employing the
width of the HOM dip, shown in figure 4 (right), one finds the degree of purity estimated with
our method: Pwidth = 59%. This value has to be compared with the spectral purity obtained by
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Figure 5. Left: width of the HOM dip (defined by the FWHM of a Gaussian
fit) for different widths of the phase matching, considering unfiltered and 1 nm
filtered triggering photons. Right: comparison between ‘true’ purity (solid line)
and the one given by our method (dashed line) for unfiltered (dark colors) and
1 nm filtered (light colors) triggering photons. The following parameters were
used: wp = 2 nm, θ = 55◦, wf = 1 nm and wβ = 1 nm.

the direct calculation: P = 60%. We find good agreement. In general, to increase the purity of
the signal state even further, a second filter can be included in the idler field. This non-local
manipulation of the signal’s frequency leads to a narrower heralded spectrum, but at the same
time to a narrower HOM dip. The latter is a consequence of describing the PM by a sinc function
and would not be observed in case it could be approximated by a Gaussian. This effect can be
seen in figure 5 (left), where we present the width of the dip for different PM widths. Thus,
by adding a 1 nm filter to limit idler frequencies, one finds that P = 89% and Pwidth = 88%.
Again our method proves to be a faithful tool for characterization of the purity. Its efficacy as a
function of the PM width is presented in figure 5 (right). For small values of the PM width the
resulting squared HOM dip profile indicates that the g2 function is not a Gaussian. This leads
to retrieving a value for the purity that is about 10% underestimated. As a general behavior, the
estimated Pwidth tends from below towards the correct value of the purity, being optimal when
w8 ≈ w f .

(II) PM lying at 90◦. High-purity heralded single photons are generated by the appropriate
choice of the pump width and there is no need for spectral filtering. A typical joint spectrum
and the corresponding density function of the heralded photon are illustrated in figure 6 (left)
and (middle), respectively. In this case, by tracing over idler frequencies to obtain ρs one
naturally introduces a smearing out of the sinc structure, resulting in a g(ν, ν ′) function that
is a 2D Gaussian. Therefore, our method can be used without restrictions and we find that
P = Pwidth = 96%.

(III) PM lying at 45◦. Again, high purity is achieved by matching the widths of the pump
and the PM, resulting in a condition that is the most unfavorable for our technique. The reason is
that the ‘wings’ of the sinc function appear in a pronounced and symmetric way, thus surviving
the smearing effect discussed above. We show in figure 7 (left) and (middle) a typical joint
spectrum and density function, respectively.

Although the function g(ν, ν ′) is not separable and the validity of the method breaks, a
blind application of (17) results in a characterization of the purity that is only about 12% wrong;
nevertheless in this case it is overestimated. This state has a purity of P = 88% and, given its
reduced value, the use of traditional spectral filters is still inevitable. The local application of
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Figure 6. Left: uncorrelated joint-spectral function. Middle: contour lines of
|g(ν, ν ′)| as a function of wavelengths. Right: the HOM dip obtained by
interfering the signal with the reference field: (circles) calculated using (9);
(solid line) Gaussian fit. The following parameters were used: wp = 1.8 nm,
w8 = 1 nm, θ = 90◦ and wβ = 10 nm.

Figure 7. Left: uncorrelated joint-spectral function. Middle: contour lines of
|g(ν, ν ′)| as a function of wavelength. Right: the HOM dip obtained by
interfering the signal with the reference field: (circles) calculated using (9); (solid
line) Gaussian fit. The following parameters were used: wp = 1 nm, w8 = 3 nm,
θ = −45◦ and wβ = 4 nm.

a Gaussian spectral filter to the single-photon state effectively smoothens the effect of the sinc
bringing the spectral density function towards the ideal conditions of our method. Applying
a 5 nm filter to the signal field, enough for cutting most of the ‘wings’ arising from the sinc
function, would result in P = 96% and a 4% overestimated Pwidth.

4. Experiment

To show the experimental feasibility of the method, we measured the HOM dip between one
of the twins and a coherent reference. An illustration of the experimental setup is presented
in figure 8. A 1.45 mm long, type II, periodically poled KTiOPO4 waveguide is pumped by a
frequency-doubled Ti:sapphire laser operating in the ultrafast regime (796 nm, FWHM equals
10 nm, autocorrelation length of 170 fs and repetition rate of 4 MHz). A small fraction of
the fundamental light is used as the reference field. The spectral width of the pump field is
wp = 2.0(1) nm. The path delay c τ between the reference and one of the twins is adjusted by
using a high-precision translation stage, which is moved in steps corresponding to a delay of
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Nonlinear

Figure 8. Sketch of the experimental setup. SHG: second harmonic generation;
SF: spectral filter (wf = 1.0(1) nm); HWP: half-wave plate; PBS: polarizing
beam splitter; APD: avalanche photodetector.

Figure 9. The measured HOM dip by interfering the reference field with: (left)
the signal; (right) the idler. The width of the dip and the corresponding visibility
are shown in the plots.

0.22(1) ps. The fields are combined by using a fiber-integrated beam splitter, thus ensuring good
spatial overlap. We measure coincident clicks using two avalanche photodetectors whose signals
are acquired by a computer using a time-to-digital converter (TDC).

In our case the joint spectrum is highly correlated and we prepare heralded single
photons by applying 1.0(1) nm spectral filters to both, signal and idler photons. Discarding
any information about the idler (unconditional measurement), it is legitimate to assume that
the spectral width of the signal is equal to the filter width σg1 = σf, since the unfiltered marginal
spectrum is much broader. A similar condition holds for the reference beam, σβ = σf. Thus,
to avoid measuring σg1, we begin the experiment by investigating the interference between the
unconditional signal state and the reference, i.e. between a thermal and a coherent state.

The result of our measurement is presented in figure 9, where we show typical HOM dips
observed by interfering either the signal or the idler with the reference beam. By analyzing
several similar sets of data we extract the following FWHM values: ws = 1.75(5) ps and
wi = 1.54(5) ps. The purity of the unconditional mode is retrieved by applying (17). One finds
that P (s)

width = 0.64(10) for the signal and, in a similar way, P (i)
width = 0.77(10) for the idler, despite

the low visibilities (depicted in figure 9).
The best way to compare our method with the standard one based on the visibility is to

analyze the value of the overlap factor, since for the interference between two intrinsically
different sources the visibility is not directly connected to the purity [10]. As discussed, this
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Table 1. Mean photon number of the reference field and photon number statistics
of the field that interferes with it.

p0 (%) p1 (%) p2 (%) |β|
2

The signal 99.7015 0.2978 0.0006 0.0030
The idler 99.8309 0.1689 0.0002 0.0027

quantity can be retrieved either from the HOM width via (15) or from the visibility via (10).
Here, we refer to the former as T and to the latter as Tvis. For the first case we directly obtain
T (s)

= 0.76 and T (i)
= 0.86. For the second case, we measure the photon number distribution of

both fields using a standard time-multiplexing detector [25]. In our experiment, we can neglect
the effect of dark counts by applying a tight temporal gating to the acquisition (∼3 ns). The
observed probabilities of vacuum p0, one-photon p1 and two-photon p2 components of the
studied state, together with the mean photon number |β|

2 of the coherent field, are shown in
table 1. With these values one can calculate S = p1 |β|

2 and B = [p0 |β|
4/2 + p2], which yield

an overlap factor of T (s)
vis = 0.46 and T (i)

vis = 0.60, smaller than the ones retrieved from the width
of the dip. This exemplifies well the fact that the visibility is affected by mode mismatch and
other experimental imperfections, contrary to the temporal width used in our method.

Concerning the heralded photon state, the non-local spectral filter in the idler arm reduces
the spectral width of the signal state σg1, thus differing from σf (bandwidth of the filter in
the signal arm). Therefore, in this scenario σg1 has to be measured in order to allow the
characterization of the heralded purity via the HOM width. Unfortunately, in our case this width
is narrower than 1 nm and cannot be directly accessed in our system. Still, the degree of purity
can be estimated making use of the knowledge that our source produces photon pairs, described
by a joint-spectral function, with measured unconditional purities. In previous measurements,
we characterized the slope of the PM function to be θ = 54.7◦ [25]; thus by comparing the
values of P (s)

width and P (i)
width with a theoretical curve (obtained by numerical integration), we can

characterize the PM width. From this analysis we estimate that, employing a 1 nm filter in the
idler arm, the heralded purity is Ph = 0.90(6) and the spectral overlap with respect to the same
1 nm broad reference field is T = 0.88.

5. Conclusion

We demonstrated a new method for directly determining the purity of single photons in a
way that is independent of mode matching. We employed the standard Hong–Ou–Mandel
interference between two fields but, contrary to the usual approach based on the amplitude
of the interference, we benefitted from the robustness of its temporal width against mode
mismatch. Its applicability for characterizing the state produced by photon-pair sources was
explicitly examined and discussed for different experimental scenarios. In particular, we showed
its advantage in an experiment dealing with tightly filtered parametric down-converted photons.

Our technique can also be extended to situations in which the signal and reference with
the same wavelength are not easily available. In this case, the solution might be to employ two
independent but equivalent photon-pair sources and interfere the signal mode from each of them.
The information about the purity should still be available in the temporal width of the HOM dip.
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We hope our work will trigger further investigations into more practical and robust
techniques for quantifying the quality of general single-photon states. We believe that our
ideas will boost the characterization and optimization of high-purity heralded single-photon
states, thus having a direct impact on the practical realization of quantum information
protocols [32]–[34].
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Appendix

The precise expressions used in our simulations are provided below. The PM is defined as

8(ωs, ωi) = sinc(1k(ωs, ωi)L/2)ei1k(ωs,ωi)L/2, (A.1)

where {ωs, ωi} represents the frequency space of signal and idler fields, 1k the phase mismatch
between the pump and twins and L the length of the nonlinear medium. We define νµ

(µ = s, i, p) as the detuning relative to the central frequencies of the signal, idler and pump,
respectively. Moreover, the first-order expansion of the phase mismatch reveals that 1k(νs, νi) =

κsνs + κiνi, where κµ is the respective group velocity mismatch with respect to the pump. With
this consideration the PM function is rewritten as

8(νs, νi) ≈ sinc

(
sin θνs + cos θνi√

2γ σ 2
8

)
eiL/2(κsνs+κiνi) , (A.2)

with tan θ = κs/κi, σ−2
8 = (κ2

s + κ2
i )γ L2/2, and γ = 0.193. Since directly measurable

observables are proportional to the intensity, we define the PM width w8 by the FWHM of
|8|

2, i.e. w8 = 2 σ8

√
ln 2.

The pump field is considered to have a Gaussian spectral profile, defined by

α(νs, νi) = exp(−(νs + νi)
2/(2σ 2

p )) , (A.3)

with FWHM (intensity) given by wp = 2 σp

√
ln 2. Finally, using (A.2) and (19) we note that the

linear phase term of g(νs, ν
′

s) is [L/2 κs (νs − ν ′

s)].
In part of our analysis we employed spectral filters. Those are defined by Gaussian

functions f (ω), such that f (ω)2 has standard deviation and FWHM, respectively, denoted by
σ f and wf. Moreover, for the characterization of the purity we assumed a reference field with
a Gaussian spectral profile u(ω). The standard deviation of u(ω)2 is denoted by σβ and the
respective FWHM by wβ .
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