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We investigate quantum properties of pulsed light fields point by point in phase space. We probe the

negative region of the Wigner function of a single photon generated by the means of waveguided

parametric down conversion. This capability is achieved by employing loss-tolerant photon-number

resolving detection, allowing us to directly observe the oscillations of the photon statistics in dependence

of applied displacements in phase space. Our scheme is highly mode sensitive and can reveal the single-

mode character of the signal state.
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Quantum tomography constitutes an essential tool for
the exploration and verification of quantum information
tasks. For continuous variables (CV) systems, homodyne
detection is an ubiquitous technique allowing the charac-
terization of quantum states and processes by the Wigner
function in terms of the field quadratures [1]. The Wigner
representation is particularly expedient for studying
genuine quantum properties of coherent light fields or the
nonclassicality of non-Gaussian states, which is signalized
by the negative values of the distribution [2,3]. However,
as the Heisenberg’s uncertainty principle precludes the
simultaneous measurement of a pair of noncommuting
quadratures, the evaluation of the Wigner function at a
specific point in phase space by homodyne detection is
only possible by means of tomographic reconstruction.

Surprisingly, we can nevertheless directly access the
value of the Wigner function at a single point in phase
space by changing the detection method; this means the
measured observable [4]. This technique, which was first
demonstrated with motional quantum states of a trapped
ion [5], requires the measurement of only one operator—
namely, the parity. In optical experiments this can be
realized using photon counting [6]. Although conceptually
simple, up to now the use of this technique, referred to as
direct probing, has been limited by the lack of optical
photon number resolving (PNR) detectors. It has been
applied to optical states confined to a cavity, for which
atom-photon interactions were utilized rather than direct
photodetection [7]. For traveling light fields, the first
proof-of-principle experiment demonstrated the method
for coherent states in the continuous wave regime [8].
Lately, Gaussian states of light have been characterized
in the pulsed regime even without true PNR detectors [9].

However, a point-by-point measurement of a non-
Gaussian state exhibiting negative values in the Wigner
function with free propagating light pulses has so far not
been reported. Apart from the fundamental interest, the
successful demonstration of such an experiment opens a

new path for the state analysis in the context of quantum
communication protocols. It can be highly attractive for
the study of CV Bell inequalities [10] or CVentanglement
distillation associated with the famous no-go theorem [11]
that revealed the essential need of non-Gaussianity.
One recently established PNR detection technique

for pulsed light utilizes time-multiplexing [12] enabling
loss-tolerant detection of photon statistics [13]. The time-
multiplexed detector (TMD) has lately been in the focus
of increased attention, as it is the first detector whose
positive operator-valued measures have been tomographi-
cally characterized [14]. In a more sophisticated configu-
ration, it allows the realization of configurable projective
measurements [15]. Considering state characterization, a
loss-independent measurement of higher order moments
can be efficiently accomplished with the TMD network
[16]. These features, together with the advantages of pho-
ton counting for state discrimination [17], make the TMD a
promising and powerful tool for preparing and analyzing
quantum states.
In this Letter we apply the TMD to directly measure

the statistics of displaced, pulsed single-photon states and
probe point by point the corresponding Wigner function.
We uncover the non-Gaussianity of the single-photon state
by observing the characteristic oscillating behavior of the
photon statistics in the dependence of the displacement in
phase space. Our focus lies on the ability to prepare and
manipulate pulsed nonclassical states of light exhibiting
broad spectra as well as on combining loss tolerance with
mode-sensitive detection.
The value of the Wigner function at position � is given

by the expectation value of the parity operator on the
probed quantum state % displaced by �� [6]

Wð�Þ ¼ 2=�Trf�̂D̂yð�Þ%D̂ð�Þg; (1)

with �̂ ¼ ð�1Þn̂ being the parity operator, n̂ the photon

number operator, and D̂ð�Þ the displacement. Since the
Fock states are parity eigenstates, the measurement of
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parity can be realized by recording photon statistics.
The determination of the Wigner function by photon
counting significantly differs from homodyne tomography.
Homodyne detection projects the quantum state in the
phase space along a one-dimensional field quadrature and
constitutes a Gaussian measurement. A PNR detector, on
the other hand, realizes a projection into the photon-
number basis fjnig, which corresponds to a non-Gaussian
operation. Heuristically, the photon number measurements
can be understood as projections onto rings, the radius
of which are determined by the excitation number n
[Fig. 1(a)]. The displacement operation in Eq. (1) shifts
the quantum state away from the origin, which changes its
overlap with the number states. By considering the inter-
sections of the phase-space diagrams describing the
displaced state and the detection, one can interpret the
resulting statistics with a semiclassical area-of-overlap
principle [18]. The semiclassical model does not only
take into account the intersection areas, but also crucially
relies on the interference of two separate regions in phase
space [diamond shape in Fig. 1(a)] that give rise to a
characteristic oscillation of the photon number distribution
[Fig. 1(b)] [19]. Thus, these measurements also probe the
coherence of the entire signal state in phase space.

Another important difference between direct probing
and homodyne detection is the fact that in the latter an
intrinsic filtering operation takes place. In order to measure
the quantum noise with conventional photodiodes, homo-
dyne detection relies on the interference of a strong local
oscillator field with a weak quantum signal. Only the part
of the signal state that overlaps with the local oscillator can
be seen by the detector and is ‘‘amplified.’’ Thus, loss and
mode mismatch give the same signature. On the other
hand, the method of direct probing detects all modes,
resulting in a more complete state characterization with
an intrinsic quantification of the mode overlap [20,21]. The
displacement, needed to probe the Wigner function at an
arbitrary point of the phase space, is experimentally ac-
complished by the use of an asymmetric beam splitter. The
signal is overlapped with a weak single-mode coherent
reference beam, yielding at a displacement of �� the
corresponding photon-number distribution �n. The mode

mismatch between those fields leads to a convolution
of a Poissonian term with mean photon number of
ð1�MÞj�j2 and a displaced part

�D
n ¼ TrfjnihnjD̂yð

ffiffiffiffiffiffiffi
M

p
�Þ%D̂ð

ffiffiffiffiffiffiffi
M

p
�Þg; (2)

in which the amount of overlap is quantified by a parameter
0 � M � 1.
The TMD, employed to measure the photon statistics,

consists of a network of symmetric (50=50) beam splitters
with different lengths of fiber loops in between. A pulse is
divided in the network into two pulse trains that are sub-
sequently detected by two avalanche photodiodes (APDs).
As described in [22], the TMD is characterized by the loss
and convolution matrices, Lð�Þ and C respectively. The
former depends on the detection efficiency �, whereas the
latter accounts for the stochastic splitting of the photons at
the beam splitter stages. In an ensemble measurement, the
TMD records click statistics ( ~pclick ¼ ½p0; p1; . . . ; pn�T),
which are related to the photon statistics of the state
( ~� ¼ ½�0; �1; . . . ; �n�T) by the simple expression ~pclick ¼
CLð�Þ ~�. Loss-tolerant detection is achieved by inverting
this matrix relation [13], and the mean value of the parity
can be extracted from the inverted statistics by the alter-

nating sum h�̂i ¼ P
nð�1Þn�n.

To demonstrate the capabilities of the direct probing
method, we choose to study a single-photon state with
a complicated mode structure in the spectral degree of
freedom, but possessing only diagonal elements in the
density matrix. This simplifies the detection scheme, pre-
cluding the need of phase sensitivity. As shown in Fig. 2,
we prepared our single-photon state by heralding on one
of the twin beams produced by type-II parametric
down conversion in a 1.45 mm long, periodically poled
KTiOPO4 waveguide (WG). This was pumped by a fre-
quency doubled Ti:Sapphire laser (wavelength 796 nm,
bandwidth 10 nm, repetition rate 2 MHz). After the sepa-
ration of the orthogonally polarized signal and idler twin
beams by a polarizing beam splitter (PBS), we launched
both of them separately into single-mode (SM) fibers
for spatial mode cleaning. The idler was filtered by a
1 nm broad interference filter (IF) to ensure good spectral
SM characteristics for the heralding with a single APD. For
the implementation of the reference beam, a small fraction

FIG. 1 (color online). Interpretation of photon counting.
(a) The detector projects into number states corresponding to
rings in phase space (j0i and j1i are shown). The displaced state
D̂ð1Þj1i is shifted from the origin by � ¼ 1. (b) The semiclas-
sical model predicts the photon-number oscillation in the statis-
tics of D̂ð1Þj1i.
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FIG. 2 (color online). Experimental setup. SHG, second har-
monic generation in thin nonlinear crystal; SF, spectral filter for
blocking the residual pump. For further details see text.
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of the initial laser beam was attenuated to the single-
photon level and filtered to a bandwidth of 1 nm.

The proper realization of the displacement operation
requires the control of the photonic states in all degrees
of freedom: spectral, spatial, and temporal. To achieve a
good spatial overlap between signal and reference we
employed a SM fiber coupler (SMFC). This acts as PBS
such that the horizontal (p) and vertical (s) polarization,
referring to signal and reference, were combined at a single
output port. In order to suppress the background of simul-
taneously excited signal modes we added a 3 nm broad
filter to the joint beam path. Finally, both beams were sent
to a variable ratio beam splitter, constructed of a half-wave
plate (HWP) and a PBS, and detected with the TMD. By
measuring the Hong-Ou-Mandel interference between
signal and reference as described in [23] we analyzed the
temporal and spectral overlaps. This yielded a maximal
overlap of 0.71(4) between signal and reference.

To measure the displaced statistics, the beam splitter was
set to transmit over 90% of the signal. The TMD data were
collected with a time-to-digital converter, which records
the detection times of the APD clicks with respect to the
repetition time of the laser. Therefore, we could suppress
background and dark count events by applying a tight
time gating (< 4 ns) in each time bin of the detection
channels. By post processing the data, we constructed the
heralded statistics by conditioning on idler click events.
Additionally, the same data provided the probability
distribution of the TMD bin populations needed for cali-
brating the C matrix. The typical accumulation time for
collecting statistics with more than 106 conditional events
was on the order of 103 s.

The full capacity of our detector is gained after the
determination of the efficiency and the effective displace-
ment. Concerning the former, we take advantage of the
parametric down conversion that always produces photons
in pairs. This allows us to gauge the efficiency by the
Klyshko method [13] in terms of the ratio between
the signal-idler coincidence rate and the single-count rate
of idler. We measured � ¼ 0:165, which was employed
throughout the whole data set. We attribute the losses
mainly to the limited quantum efficiency of the detectors
and to the coupling of the waveguide spatial mode into
SM fibers. The value of the displacement is calibrated by

j�j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihniref=�
p

, where hniref is the mean photon number
of the reference measured by blocking the signal arm [21].
Thus, all the parameters required for a loss-tolerant Wigner
function reconstruction are directly measured.

First, we carefully adjusted the overlap between signal
and reference and recorded the statistics of the displaced
single-photon state—case (I). The measured statistics for
several values of displacement are shown in Fig. 3(a).
Ideally, the vacuum component �0 of a weakly displaced
single-photon state grows as a function of j�j, whereas the
one-photon component �1 rapidly decreases. In Figs. 3(b)
and 3(c) we show in more detail the evolution of

photon-number contributions �0–�4 as a function of the
displacement. We model our results with the help of Eq. (2)
taking into account a small fraction of higher photon-
number contributions in the signal state ~� ¼
½0:002ð1Þ; 0:942ð2Þ; 0:054ð2Þ; 0:002ð1Þ�. We convolve �D

n

with the Poissonian term of the mismatched signal and
consider the overlap factor as a free parameter. By fitting
against vacuum and one-photon components we find
MI ¼ 0:70ð2Þ, which is used to predict the behavior of
higher photon-number components, and which also is in
agreement with our previous investigations.
In order to validate our findings with the optimized

overlap, we next misadjusted the temporal delay resulting
in a joint state of signal and reference—case (II). The
reconstructed statistics present striking differences in
comparison to the previous case. The measured vacuum
components remain zero regardless of the displacement
due to the vanishing overlap (MII ¼ 0) between signal
and reference [Fig. 3(d)]. Moreover, the decrement of the
one-photon component is less pronounced than before
[Fig. 3(e)]. The small deviation from the expected behavior
occurs due to the higher photon-number contributions of
the signal. Overall, the oscillatory behavior of the photon-
number distribution is absent.
Even though the fluctuations of the click statistics are

negligible, the uncertainties in the inverted statistics can
become large due to the low detection efficiency and the
limited amount of collected statistics. To evaluate the
error bars of the reconstructed statistics we employ a

FIG. 3 (color online). (a) Measured statistics for different
values of displacement j�j for temporally matched fields—
case (I). Detailed behavior of different photon-number contribu-
tions: (b) �0 and �1 as well as (c) �2–�4 with respect to j�j.
From (b) we extract MI ¼ 0:70ð2Þ. (d) Similar to (a) but with
mismatched fields—case (II). (e) Detailed behavior of �0 and �1

with MII ¼ 0. Squares correspond to measured values, whereas
solid lines and bars are fits. Dashed lines show the expected
behavior for an ideal single-photon Fock state when [(b) and (c)]
M ¼ 1 and (e) M ¼ 0.
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Monte Carlo simulation. Assuming normal distributions,
we attribute to each component of the recorded clicks a
standard deviation given by its square root. More than a
thousand of such simulations, compatible to our experi-
mental data, were realized and we kept the ones respecting
the constraint of non-negative probabilities. The error bars
in Fig. 3 are given as the deviation from the most probable
value. We observe that the errors in the vacuum and one-
photon components are negligible, whereas the errors in
the higher photon-number components increase faster with
respect to j�j.

By estimating the expectation value of the parity from
the statistics in Figs. 3(a) and 3(d) we probe the phase-
averaged Wigner function around the origin as shown
in Fig. 4. We obtain a maximal negativity of �0:565ð4Þ
[Fig. 4(a)], which clearly signalizes the nonclassicality of
the single-photon state. This value deviates only slightly
from the one expected for a single-photon Fock state
(� 0:637), and can be completely explained by the pres-
ence of higher photon-number contributions. The extracted
values of the Wigner function in case (I) [Fig. 4(b)] follow
in good agreement the expected behavior. The observed
broadening at larger values of displacement reflects the
slight mode mismatch [21]. In case (II) our detection
scheme can observe the nonclassicality of the joint state
even with increasing Poissonian term. In conclusion, by
applying a properly prepared reference field, our detection
technique is not only restricted to the photon-number
degree of freedom but can also unravel the single- or
multimode characteristics of the state in other degrees of
freedom.

To summarize, we have directly probed the Wigner
function of a nonclassical single-photon wave packet in a
loss-tolerant fashion. Our detector can verify the nonclas-
sicality of the state and also highlight the role of mode
properties in the detection. Thus, it can become very
attractive for addressing the quantum information con-
tained in individual spectral modes. The point-by-point
capability—related to the connection of the parity with

the � function in phase space—allows us to concentrate
on the interesting regions of the Wigner function and can
open new routes for the characterization of quantum opti-
cal states with time-multiplexed detection [24].
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