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Abstract: We introducethe concept of a quantum pulse gate (QPG),
a method for accessing the intrinsic broadband spectral mode structure
of ultrafast quantum states of light. This mode structure can now be
harnessed for applications in quantum information processing. We propose
an implementation in a PPLN waveguide, based on spectrally engineered
sum frequency generation (SFG). It allows us to pick well-defined spectral
broadband modes from an ultrafast multi-mode state for interconversion
to a broadband mode at another frequency. By pulse-shaping the bright
SFG pump beam, different orthogonal broadband modes can be addressed
individually and extracted with high fidelity.
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1. Introduction

Ultrashort quantumpulsesof light play an ever-increasing role in modern quantum informa-
tion and communications. They already enable high bit-rate quantum key distribution [1] and
high precision quantum clock synchronization protocols [2]. With increasing interest in their
rich temporal and spectral structure [3, 4], sum frequency generation has been employed to
manipulate it [5–12], but so far with limited modal control. Here, we introduce the concept of
the Quantum Pulse Gate (QPG), a SFG-based device using spectral engineering [13–16] to di-
rectly target one spectral broadband mode for conversion and separate a single-mode quantum
pulse from a multi-mode light state. The QPG acts as a controlled filter for broadband modes,
and can also be used to prepare heralded pure single photons in a well defined mode. This
opens the possibility to synthesize and analyze quantum pulses, establishing broadband modes
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as an interferometrically stable alternative to multiple spatial modes for quantum information
processing. Moreover it allows for quantum pulse shaping [17, 18] for engineering efficient
single-photon-to-memory coupling [19,20].

Any optical pulse is decomposable into a complete set of orthogonal basis functions, or
broadband modes [3]. Thus it can be considered to be made up of an infinite number of tempo-
rally overlapping but independent pulse forms. While for classical light all basis sets are equiv-
alent, for quantum light there may be one special, intrinsic basis choice [21]. For photon pair
states this choice determined by a Schmidt decomposition of their bi-photon spectral amplitude
into two correlated basis sets of broadband pulse forms, the Schmidt modes [4]. Heralding one
of those photons by detecting the other with a single photon detector (SPD), this correlation
results in the preparation of a photon in a mixed state of all Schmidt modes present [14]. But
with a SPD sensitive to a certain Schmidt mode, it opens up the possibility to prepare pure
single photons in the correlated Schmidt mode. Typically though, SPDs and optical detectors in
general exhibit very broad spectral response and are not able to discern between different pulse
forms.

To compensate for the detectors’ shortcomings, one needs to include a filter operation sensi-
tive to broadband modes. It has already been shown that ordinary spectral filters cannot fulfill
this role [22,23]: They always transmit part of all impinging broadband modes at once, and thus
cannot be matched to a single broadband mode. A sufficiently narrow spectral filter can be used
to select a monochromatic mode, however this way, high purity heralded quantum states are im-
possible [23,24]. Also, most of the original beam’s brightness as well as its pulse characteristics
are lost.

Fig. 1. Quantum Pulse Gate schema: Gating with a pulse in spectral broadband modeu j
convertsonly the corresponding mode from the input pulse to a Gaussian wave packet at
sum frequency.

The idea of using broadband modes as quantum information carriers is especially compelling
because of their natural occurrence in ultrafast pulses, and their stability in transmission: Cen-
tered around one frequency within a relatively small bandwidth typically, they allow for optical
components that are highly optimized for a small spectral range. Since all broadband modes ex-
perience the same chromatic dispersion in optical media, they exhibit the same phase modula-
tion and thus stay exactly orthogonal to each other. So a light pulse’s broadband mode structure
is resilient to the effects of chromatic dispersion, making a multi-channel protocol based on
them ideal for optical fiber transmission. Additionally they allow for high transmission rates,
as they inherit the ultrashort properties of their ’carrier’ pulse, when compared to the ’long’
pulses used for classical, narrow-band frequency multiplexing techniques. However, it is ex-
tremely challenging to actually access them in a controlled manner: Ordinary spectral filters
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and standard optical detectors destroy the mode structure of a beam. A homodyne detector with
an ultrafastpulsed local oscillator beam is able to select a single broadband mode by spectral
overlap, but only at the cost of consuming the whole input beam [25,26].

For discrete spatial modes, complete control of a beam’s multi-mode structure can be accom-
plished with linear optics, as combining them to synthesize multi-mode beams and separating
constituents without losses is possible [27–30]. In order to exploit the pulse form degree of
freedom, we must be able to exact similar control over broadband modes.

An important step towards this goal is to selectively target a single broadband mode for in-
terconversion into a more accessible channel, for instance to shift it to another frequency with
SFG. On the single photon level, in the SFG process two single photons “fuse” into one photon
at their sum frequency inside aχ(2)-nonlinear material. Well known in classical nonlinear op-
tics, in recent years it has seen increasing adoption in quantum optics for efficient NIR single
photon detection [5–8], all-optical fast switching [9], super high resolution time tomography of
quantum pulses [10], quantum information erasure [11], and for translating non-classical states
of light to different frequencies [12]. Moreover, combined with spectral engineering [13–15], it
enables a new type of quantum interference between photons of different color [16].

In this paper we introduce the Quantum Pulse Gate (QPG): A device based on spectrally
engineered SFG to extract photons in a well-defined broadband mode from a light beam. We
overlap an incoming weak, multi-mode input pulse with a bright, classical gating pulse inside a
nonlinear optical material (Fig. 1). Spectral engineering ensures that only the fraction of the in-
put pulse which follows the gating pulse form is converted. The residual pulse, orthogonal to the
gating pulse, is ignored. An input quantum light pulse’s quantum properties can be preserved
in conversion by mode-matching the gating pulse to its intrinsic mode structure.

SFG conversion efficiency can be tuned with gating pulse power, and unit efficiency is pos-
sible if the process can be engineered so that input beam and output beam are completely
frequency-uncorrelated. Thus the QPG is able to unconditionally filter broadband modes from
arbitrary input states, and to convert them into a well-defined Gaussian wave packet at the
sum frequency. By pulse-shaping the gating pulse we are able to switch between different tar-
get broadband modes during the experiment. By superimposing gating pulses for two different
broadband modes, we create interference between those previously orthogonal pulses. In com-
bination with a standard single photon detector we are able to herald pulsed, pure, single-mode
single photons from a multi-mode photon pair source.

2. SFG in terms of broadband modes

For a bright classical gating pulse, the effective (i. e. time-integrated) Hamiltonian of collinear
SFG that converts a photon in mode ’a’ to mode ’c’ is given by

H =

∫

dt Ĥ(t) = θ
∫∫

dωi dωo f (ωi ,ωo)a(ωi)c†(ωo)+h. c. (1)

analogous to the pulse-pumped SPDC Hamiltonian derived in [31]. Here we introduced the cou-
pling constantθ ∝ χ(2)

√
P with χ(2) denoting the second order nonlinear polarization tensor

element of the SFG process andP the gating pulse power. The normalized SFG transfer func-
tion f (ωi ,ωo) ∝ α(ωo−ωi)×Φ(ωo,ωi) maps the input frequenciesωi to the sum frequencies
ωo, whereα is the spectral amplitude of the classical gating pulse. The phase matching distribu-
tion of the SFG processΦ emerges from integrating the spatial part of the fields’ phases over

the interaction lengthΦ(ωo,ωi) =
∫ L

0 dz eı(ko(ω3)−kg(ω3−ω1)−ki(ω1))z with ki ,ko,kg the dispersion
relations of the input, output and gating field respectively.

In parametric down-conversion (PDC), the Schmidt decomposition of the joint spectral am-
plitude of the generated photon pairs reveals their broadband mode structure [4]. Applying the
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Fig. 2. (A1-A3) SFG transfer functionf (ωi ,ωo) with (A1) and without (A2,A3) frequency
correlations. (B1-B3) Coefficientsκ j for the first four Schmidt mode pairs of the transfer
functions. (C1-C3) SFG efficienciesA j → C j for the first four Schmidt modes against
gating power dependent SFG coupling constantθ

same approach to SFG [16] to decompose the spectral transfer function we find

f (ωi ,ωo) = ∑
j

κ j ϕ j(ωi) ψ j(ωo). (2)

The decomposition is well-defined and yields two correlated sets of orthonormal spectral
amplitude functions{ϕ j(ω)} and {ψ j(ω)} and the real Schmidt coefficientsκ j which sat-
isfy the relation∑ j κ2

j = 1. If the gating pulse has the form of a weighted Hermite function

u j (ω) ∝ e
(ω−ω0)

2

2σ2 H j
(ω−ω0

σ
)

with H j the Hermite polynomials, the basis functions of both sets
are in good approximation Hermite functions as well. In the Schmidt-decomposed form, the
transfer function describes a mapping between pairs of broadband modesϕ j(ω) → ψ j(ω).

By defining broadband mode operatorsA j =
∫

dω ϕ j(ω) a(ω) andC j =
∫

dω ψ j(ω) c(ω)
corresponding to the Schmidt bases, the effective Hamiltonian from Eq. (1) can be rewritten as

H = θ ∑
j

κ j

(

A jC
†
j +A†

j C j

)

, (3)

An optical beam splitter has an effective Hamiltonian of the formHBS = θ ac† +h. c. [32];
so with respect to broadband modes, SFG can be formally interpreted as a set of beam splitters,
independently operating on one pair of broadband modes each, such thatA j → cos(θ j)A j +

ısin(θ j)C j . The effective coupling constantθ j = θ ·κ j ∝
√

P takes the role of the beam splitter
angle.Its transmission probability – the probability to find a photon in the up-converted mode
C j if it initially has been in modeA j – is η j = sin2(θ j).

In Fig. 2 A1-C1, we illustrate an example for a non-engineered SFG process, as commonly
found in pulsed SFG experiments: The transfer functionf (ωi ,ωo)(Fig. 2 A1) exhibits spectral
correlations, causing more than one non-zero Schmidt coefficient (Fig. 2 B1). This leads to
the simultaneous conversion of multiple modesA j at once with non-zero coupling constants
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θ j ∝
√

P for any given gating pulse powerP (Fig. 2 C1). Hence a SFG process in general is not
mode-selective.

3. The quantum pulse gate

However, SFG can be made mode-selective with spectral engineering, by eliminating its spec-
tral correlations so that the frequency of an up-converted photon gives no information about
its original frequency. Now, Schmidt decomposition yields one predominant parameterκ j ≈ 1
with all others close to zero and a separable transfer functionf (ωi ,ωo) ≈ κ jϕ j(ωi)ψ j(ωo).
Also, now the full couplingθ j ≈ θ is exploited, allowing for relatively weak gating beams
for maximum conversion efficiency. We achieve this by engineering the SFG process such
that the input beam group velocityvi = k−1

i (ωi) is matched to the gating pulse group velocity
vg = k−1

g (ωg). As a result, the phasematching functionΦ is horizontal in Fig. 2 A2 and A3,
and Fig. 2 B2 and B3 show that mostly one mode pair is excited. If the phasematching band-
width is narrow compared to gating pulse width, spectral correlations are negligible, and we
can approximate a separable transfer function. The effective SFG Hamiltonian is now a beam
splitter-type Hamiltonian:

HQPG= θ j

(

A jC
†
0 +A†

j C0

)

. (4)

We note that it commutes with all modes input modes[Ak,HQPG] = 0 wherek 6= j. In other
words, the quantum pulse gate is mode-selective and accepts only modeA j for up-conversion.

In the Heisenberg picture of quantum state evolution, the action of the QPG on a given quan-
tum light state is described by a Bogoliubov transformation: Linear transformations of its mode
operatorsA in → Aout = UQPGA inU†

QPG, whereUQPG = T e−ı
∫

dtĤ(t) is the unitary time evolu-

tion operator generated by the Hamiltonian operatorĤ(t) that describes traversal of the pulse
gate implementation, withT the time ordering operator. It accurately describes the interplay
between the frequency upconversion and its reverse process for an arbitrary pump power and
coupling constantθ . In the perturbative case withθ ≪ 1, UQPG can be developed to first order
and time ordering has no effect. For the higher order terms though, time ordering has to be
applied to account for interaction between multiple photon conversions at the same time which
results in spectral mode distortions in the strongly coupled regime. However, it has been shown
that for any frequency conversion process described by a Bogoliubov transformation there ex-
ists a Bloch-Messiah reduction into orthogonal, independent processes. The mode structure
coincides with the Schmidt decomposition from Eq. (2) in the weak coupling limit, but the
spectral modes do not change dramatically for stronger coupling [33]. Numerical analysis of a
strongly coupled up-conversion process reveals that the main source of discrepancy is a group
velocity mismatch between gating pulse and input pulse [18]. Since we utilize such a group
velocity matching to minimize spectral correlation between input and output beam, we neglect
time ordering for now and approximateUQPG≈ e−ıHQPG.

This process implements the QPG, with the bright input pulse used as gate pulse to select a
specific broadband mode. By tuning the central wavelength and spectral distribution of the gat-
ing pulse, we can control the selected broadband mode’s shape, width and central wavelength.
We compare the effect of different gating pulse forms: Gating with modeu0 (i. e. a Gaussian
spectrum, Fig. 2 A2-C2) selects input modeA0, gating with modeu1 (Fig. 2 A3-C3) selectsA1

from the input pulse for frequency up-conversion. Because of the horizontal phasematching,
the target mode is always the Gaussian pulseC0 regardless which spectral gating modeu j is
used.

Pure heralded single photons are a crucial resource in many quantum optical applications,
but the widely used PDC photon pair sources emit mixed heralded photons in general, due to
their intrinsic multimode structure [14]. We now consider the application of the QPG to “purify”
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those photons by selecting a single broadband mode from the heralding beam. In type-II PDC, a
pump photondecaysinside aχ(2) -nonlinear medium into one horizontally polarized signal and
one vertically polarized idler photon. For a collinear type-II PDC source pumped by ultrafast
pulses the general effective Hamiltonian in terms of broadband modes reads

HPDC = χ ∑
j

c j

(

Ã†
j B

†
j + Ã jB j

)

. (5)

We feed the signal photon (containing all broadband modesÃ j ) from the PDC source into
the QPG which is mode-matched such thatÃ0 = A0. We note that for heralding pure single
photons or pure Fock states [22], mode-matching is not necessary and an engineered SFG
process according to Eq. (4) is sufficient. In that case however, the resulting pulse shape is a
coherent superposition of all input modes. Here, only the 0th mode is selected, and the higher
modes do not interact with the QPG because the according beam splitter transformations yield
the identityA j → A j for j > 0. We choose the gating pulse power such thatθ0 = π

2 for optimal
conversion efficiency. Combining the PDC source with a subsequent QPG results transforms
the PDC Hamiltonian asHPDC→ H′ = UQPGHPDCU†

QPG, and we obtain

H′ = ıχB†
0C†

0 + χ
∞

∑
k=1

c j Ã
†
j B

†
j +h. c. (6)

Since modeC0 is centered at the sum frequency of input and gating pulse, it can be split off
easily into a separate beam path with a dichroic mirror. Conditioning on single photon events on
the path ofC0 provides us with pure heralded single photons in modeB0. Fig. 3 illustrates this
scheme: A photon detection event heralds a pure single photon pulse in broadband modeu1.
This process can be cascaded to successively pick off several modesA j from the input beam.
Note that if we insert a mode matched QPG into the vertically polarized PDC beam to convert
B0 into D0, we can unconditionally single out an ultrafast two-mode squeezed vacuum state
from a multi-mode squeezer [33,34].

Fig. 3. A QPG application: Generating pure heralded broadband single photons in different
modes fromamultimode PDC source of broadband-mode-correlated photon pairs

4. Experimental parameters

Finally we describe the numerical methods used to obtain experimental parameters and sim-
ulation results. For the SFG process we propose a periodically poled, z-cut Titanium diffused
LiNbO3 (Ti:PPLN) waveguide [35] with a cross-section area of 6.5µm×5µm andL = 50mm
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length. We employ a standard finite element method to calculate the spatial mode fields inside
the waveguide and obtain their corresponding effective refractive indices which evaluate to

n(p)
eff = 2.18,n(in)

eff = 2.21 andn(out)
eff = 2.32. The input pulse has a central wavelength of 1550nm

and a duration of 2ps. The nonlinear waveguide has a 4.4µm poling period and is heated to
190◦C to achieve phasematching for SFG of an input pulse at 1550nm to 557nm. The gating
beam is ordinarily polarized, while input and output beam are extraordinarily polarized.

The gating spectrum is centered around 870nm, its corresponding spectral FWHM for mode
matching is 0.635nm. The uncorrelated, separable transfer functions in Fig. 2 (A2-A3) are
calculated from these parameters, using gating pulses withu0 andu1 as spectral amplitude,
respectively. Utilizing a completely quantitative model to calculate waveguide dispersion and
neglecting the effects of a time-ordered Hamiltonian on the SFG process, we predict a gating
pulse energy of onlyEG = 1.36pJ (or an average power ofPav = 0.103mW at 76MHz repetition
rate) for unit conversion efficiencyη0 = 1 of the waveguide’s lowest Schmidt mode, i. e.θ0 = π

2 .
This comparatively low power is due to the careful tailoring of the process which leads to only
one pair of modes being excited, such that no power is wasted on higher modes.

Dispersive pulse broadening through group velocity dispersion could in principle affect
the re-usability of our pulses in a cascaded setup of QPGs. A Gaussian pulse with cen-
tral frequencyω0 and spectral standard deviationσ travelling through a crystal of length
L with the propagation constantk(ω) will in first order approximation elongate by a factor
(

1+k′′(ω0)
2L2σ4

)
1
2
. In ourPPLN waveguides, for gating and input pulses as specified above

this results in pulse broadening of 0.003% and 0.004% respectively, making this effect negleg-
ible here. The difference of the inverse group velocities of pump and input beam is as small as
k′p(ω870nm)−k′i(ω1550nm) = 3.8×10−12 1

m
s

. Thisgroupvelocity matching results in the horizon-

tal orientation of the phase-matching distributionΦ and a low distortion of the spectral modes
at high pump powers [18].

Fig. 4. Overlap between input pulse mode ˜ul and QPGSchmidtmodeϕ j for mode-matched
(left) and non-mode-matched (right) case in the weak coupling regime.

In Fig. 4 we illustrate the switching capabilities of our QPG for weak coupling (θ ≪ 1), as
well as the impact of mode matching. For the given material parameters, we employ gating
pulses with pulse formu0 to u10, determine the Schmidt decomposition of the resulting transfer
function f (ωi ,ωo), and plot the fidelity of a certain mode conversion, that is the overlap of
the predominant QPG Schmidt functionϕ j (κ j ≈ 1) with a Hermitian input mode ˜ul from an
incident light pulse. On the left, gating and input pulse have equal frequency FWHM, which
is essential for good mode matching. Now, by switching the orderj of the gating mode (and
without changing the physical parameters of the QPG), we select with high fidelity only the

input modej to be converted. Forj ≤ 10, the overlap
∣

∣

∣

∫

dωũ∗j (ω)ϕ j(ω)
∣

∣

∣

2
exceeds 99%, and

the overlap for all other input modes combined therefore is less than 1%: Only a negligible
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fraction of modes other than the selected input mode are converted.
In contrast,Fig. 4 (right) has no mode matching, the gating pulse FWHM is twice that of

the input pulse. Multiple strong overlaps between SFG Schmidt modesϕ j and input modes ˜ul

appear: A wide range of modes is converted for any given input spectrum. The checkerboard
pattern reflects the fact that only modes of the same parity exhibit an overlap, an odd and an
even mode are orthogonal regardless of mode-matching.

5. Conclusion and outlook

In conclusion, we have introduced the concept of the QPG, a flexible device to separate well-
defined broadband modes from a light pulse based on spectrally engineered SFG. The selected
mode can be switched by shaping the gating pulse spectrum and converted with high fidelity.
Further, we have given a realistic set of experimental parameters for a QPG realized in a PPLN
waveguide and demonstrated the high flexibility of the QPG achieved through shaping the gat-
ing pulse form. We proposed as an initial application the preparation of pure heralded single
photons from an arbitrary type II PDC source. For pulsed QKD schemes [1], it can act as a
de-multiplexer of multiple quantum channels within one physical pulse, and in metrology it
may be used to further enhance measurement accuracy beyond the classical limit by replacing
multiple squeezed pulses [2] with one multi-mode squeezed pulse of light.
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