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We investigate the impact of decoherence and static disorder on the dynamics of quantum particles

moving in a periodic lattice. Our experiment relies on the photonic implementation of a one-dimensional

quantum walk. The pure quantum evolution is characterized by a ballistic spread of a photon’s wave

packet along 28 steps. By applying controlled time-dependent operations we simulate three different

environmental influences on the system, resulting in a fast ballistic spread, a diffusive classical walk, and

the first Anderson localization in a discrete quantum walk architecture.
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Random walks describe the probabilistic evolution of a
classical particle in a structured space resulting in a dif-
fusive transport. In contrast, endowing the walker with
quantum mechanical properties typically leads to a ballis-
tic spread of the particle’s wave function [1]. The coherent
nature of quantum walks has been theoretically explored,
providing interesting results for a wide range of applica-
tions. They state not only a universal platform for quantum
computing [2] but also constitute a powerful tool for
modeling biological systems [3–5], thus hinting towards
the mechanism of energy transfer in photosynthesis.
Quantum walks of single particles on a line have been
experimentally realized in several systems, e.g., with
trapped atoms [6] and ions [7,8], energy levels in NMR
schemes [9,10], photons in waveguide structures [11], a
beam splitter array [12], and in a fiber loop configuration
[13]. Although these experiments opened up a new route to
higher dimensional quantum systems, more sophisticated
quantumwalks need to be implemented to pursue the realm
of real applications. A first step in the direction of photonic
quantum computation has been recently reported [14], in
which two particles execute a simultaneous walk and dis-
play intrinsic quantum correlations. However, their static
system misses the ability to access and manipulate the
walker’s state in a position dependent way, which is an
important requirement for implementing quantum-walk-
based protocols [15].

In this Letter we present the first experimental realiza-
tion of quantum walks with controlled dynamics. We use
the flexibility to investigate the evolution of quantum
particles moving in a discrete environment presenting
static and dynamic disorders.

As predicted by Anderson in 1958 [16], static disorder
leads to an absence of diffusion and the wave function of
the particle becomes localized, which, e.g., would render a
conductor to behave as an insulator. Anderson localization
has been experimentally investigated in different physical
scenarios, e.g., employing photons moving in semiconduc-

tor powders [17] and photonic lattices [18,19], or even via
Bose-Einstein condensates [20,21]. However, although
theoretically predicted in the context of quantum walks
[22–24], the effect has never been observed in a discrete
quantum walk scenario.
Furthermore, it is interesting to note that the energy

transport in photosynthetic light-harvesting systems is in-
fluenced by both static and dynamic disorders, and it is
precisely the interplay between the two effects that leads to
the highly efficient transfer in those molecular complexes
[4,5]. Thus, in order to simulate a realistic influence of the
environment, we go further in our studies by investigating
the effect of dynamical noise, which typically induces
decoherence [25–27]. Utilizing the ability to easily tune
the conditions for the quantum walk, we demonstrate here
the diverse dynamics of quantum particles propagating in
these different systems.
In our experiment we realize the quantum walk of

photons by employing a linear optical network. The evo-
lution of the particle’s wave function jc ðxÞi is given by

jc ðxÞi ! �xjc ðxÞi þ X
k�x

�x;kjc ðkÞi; (1)

with the position dependent amplitudes �x and �x;k deter-

mining the probability of the particle to stay at the discrete
position x or evolve to the adjacent sites k, respectively.
We study the expansion of the particle’s wave packet in

four different scenarios. (i) First of all we implement the
quantum walk in a homogeneous lattice, showing that it
presents an evolution that is free from decoherence.
(ii) Next, we introduce static disorder by manipulating
the lattice parameters �x and �x;k, thus observing

Anderson localization. We then examine two scenarios
leading to decoherence, which essentially differ in the
time scales of the occurring dynamic perturbations.
(iii) In this case a dynamic randomization of the lattice
parameters �x and �x;k simulates the evolution of a

particle interacting with a fast fluctuating environment.
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The resulting dephasing suppresses the underlying inter-
ference effects and hence causes the particle to evolve just
like in a classical random walk [6,8]. (iv) In the last
scenario we simulate a slowly changing homogeneous
environment. While �x and �x;k are stable during a single

realization, a slow drift leads to different conditions for
subsequent particles, thus affecting results obtained in an
ensemble measurement.

In a discrete quantum walk the position of a particle
evolves according to its internal coin state jci. For our
photonic implementation we use the linear horizontal
jHi ¼ ð1; 0ÞT and vertical jVi ¼ ð0; 1ÞT polarization of
light. The state of the photon after N steps of the walk

is found by applying the unitary transformation U ¼Q
N
n¼1 Ŝ Ĉn to the initial state jc ðxÞ0i ¼ jx0i � jc0i. The

coin operation ĈnðxÞ manipulates the polarization of the
photon in dependence on the position x and the step
number n. In the basis fjHi; jVig the coin operator is given
in matrix form by

CðxÞ ¼ ei�HðxÞ 0
0 ei�V ðxÞ

 !
cosð2�Þ sinð2�Þ
sinð2�Þ � cosð2�Þ

� �
; (2)

with the diagonal matrix representing a phase shift �HðxÞ
for horizontal and �VðxÞ for vertical polarizations, while
the second matrix corresponds to a polarization rotation of

2�. The step operation Ŝ shifts the position x of the photon
by þ1 if the polarization is horizontal and by �1 if it is
vertical.

Following Eq. (1), the evolution of the wave function
with the step number n is given by

jc ðxÞnþ2i ¼ �xjc ðxÞni þ �x;x�2ðjc ðxþ 2Þni
þ jc ðx� 2ÞniÞ: (3)

Note that the transition coefficients �x and �x;x�2 are fully

set by the coin operations Cnþ1ðxÞ and Cnþ2ðxÞ. By chang-
ing the parameters �ðxÞH=V and � in a controlled way we

can alter the coefficients and hence create diverse types of
physical conditions for a quantum walk scenario.

A simple measure to quantify the spread of the wave
function in the different systems is provided by the vari-
ance �2 of the final spatial distribution. While the
decoherence-free quantum walk presents a ballistic spread,
with �2 / n2, the classical random walk is diffusive, char-
acterized by �2 ¼ n. In contrast to both, in a one-
dimensional system with static disorder the wave packet
shows exponential localization after a short initial expan-
sion. The stagnation of the wave packet spread is thus
evidenced by a constant variance.

The functional principle of our experimental setup is
sketched in Fig. 1(a) and is discussed in detail in [13]. We
generate the input photons with a pulsed diode laser with a
central wavelength of 805 nm, a pulse width of 88 ps, and a
repetition rate of 110 kHz. The initial polarization state of
the photons is prepared with retardation plates. Each coin
operation consists of a polarization rotation, which is

realized with a half-wave plate (HWP), and a subsequent
phase shift implemented by a fast switching electro-optic
modulator (EOM), as described in Eq. (2). The properties
of the EOM impose that �VðxÞ=�HðxÞ � 3:5. The step
operation is realized in the time domain via two polarizing
beam splitters (PBS) and a fiber delay line, in which
horizontally polarized light follows a longer path
[Fig. 1(a)]. The resulting temporal difference of 5.9 ns
between both polarization components corresponds to a
step in the spatial domain of x� 1. After a full evolution
the photon wave packet is distributed over several discrete
spatial positions or, equivalently, over respective time win-
dows. For detection the photon gets coupled out of the loop
by a beam splitter with a probability of 12% per step. We
employ two avalanche photodiodes (APD) to measure the
photon’s time and polarization properties, which gives
information about the number of steps, the specific position
of the photon, as well as its coin state. The probability that
a photon undergoes a full round-trip without getting lost or
detected is given by �setup ¼ 0:55 (0.22) without (with) the

EOM, and the detection efficiency is �det ¼ 0:06 per step.
To determine the statistical distribution of one specific

step we detected more than 104 events in an overall mea-
surement time of maximally 1 h, limited by the setup
stability. This guaranteed an absolute statistical error of
the assessed probability at each position of less than 0.01.
An average photon number per pulse at the detected step of
less than hni< 0:003 ensured a negligible probability of
multiphoton events Pðn > 1Þ=Pðn ¼ 1Þ< 0:02.
(i) Homogeneous lattice.—In the first of our four quan-

tum walk scenarios we investigate a homogeneous envi-
ronment, thus testing the intrinsic coherence properties of
the setup. The spatial distribution after 28 steps can be seen
in Fig. 1(b). We used the initial state jc 0i ¼ j0i � 1ffiffi

2
p �

ðjHi þ ijViÞ and the Hadamard coin (� ¼ �=8) at each
position. The final state clearly shows the characteristic
shape of a fully coherent quantum walk: the two

FIG. 1 (color online). (a) Schematic setup (see text for details).
(b) Probability distribution after 28 steps of a symmetric
Hadamard walk with initial circular polarization. Stacked
bars: Adapted theory split into the two coin states jVi (blue,
bottom) and jHi (red, top). Gray dots show experimental data for
vertical polarization, black dots show the sum of both polar-
izations. Error bars correspond to statistical errors.
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pronounced side peaks and the low probability around the
initial position. Moreover, the polarization analysis con-
firms the expected dependence of the particle’s final
position on its coin state. An adapted theory including
only small imperfections of the coin parameter �, the initial
coin state, and differential losses between the two polar-
izations fully explains the final spatial and polarization
distribution. The quality of the result can be quantified
by the distance dðPm; PtheorÞ ¼ 1

2

P
xjPmðxÞ � PtheorðxÞj be-

tween the measured Pm and the theoretical Ptheor probabil-
ity distributions. It ranges between 0 for identical
distributions and 1 for a complete mismatch. The distance
of the measured walk to the adapted quantum theory is
dðPm; PqwÞ ¼ 0:052� 0:015. For comparison we calcu-

lated the distance to the fully decoherent (classical) sce-
nario, obtaining dðPm; PclÞ ¼ 0:661� 0:015. Hence, our
result confirms an almost decoherence free evolution after
28 steps.

(ii) Static disorder.—We implemented the evolution of
a particle in an environment with static disorder using a
quantum walk with variable coin operation. To create a
static disorder a coin operation is required, which is posi-
tion and not step dependent. In our system this is realized
by a controlled phase shift �H=VðxÞ, such that the photon

acquires the same phase any instance it appears at position
x. To generate a random static phase pattern we applied a
periodic noise signal to the EOM. The periodicity of the
signal was carefully adjusted to ensure that the applied
phase shift operation is strictly position dependent. Using
different phase patterns at subsequent runs allows us to
average over various disorders, as considered in the model
of Anderson. The strength of disorder is determined by the
maximal applied phase shift �max, which defines the uni-
form interval �VðxÞ 2 ½��max;�max�, from which the
phases are chosen. The probability distribution after 11
steps is shown in Fig. 2(a). We used the initial state jc 0i ¼
j0i � jHi, � ¼ �=8 and a high disorder strength [�max ¼
ð1:14� 0:05Þ�]. In contrast to the decoherence free quan-
tum walk [�max ¼ 0, inset of Fig. 2(c)], in the disordered
scenario the expansion of the wave packet is highly sup-
pressed. We observe a strictly enhanced arrival probability
around the initial position, which also displays the pre-
dicted exponential decay. This striking signature of
Anderson localization is emphasized by linear fits in the
semilog scaled plot [inset of Fig. 2(a)]. Our results are in
agreement with a theoretical model determined by a Monte
Carlo simulation of 104 different phase patterns compatible
with our experiment. Compared to (i), the number of steps
is reduced due to the additional losses introduced by the
EOM.

(iii) Fast fluctuations.—To generate a system with dy-
namic disorder we detuned the temporal length of the noise
signal, thus eliminating position dependent phase correla-
tions. Decoherence appears as a consequence of the dy-
namically varying phase suffered by the quantum particle
during the evolution. As a result, the photon undergoes a

classical random walk, revealing a binomial probability
distribution [Fig. 2(b)]. In contrast to the previous case, the
spatial profile of the wave packet does not reflect the
asymmetry of the initial state and, furthermore, shows a
parabolic shape in the semilog scale [inset, Fig. 2(b)].
A stepwise increase of the disorder strength�max nicely

demonstrates the controlled transition of the system from
the ballistic evolution (decoherence free quantum walk)
towards the diffusive evolution (localization) in a scenario
with dynamic (static) disorder [Fig. 2(c)]. For this purpose
we characterize the resulting expansion profile by its vari-
ance �2. Without decoherence (�max ¼ 0) the ballistically
spreading wave packet shows a large expansion induced
by quantum interference after 11 steps. In a system with
dynamic disorder, decoherence reduces the expansion of
the wave packet to the level of a diffusive classical particle.
In contrast, static disorder leads to a stagnation of the
spread and hence an even smaller variance. Our results
clearly demonstrate how the amount and kind of disorder
influence the expansion of the particle’s wave packet.
The agreement between theory and measurement in the

completely dephased scenario [Fig. 2(b)] confirms a suffi-
cient randomness of the applied noise signal. Furthermore,
an independent interferometric measurement revealed the
relative frequency of the used phases fðj�V jÞ, as can be
seen in Fig. 2(d) with �max ¼ ð1:02� 0:05Þ�. However,
imperfections of the EOM lead to a distribution slightly off
uniformity. These are included in the theoretical curve in
Fig. 2(c).

FIG. 2 (color online). Measured probability distribution (front)
and respective theory (back, gray bars) of 11 steps of a quantum
walk (� ¼ �=8) with static disorder (a), dynamic disorder (b),
and in a decoherence free environment [inset (c)]. The insets
in (a) and (b) show the measured distribution in semilog scale
with linear (a) and parabolic fit (b). (c) Transition of the variance
from ballistic quantum walk to diffusive or localized evolution
due to dynamic (red squares) and static (green dots) disorder with
increasing disorder strength �max; dashed lines: theory with
adaption for experimental imperfections. The red solid line marks
the variance of a classical random walk. (Vertical error is smaller
than the dot size). (d) Relative frequency fðj�V jÞ of the applied
phases �V for the signal with interval �max ¼ ð1:02� 0:05Þ�.
The dashed line indicates the uniform distribution.
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(iv) Slow fluctuations.—As the fourth scenario we simu-
lated fluctuations in a homogeneous system, but with pa-
rameters that change in a time scale much larger than the
full duration of a single quantum walk. Although the
individual evolution is not affected under these circum-
stances, an ensemble measurement of subsequent walks
results in an average over coherent evolutions in different
types of lattices. For this purpose we changed the parame-
ter � 2 ½0; �=4� in steps of �=18 for a quantum walk with
initial state jc 0i ¼ j0i � 1ffiffi

2
p ðjHi þ ijViÞ. An average over

the full range � 2 ½0; �=4� exhibits a nearly uniform spa-
tial distribution of the wave packet with an enhanced
probability to arrive at its initial position x ¼ 0 after 10
steps [Fig. 3(a)]. In particular, the high chance to reach the
outermost positions x ¼ �10 differs significantly from all
previous scenarios. This increases the variance of the dis-
tribution (�2

ðivÞ ¼ 40:00� 0:42) to a level, which is even

higher than in the decoherence free quantum walk with the
Hadamard coin (�2

ðiÞ ¼ 31:27� 0:19). The result demon-

strates that special kinds of decoherences can even speed
up the expansion of wave packets in homogeneous lattices.

Finally, the geometry of the setup allows us to easily
observe the wave packet’s evolution step by step in all four
scenarios [Fig. 3(b)]. For cases (i) and (iv) we observe a
ballistic spread, with an even faster expansion in a system
with slow fluctuations. The evolution with fast dynamic
disorder (iii) is clearly diffusive. Lastly, under the condi-
tion of static disorder (ii) the variance saturates after few
steps and the dynamics is dominated by the effect of
Anderson localization. The parameters used in simulation
and experiment are equivalent to the experimental settings
used for Figs. 1(b), 2(a), 2(b), and 3(a).

In conclusion, we presented how disorder and fluctua-
tions in a periodic lattice can influence the evolution of a
traversing particle and showed the controlled transition
between the different regimes. The high flexibility and
control allows not only the study of further decoherence
phenomena in quantum walks but also to simulate specific

physical scenarios of interest for the solid state and bio-
physics community. Moreover, the possibility to manipu-
late quantum walks with time-dependent coin operations is
a crucial step towards the realization of quantum-walk-
based protocols.
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FIG. 3 (color online). (a) Averaged probability distribution
in a slow decoherence scenario with different coin angles � 2
½0; �=4�: Measurement (orange, front) and theory (gray, back).
(b) Measured trend of the variance up to 12 steps (dots) with
respective theoretical simulation (lines). Photons in scenario (i)
(blue triangles) and (iv) (orange dots) show a ballistic behavior.
In scenario (iii) (red squares) they move diffusively, and in
(ii) (green diamonds) they stagnate.
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