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We study light propagation in a photonic system that shows stepwise evolution in a discretized

environment. It resembles a discrete-time version of photonic waveguide arrays or quantum walks. By

introducing controlled photon losses to our experimental setup, we observe unexpected effects like

subexponential energy decay and formation of complex fractal patterns. This demonstrates that the

interplay of linear losses, discreteness and energy gradients leads to genuinely new coherent phenomena

in classical and quantum optical experiments. Moreover, the influence of decoherence is investigated.
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Although present in almost every experiment, the role of
photon losses in optics is quite elusive. In linear wave
optics, losses are often ignored, as in many cases they can
be scaled out.Mostly, losses are considered to be a nuisance
which do neither offer any benefits nor introduce genuinely
new coherent dynamics. In this Letter, we show experimen-
tally that controlled losses generate new effects of linear
wave evolution in high dimensional discrete networks.

We demonstrate how coherence and discreteness drasti-
cally impact energy decay in such systems, reducing the
losses to the subexponential regime. Furthermore, the in-
terplay between coherence, discreteness and losses leads to
a completely different intensity distribution over the output
ports of the network. The resulting formation of triangular
patterns has similarities to the Sierpinski sieve. These
experimental results demonstrate that the discreteness of
both evolution and transverse direction has an unexpected
influence on lossy photon propagation. This gives an en-
tirely new flavor to the role of linear losses both in classical
and quantum optics.

Our experiment can be seen as a classical realization
[1–3] of a quantum walk (QW) [4–10] of single particles
and resembles a discrete-time version of photonic wave-
guide arrays (WGA) [11]. Recently, WGAs have been
utilized to investigate quantum propagation [12,13]. In
quantum optics, many important phenomena are governed
by interference effects, like the Grover search algorithm
[14] or the QW of single particles. However, common
WGAs do not allow for a selective management of phases
and losses during propagation. The transfer of the concept
of discreteness to the temporal domain as well as an addi-
tional discretization of the propagation direction in our
recirculating fiber-loop setup enables this kind of manipu-
lation during each propagation step. This allows us to
explore completely new types of coherent dynamics.

Moreover, the transport of excitations is largely affected
by the environment in the form of decoherence, losses and

energy gradients. In photosynthesis as a prominent ex-
ample, the initially coherent transport of an exciton that
is driven by an energy gradient even gets accelerated by the
noisy environment [15–17]. Although surely present, the
influence of particle decay has not yet been investigated so
intensively. It is therefore desirable to gain a better under-
standing of the interplay of losses and spatially varying
potentials in the dynamics of coherent processes.
In the following, we study experimentally how discrete-

ness together with photon losses and energy gradients
affect the evolution of light governed by wave interference.
In our experimental setups [Figs. 1(a) and 1(b); see [18]

for details], the discrete spatial dimension (position space)
is emulated by time-multiplexing [6,19]. In the first case
[Fig. 1(a)], light propagates in two loops of single-mode
fiber with a length difference 2�Lwhich are connected by a
50=50 coupler. Each roundtrip corresponds to a discrete
propagation step m. A coherent light pulse traveling in the
longer (shorter) loop makes a step to the right (left) in
position space n and at the central coupler, multipath inter-
ference takes place. The gain of each semiconductor optical
amplifier in the loops is adjusted to compensate only the
signal losses caused by light absorption and monitoring.
The amplifiers do not affect classical wave interference and
the system behaves as if it was lossless (see [18]). However,
they allow us to realize a considerably larger field spreading
than previously reported for QWs [19] or in WGAs, with a
big potential for even a further increase of propagation
steps. Certainly, their noise would affect the evolution of
nonclassical light states in the system.
The distribution of the signal between the upper and

lower loop is represented by two states j "i and j #i. At step
m ¼ 0, a pulse is fed into the lower loop (state j #i). The
field distribution after m steps is given by the amplitudes
umn in the upper and vm

n in the lower loop for a respective
position n. Fast photodiodes measure the intensities jumn j2
and jvm

n j2 probed by tap couplers. Moreover, a phase

PRL 107, 233902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

0031-9007=11=107(23)=233902(5) 233902-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.233902


modulator is inserted into the lower loop to induce a phase
or energy gradient in position space.

The evolution of the amplitudes can be described by the
algebraic equations

umþ1
n ¼ 1

ffiffiffi
2

p ðumnþ1 þ ivm
nþ1Þ;

vmþ1
n ¼ 1

ffiffiffi
2

p ðvm
n�1 þ iumn�1Þ expðin�Þ;

(1)

where � is the induced phase shift between two positions
n. In addition, a phase shift of �2 acquired in the coupler has

been taken into account. The discrete-time QW of single
photons is governed by the same equations [1,4].
Moreover, the dynamics in our system are very similar to
classical photon evolution in WGAs [11,20,21].
Without phase modulation (� ¼ 0), we observe a bal-

listic spreading of the light field [Figs. 2(a)–2(d)] as it is
well-known from continuous WGAs [22] and QWs [4].
The initial asymmetry which is caused by injecting
the pulse only into the lower loop remains conserved
[Figs. 2(c) and 2(d)].
Applying a phase shift (� � 0) which grows linearly in

position to the j #i state at every propagation stepm leads to
discrete-time photonic Bloch oscillations [23]. Similar to
WGAs [24,25], the field distribution recovers in a quasi-
periodic fashion, as it is nicely demonstrated by our experi-
ments [Figs. 2(e) and 2(g)] and confirmed by simulations
[Figs. 2(f) and 2(h)].
So far, on the large scale our lossless system shows the

same effects as continuous-time WGAs which is also ex-
pected from the fact that discrete-time and continuous-time
QWs have the same limiting distribution [20,21].
The situation changes completely if we introduce con-

trolled losses by periodically removing all intensity in the
j "i state. We realize this by a destructive measurement of
the j "i intensity every second time the light has passed the
central 50=50 coupler. In a slight modification of our
measurement setup [Fig. 1(b)], we add a second 50=50
coupler and connect the two couplers with fiber pieces that
have a length difference 2�L, thus realizing the step in
position space. Only one of the output ports of the addi-
tional coupler is fed back into the loop, whereas all inten-
sity in the second output port is directed to a photodiode.
Here, a stepm corresponds to a full roundtrip of the light in

FIG. 2 (color online). Evolution of wave starting in state j #i at position n ¼ 0 in the lossless case [Fig. 1(a)]; (a)–(d) measurements
and simulations of ballistic spreading of intensities jumn j2 in the upper and jvm

n j2 in the lower loop without phase modulation; dynamics
are the same as in a discrete-time QW (e)–(h) discrete-time Bloch oscillations for linear phase gradient � ¼ 2�

32 .

FIG. 1 (color online). Principal scheme of all-fiber experimen-
tal setup (a) without deliberately introduced losses (b) to intro-
duce a controlled loss of photons by measuring all intensity in
the j "i state after every second 50=50 coupler; SOA: semicon-
ductor optical amplifier; PM: phase modulator; PD: photodiode.

PRL 107, 233902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

233902-2



the loop, i.e., to passing both 50=50 couplers and the light
propagation is governed by the equations

amþ1
n ¼ i

2
ðamn�1 þ amnþ1Þ expðin�Þ;

qmþ1
n ¼ 1

2
ðamn�1 � amnþ1Þ;

(2)

where amn is the light amplitude inside the loop and qmn is
the amplitude that is dissipated at the output port at posi-
tion n and step m. Again, we assume that all experimental
losses stemming from absorption or monitoring are exactly
compensated by the amplifiers. However, a compensation
of the photons that are intentionally dissipated at the output
port is not possible, because whole pulses leave the system
and all information which they carry (amplitude and phase)
is completely lost (see [18]). Because of its transverse
degrees of freedom, the loss induced evolution in our
system is by far more complex than that observed in,
e.g., two coupled harmonic lossy oscillators [26,27].

In the absence of phase modulation (� ¼ 0), Eq. (2) is
similar to a discretized diffusion equation for the ampli-
tudes amn . Moreover, the output amplitudes qmþ1

n are the
discrete derivative of amn . For large iterations (m � 1), the
distribution of amplitudes converges to a Gaussian shape

amn � imffiffiffiffiffi
�
2m

p expð� n2

2mÞ. The ballistic spreading in the loss-

less case is thus transformed into a diffusive one. Our
measurements [Fig. 3(a)] demonstrate a linear increase of
the variance [Fig. 4(a)] which confirms the diffusive evo-
lution. At the output port we observe the distribution’s
discrete derivative [Fig. 3(c)]. Again, the agreement with
simulations is very good [Figs. 3(b) and 3(d)].

One remarkable feature of this system is a surprisingly
low rate of photon losses. Looking at the setup in Fig. 1(b),

one could expect that at each roundtrip half of the photons
are coupled out to the photodiode, corresponding to a
loss of 1=2 per propagation step. But owing to wave-
mechanical interference, the outcome is completely differ-
ent. Assuming the absence of all losses except for the
selectively introduced ones at the output port, the energy
EðmÞ �P

njamn j2 that remains inside the loop at step m
decays as slow as EðmÞ � 1ffiffiffiffiffiffi

�m
p as is found by integrating

the Gaussian shape. This means that EðmÞ decays slower
than any exponential function despite the open port of
the second 50=50 coupler in Fig. 1(b). The energy

FIG. 3 (color online). Evolution of wave starting in state j #i at position n ¼ 0 in the case with losses [Fig. 1(b)]; (a),(b) measured
and simulated intensities jamn j2 in the loop with no phase modulation and (c),(d) intensities jqmn j2 at the output port; (e),(f) measured
and simulated fractal patterns of intensity jamn j2 for linear phase gradient � ¼ 7�

26 , net gain g � 3:4=step; (g),(h) � ¼ 9�
22 , g � 3:3.
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FIG. 4 (color online). Transition to a classical random walk by
adding decoherence in the form of random phase shifts;
(a) variance of Gaussian fit to measured intensity distribution
in the coherent lossy system [Fig. 1(b)] (blue circles) and to the
measured average distribution in the case of decoherence (red
crosses); lines: simulation of the coherent system and of a
classical random walk; (b) fractional energy loss per step to
visualize the low losses of the coherent system and the loss of
1=2 per propagation step m in the case of decoherence.
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QðmÞ �P
njqmn j2 � 1ffiffiffiffiffi

m3
p that is dissipated at the output port

at step m decreases much faster than EðmÞ, leading to a

fractional loss of Qðmþ1Þ
EðmÞ � 1

m which is quantitatively con-

firmed by our measurements [Fig. 4(b)]. A system with
periodic boundary conditions in position space even pos-
sesses a completely lossless mode (see [18]). It is important
to note that the photon losses in our system do not lead to
decoherence [9,19,28,29], but instead a high degree of
ordering can be observed. The astonishing stability of the
field in the loop is quite analog to the quantum mechanical
Zeno effect [27], where a permanent measurement pre-
vents a state from decaying.

If we intentionally remove the coherence from our
system by adding random phases [19,28] to the light
pulses at every step and position, a photon gets lost at
the output port with a probability of 1=2 per step as
expected classically [Fig. 4(b)]. The average dynamics
approach a classical random walk, where the intensities
jamn j2 perform the diffusion process instead of the ampli-
tudes amn . This acceleration due to phase noise [17] is also
supported by a roughly twofold increase of the variance
[Fig. 4(a)].

The introduction of a phase gradient � ¼ p
q �, with co-

prime p and q, also leads to an exponential decay of
EðmÞ. In contrast to the lossless system [Figs. 2(e)–2(h)],
no Bloch oscillations are observed. Instead, we discover a
completely new and unexpected behavior in the case of
losses: The intensity jamn j2 evolves in a triangular pattern.
The field amn below the basis of each triangle of length q is
exactly zero because of symmetries in the interference of all
possible photon paths (see [18]). With increasing p and q,

the intensity pattern inside the triangles acquires a complex
fractal nature with similarities to the patterns known
from linear cellular automata [30–32]. An analytical ap-
proach to further describe the observed patterns will be
discussed elsewhere. Our measurements shown in
Figs. 3(e), 3(g), 5(a), and 5(c) are, to our knowledge, the
first experimental demonstration of this type of fractal
pattern in optics. The rich structure of the arising fractals
is confirmed by simulations [Figs. 3(f), 3(h), 5(b), and 5(d)].
In summary, we demonstrated an unexpected role of

photon losses in an optical system that is discrete in
both time and space, linking our observation to photonic
waveguide arrays and quantum walks. The introduction
of state-selective losses leads to the new phenomena
of subexponential losses and fractal evolution patterns
which have no direct counterpart in continuous WGAs
or QWs. All discussed effects have been demonstrated
experimentally and confirmed by simulations. Our work
gives a new perspective to particle losses in classical
and quantum systems. This will trigger a thorough
search for other types of such new effects in linear and
nonlinear optics, possibly with the help of methods known
from cellular automaton research. Apart from this, the
experimentally realized fiber-loop schemes might likewise
be applied to control multipulse regimes in fiber ring
lasers.
We acknowledge fruitful discussions with A. T.

Baraviera, C. Metzner, and F. Marquardt. Moreover, we
acknowledge financial support from DFG Forschergruppe
760, the German-Israeli Foundation and the Cluster
of Excellence Engineering of Advanced Materials
(EAM).

FIG. 5 (color online). Lossy system with linearly increasing phase shift �; (a),(b) measured and simulated intensities jamn j2 in the
loop for � ¼ 3�

7 ; net gain g � 3:3 per step; (c),(d) � ¼ 2�
5 ; g � 3:1.
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