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Abstract. A major challenge of today’s quantum communication systems
lies in the transmission of quantum information with high rates over long
distances in the presence of unavoidable losses. Thereby the achievable quantum
communication rate is fundamentally limited by the amount of energy that
can be transmitted per use of the channel. It is hence vital to develop
quantum communication protocols that encode quantum information as energy
efficiently as possible. To this aim we investigate continuous-variable quantum
teleportation as a method of distributing quantum information. We explore
the possibility to encode information on multiple optical modes and derive
upper and lower bounds on the achievable quantum channel capacities. This
analysis enables us to benchmark single-mode versus multi-mode entanglement
resources. Our research reveals that multiplexing does not only feature an
enhanced energy efficiency, leading to an exponential increase in the achievable
quantum communication rates in comparison to single-mode coding, but also
yields an improved loss resilience. However, as reliable quantum information
transfer is only achieved for entanglement values above a certain threshold a
careful optimization of the number of coding modes is needed to obtain the
optimal quantum channel capacity.
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1. Introduction

Quantum communication refers to the process of transferring quantum information between
two parties commonly called Alice and Bob. This information transfer forms the cornerstone
of many quantum information technologies, most importantly quantum cryptography [1, 2],
enabling secure communication, quantum dense coding [3], boosting the data rates with
respect to classical transmission and quantum networking [4]. A major challenge in all these
quantum communication protocols is to achieve high rates over long distances in the presence
of unavoidable losses. For this purpose, we investigate continuous-variable (CV) quantum
teleportation [5, 6], as an established method of transferring an unknown quantum state between
two parties, using only entanglement and classical communication, which was originally
introduced in 1993 by Bennett et al [7] in the discrete variable regime.

In general, all quantum communication protocols are limited by the amount of energy that
can be transferred between the sender (Alice) and the receiver (Bob) per use of the channel.
Consequently, the challenge in quantum communication resides in encoding the information as
energy efficiently as possible without sacrificing loss resilience. For this purpose, we expand
the standard single-mode CV quantum teleportation protocol to incorporate multiplexing. Our
research shows that by encoding the information on multiple instead of a single mode the
information transfer is not only more energy efficient, leading to exponentially enhanced
quantum channel capacity in comparison to the standard single-mode protocol, but it also
features enhanced loss resilience.
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Figure 1. Sketch of the standard single-mode CV teleportation protocol. An
EPR state in conjunction with classical communication is used to transmit an
unknown quantum state from Alice to Bob.

Furthermore, we propose a practical setup to implement the proposed multiplexing by
encoding the information on ultrafast optical pulse modes5. There exist a wide variety of
sources capable of creating the required entangled states suitable for CV quantum teleportation,
ranging from optical parametric oscillators [8–10] over four-wave mixing in optical fibers
featuring a χ (3) nonlinearity [11, 12] to parametric downconversion (PDC) in nonlinear χ (2)

crystals [13–17]. We employ—without loss of generality—an ultrafast pumped PDC source
that changes a set of Einstein–Podolsky–Rosen (EPR) states into ultrafast orthogonal frequency
pulse modes, that can directly be applied for multiplexed quantum teleportation.

We structured this paper into three main parts. In sections 2 and 3, we review the
standard single-mode CV quantum teleportation protocol to introduce all necessary concepts
and formulae. Section 4 extends the standard protocol to include multiplexing. In section 5,
we compare the achievable quantum communication rates in the multiplexed regime with
standard single-mode teleportation. Section 6 concludes the paper and summarizes our
findings.

2. Single-mode continuous-variable (CV) quantum communication

Before we present our multiplexed quantum communication protocol we first briefly review the
established single-mode CV quantum teleportation scheme and the corresponding achievable
quantum communication rates in order to introduce the required concepts and formulae.

2.1. Teleportation as a quantum channel

The standard single-mode CV quantum teleportation protocol [5, 6] is illustrated in figure 1.
Alice intends to teleport a (unknown) quantum state ρ̂ from her side to Bob. To this aim,

5 Ultrafast optical pulses are extremely short light pulses featuring durations in the femtosecond regime. Using
these as carriers of quantum information enables the rapid succession of states in transmission further boosting the
quantum communication rate.
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Alice and Bob share a bipartite entangled state—in most cases a finitely squeezed EPR
state—associated with the operators {â, â†

} on Alice’s side, and {b̂, b̂†
} on Bob’s side obeying

canonical commutation relations [â, â†] = [b̂, b̂†] = 1. We denote the corresponding conjugate
quadrature operators by q̂A = (â + â†)/

√
2, p̂A = (â − â†)/ ı

√
2 and q̂B = (b̂ + b̂†)/

√
2, p̂B =

(b̂ − b̂†)/ ı
√

2 for Alice and Bob, respectively.
The CV teleportation protocol works as follows: Alice first superimposes her part of the

shared bipartite state—we label it χ̂—with the to be teleported state ρ̂. She then measures the
resulting quantum system on her side and transmits the measurement result through classical
communication to Bob. According to the data retrieved from Alice, Bob subsequently performs
local operations on his part of the bipartite state χ̂ and obtains the teleported state ρ̂tel.

In the scope of this paper, we are not interested in the details of the apparatus; hence
we regard the whole protocol as a quantum channel which enables us to send a (unknown)
quantum state ρ̂ from Alice to Bob. Then, we characterize the quantum channel defined by the
teleportation protocol in terms of its quantum communication capacity. A reformulation of CV
quantum teleportation as a quantum channel has been introduced by Ban et al [18], extending
that of Bowen and Bose [19] on qubit teleportation. According to [18] the CV teleportation
protocol with arbitrary resources is formally described as a generalized thermalizing channel
φ(ρ̂)= ρ̂tel, in which thermal-like noise decreases the teleportation quality6:

φ(ρ̂)=

∫
dx dy f (x, y)D̂(x, y)ρ̂D̂†(x, y). (1)

Here D̂(x, y) is the displacement operator

D̂(x, y)(q̂ + ı p̂)D̂†(x, y)= (q̂ − x)+ ı( p̂ − y), (2)

which shifts the input state ρ̂ in its quadratures q̂ and p̂ according to the function f (x, y) given
by the structure of the channel. Consequently, Bob will receive the input state from Alice plus
some extra phase-space displacements depending on the exact form of CV teleportation. The
input state from Alice is distorted from its original form. The exact structure of the mapping
function f (x, y) is dependent on the shared bipartite state χ̂ and is defined as

f (x, y)= Tr{[1̂ ⊗ D̂(x, y)](|EPR∗
〉〈EPR∗

|)[1̂ ⊗ D̂†(x, y)]χ̂}, (3)

where |EPR∗
〉 denotes the not-normalized EPR state

|EPR∗
〉 = (2π)−1/2

∫
∞

−∞

dq |q〉A|q〉B, (4)

and |q〉A, |q〉B are the eigenstates of the quadrature operators, q̂A|q〉A = q|q〉A, q̂B|q〉B = q|q〉B .
Perfect teleportation is achieved for an infinitely squeezed EPR state χ̂ = |EPR〉〈EPR|,

which yields f (x, y)= δ(x)δ(y). Hence, the input state ρ̂ from Alice is transmitted to Bob
with unit fidelity, φ(ρ̂)= ρ̂.

2.2. CV teleportation with Gaussian resources

In the remainder of this paper, we restrict ourselves to a Gaussian resource χ̂ shared between
Alice and Bob, as is the case for the most common CV entangled state, the EPR state. The

6 For the qubit teleportation channel, the use of non-ideal resources induces depolarization [19].
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Gaussian state χ̂ is conveniently described in the Wigner function representation:

Wχ(qA, pA, qB, pB)=
1

(2π)
√

det γ
exp

[
−

1

2
(ξ − m)γ −1(ξ − m)T

]
= G(m,γ )(qA, pA, qB, pB), (5)

where ξ is defined as the vector ξ = (qA, pA, qB, pB), m labels the first-order moments and γ the
second-order moments or covariance matrix (CM) of the state χ̂ , which completely characterize
the Gaussian state. We have introduced short-hand notation G(m,γ ) in (5), where G marks the
function as Gaussian in its variables, and the subscripts m and γ inside the brackets identify
the first- and second-order moments of the state.

The first step toward evaluating the output state of the teleportation channel is to derive
the explicit form of the noise function f (x, y) for a given Gaussian teleportation resource χ̂ .
Starting from the general form of f (x, y) in (3) the function is given by the convolution integral

f (x, y)= π

∫
dξ WEPR∗(qA, pA, qB − x, pB − y)G(m,γ )(qA, pA, qB, pB), (6)

where dξ = dqA dpA dqB dpB and WEPR∗ denotes the Wigner function of the not-normalized
EPR state in (4).

To compute the convolution integral in (6), it is convenient to change to the collective
quadratures (q−, p−, q+, p+), defined as

q± :=
qA ± qB

√
2

, p± :=
pA ± pB

√
2

. (7)

In terms of the collective variables, the Wigner function of the teleportation resource χ̂ now
reads

W̃χ(q−, p−, q+, p+)= G(m̃,γ̃ )(q−, p−, q+, p+), (8)

where m̃ = (mq−
,m p−

,mq+,m p+)= m R, with

R =
1

√
2

(
12 12

−12 12

)
, (9)

12 being the unit matrix of size 2, and

γ̃ = Rtγ R =


γ̃q−q−

γ̃q− p−
γ̃q−q+ γ̃q− p+

γ̃p−q−
γ̃p− p−

γ̃p−q+ γ̃p− p+

γ̃q+q−
γ̃q+ p−

γ̃q+q+ γ̃q+ p+

γ̃p+q−
γ̃p+ p−

γ̃p+q+ γ̃p+ p+

 . (10)

In terms of the collective variables, the Wigner function of the not-normalized EPR state in (4)
reads

W̃EPR∗(q−, p−, q+, p+)= 2π δ(q−)δ(p+). (11)

We arrive at the final form of the mapping function f (x, y) for the shared Gaussian resources

f (x, y)=
1

2

∫
dξ δ(q− + x/

√
2)δ(p+ − y/

√
2)G(m̃,γ̃ )(q−, p−, q+, p+)

=
1

2
G(m f ,γ f )(x/

√
2, y/

√
2)

= G(
√

2m f ,2γ f )
(x, y), (12)

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)

http://www.njp.org/


6

where m f = (m̃q−
, m̃ p+) and

γ f =

(
γ̃q−q−

γ̃q− p+

γ̃p+q−
γ̃p+ p+

)
. (13)

This gives us a convenient closed formula for f (x, y) defined by the first moments m and CM
γ of the shared resource χ̂ between Alice and Bob. In particular, given a Gaussian state ρ̂ on
Alice’s side with the Wigner function

Wρ(q, p)= G(mρ ,γρ)(q, p), (14)

the teleported state φ(ρ̂) arriving at Bob’s side evaluates to

Wφ(ρ)(q, p)=

∫
dx dy f (x, y)G(mρ ,γρ)(q − x, p − y)

=

∫
dx dy G(

√
2m f ,2γ f )

(x, y)G(mρ ,γρ)(q − x, p − y)

= G(mρ+
√

2m f ,γρ+2γ f )
(q, p). (15)

Equation (15) fully determines the CV teleportation process in the Gaussian framework (i.e.
teleportation of Gaussian states using Gaussian resources). The transformation of the Gaussian
input state through the teleportation channel can be calculated by adding the first moments and
the CM matrix of the channel to the first moments and CM of the initial state. In the limiting
case of a perfect teleportation both

√
2m f and 2γ f are zero and the initial state is retrieved.

2.3. Information theoretical characterization of CV quantum teleportation

There exist different figures of merit to quantify the accuracy of CV teleportation. Among others
there is the fidelity of quantum teleportation, detailing how closely the state arriving at Bob’s
side resembles the original state from Alice. Another example is the classical communication
capacity, given the amount of classical information that can be pushed through the teleportation
channel. In general, the choice of a figure of merit is motivated by its operational meaning.

In the scope of this paper, we characterize the teleportation channel in terms of its quantum
capacity [20, 21], this means the highest rate at which quantum information can be reliably
transmitted through the channel when Alice and Bob make use of error correction to convey
quantum information through the noisy channel. This choice seems to be the most natural and
appropriate, if quantum teleportation should be used to establish a true quantum link.

For comparison purposes, we consider the two-way distillable entanglement as another
figure of merit in appendix B. In this scenario, Alice and Bob also exchange classical
information in a two-way fashion to extract maximally entangled states. In the main part
of the paper, however, we will not allow two-way classical communication between Alice
and Bob, because this approach delivers tighter bounds on the properties of the required
resources.

Indeed, the thermal-like noise added by non-ideal teleportation can be counteracted by
employing quantum error correction codes. These can increase the quality of the communication
(e.g. in terms of the fidelity) at the cost of reducing the communication rate. The highest rate of
reliable quantum communication, i.e. allowing asymptotically unit fidelity, is by definition the
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quantum capacity of the teleportation channel. The quantum capacity of Gaussian channels has
been widely studied and characterized from an information theoretical perspective [22, 23].
In full generality, the quantum capacity of a quantum channel φ is given by the following
expression [20, 21]:

Q = max

{
0, lim

`→∞

1

`
sup
ρ̂

I (φ⊗`, ρ̂)

}
, (16)

where φ⊗` indicates ` parallel uses of the quantum channel. The entropic function

I (φ⊗`, ρ̂)= S[φ⊗`(ρ̂)] − S[(φ⊗`
⊗ idC)(|ψ〉ρ〈ψ |)], (17)

is known as coherent information. Here, S denotes von Neumann entropy, S[ρ̂] = −Tr(ρ̂ ln ρ̂)
(measured in q-nats7). |ψ〉ρ is a purification of ρ̂, involving an auxiliary quantum system
denoted C , and idC is the identity quantum channel acting on C . In general, it is very hard
to evaluate the quantum capacity of a given channel, because one has to optimize (17) over
all possible input states ρ̂ in the limit of infinite uses of the channel φ. An analytic formula
for quantum capacity is only known for a few specimens of CV quantum channels [23]. It is
however possible to evaluate upper and lower bounds of quantum channel capacity.

In the following, we put

2γ f =

(
N 0
0 N

)
. (18)

This thermal-like form for the channel CM is the relevant one in several cases, as for the finitely
squeezed EPR states with and without losses, where the parameter N contains the entanglement
properties of the resource state.

2.3.1. Lower bound. A lower bound on the quantum capacity can be obtained by restricting
ourselves in (17) to maximizing over Gaussian states ρ̂G, and by considering only a ‘single use’
of the channel, i.e.

Q >max

{
0, sup

ρ̂G

I (φ, ρ̂G)

}
=: QG. (19)

Clearly, a lower bound on quantum capacity still provides an achievable rate of reliable
communication8. This lower bound can be computed efficiently for Gaussian channels [22].
For the teleportation channel, it is a function of the noise CM in (13). For a thermal-like noise
with CM (18), such a quantity was computed in [22], yielding:

QG = max{0,−1 − ln N }. (20)

The derivation of (20) is presented in appendix A.

7 In order to obtain compact formulae for quantum channel capacity bounds, we use natural logarithms, ln = loge.
8 For the case of Gaussian channel, a natural conjecture is that Gaussian states saturate the maximization in (16).
However, it is in principle possible that the coherent information has a global maximum on non-Gaussian states.
Moreover, as the coherent information might be super-additive for parallel channels, the regularized limit over n is
in general necessary for computing the quantum capacity [24].
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2.3.2. Upper bound. An upper bound on the quantum capacity can be calculated by noting
that the thermal-like noise with CM (18), for N 6 1, can be simulated by the action of a
linear amplifier with amplification factors 1/η, followed by a linear attenuating channel with
attenuating factor η. In fact, the composition of these channels transforms the input CM γρ to

γρ +

(
1 − η 0

0 1 − η

)
, (21)

which coincides with the thermal-like channel by setting η = 1 − N . Due to the fact that the
composition of channels cannot increase the quantum capacity, the capacity of the thermal-like
channel is upper bounded by that of the attenuating channel.

Using the results of [23], we can write

Q 6max{0, ln (1 − N )− ln N } =: Q A. (22)

3. Single-mode quantum channel capacity analysis

With formulae (20) and (22), we are now able to evaluate bounds on the available quantum
channel capacities of the standard one-mode quantum teleportation protocol.

At first, we assume that the shared bipartite entangled state is a finitely squeezed EPR state,

|ψ〉PDC = exp[r(â†b̂†
− âb̂)]|0〉, (23)

where the parameter r describes the generated squeezing amplitude (we assume without loss
of generality r > 0), which can be transformed into the squeezing value by the relation:
squeezing [dB] = −10 log10(e

−2r). Secondly, we study the effect of losses in the quantum
capacity of the teleportation channel by assuming that the modes {â, â†

}, {b̂, b̂†
} are attenuated

by a factor η.

3.1. Quantum channel capacity without losses

If we neglect losses, which can occur during the EPR state distribution to Alice and Bob, the
parameter in CM (18) reads N = e−2r , where r labels the squeezing amplitudes of the shared
EPR state. The bounds on the quantum channel capacities in (20) and (22) evaluate to the
expressions:

QG = max{0, 2r − 1}, (24)

Q A = max{0, 2r + ln (1 − e−2r)}. (25)

The limiting factor in the CV teleportation protocol is that EPR sources are constrained by the
maximum amount of entanglement, and hence energy, that they are able to emit. For the case
of PDC processes, this is equivalent to the overall optical gain of the down-conversion process.
Furthermore, the channels used to transmit the EPR states to Alice and Bob are constrained
by the amount of energy that they can carry. For example, in the case of the ubiquitous optical
fibers, the most prevalent method for quantum state distribution, transmitted pulses exceeding a
certain power level undergo nonlinear optical processes in the fiber and subsequently lose part
of their entanglement.
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Figure 2. Upper Q A and lower QG bounds for the quantum channel capacity
(measured in q-nats) of CV quantum teleportation using a single-mode EPR
state. The minimum squeezing required in order to reliably transmit quantum
information resides between 3.01 and 4.34 dB. (K = 1: a single EPR state is
transmitted.)

It is hence vital to develop quantum communication protocols that encode quantum
information as energy efficiently as possible. For this purpose, we benchmark quantum
communication by evaluating the quantum channel capacity as a function of the energy,
i.e. mean-photon number 〈nph〉 inside the channel. In the case of an EPR state this mean photon
number is given as

〈nph〉 = sinh2(r). (26)

Figure 2 displays the calculated upper and lower bounds Q A and QG, as defined in (24) and (25),
as a function of the mean photon number 〈nph〉 inside the channel.

This figure shows the minimum requirements for an EPR state to enable reliable quantum
information transfer of the teleportation channel. The upper bound Q A remains zero up to
mean photon numbers 〈nph〉 = 0.125 corresponding to squeezing values of 3.01 dB, whereas
the lower bound QG is zero up to 〈nph〉 ≈ 0.27 equivalent to 4.34 dB of squeezing. Hence, the
minimum squeezing in EPR state allowing reliable quantum information transfer resides in the
range between 3.01 and 4.34 dB. The situation changes if additional resources—like unbounded
two-way classical communication—are allowed (see discussion in appendix B).

3.2. Quantum channel capacity including losses

Analyzing quantum teleportation in the framework of realistic applications, for example, the
ubiquitous quantum state χ̂ distribution through optical fibers, the impact of losses has to be
considered. We model these losses by the standard beam splitter interactions, â →

√
η â +

√
1 − η v̂a, b̂ →

√
η b̂ +

√
1 − η v̂b during the distribution of the state to Alice and Bob, as

displayed in figure 3, and evaluate the robustness of state distribution as a function of the
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Figure 3. CV teleportation setup including standard beam splitter like losses
during the distribution of the EPR state to Alice and Bob.

Figure 4. Upper Q A and lower QG bounds for the quantum channel capacity
(measured in q-nats) as a function of the transmissivity η for CV quantum
teleportation using a single-mode EPR state including loss. The quantum channel
capacity quickly degrades under loss until it reaches zero at loss rates exceeding
50%. (K = 1: a single EPR state is transmitted.)

transmissivity of channel η. With these conditions N = η e−2r + (1 − η), the channel capacity
formulae evaluate to:

QG = max{0,−1 − ln [1 − η(1 − e−2r)]}, (27)

Q A = max{0, ln [η(1 − e−2r)] − ln [1 − η(1 − e−2r)]}. (28)

Figure 4 depicts the quantum channel capacity as a function of the transmissivity η for an
EPR state with a mean photon number of 〈nph〉 = 30.

Starting from a quantum channel capacity between 4 and 5 q-nats, it quickly degrades for
decreasing transmissivities η until it reaches 0 at loss rates exceeding 50%.
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Figure 5. (a) Schematic PDC process: an incoming ultrafast pump pulse is
down converted into two squeezed and entangled signal and idler waves.
(b) The generated PDC state incorporates a multitude of EPR states in orthogonal
ultrafast pulse modes.

4. Multi-mode Einstein–Podolsky–Rosen state generation and teleportation

Having reviewed and established CV teleportation and the corresponding quantum communi-
cation rates in the single-mode regime we now expand the protocol to incorporate multiplexing.

As discussed in the introduction there exist a variety of sources to create multi-mode EPR
states. In the scope of this paper, we will focus on the properties of PDC as a source of pulsed
multi-mode EPR states in ultrafast frequency modes [25, 26]. Yet our findings could also be
adapted to other methods of squeezer generation as well.

Figure 5(a) sketches the state generation process. An incoming ultrafast pump pulse decays
inside a medium with χ (2)-nonlinearity into two beams usually labeled signal and idler, which
represent the two modes of the generated finitely squeezed EPR state. These states are well
suited for quantum teleportation as they enable high repetition rates due to the ultrafast nature
of the created pulses.

However, this PDC process pumped by a pulsed laser system produces not only a
single EPR state but, as sketched in figures 5(a) and (b), also a multitude of ultrafast finitely
squeezed EPR states into broadband frequency pulse modes. Each output pulse consists of a
multitude of EPR states in different orthogonal modes [27, 28], formally described as

|ψ〉PDC =

n⊗
k=1

exp
[
rk

(
Â†

k B̂†
k − Âk B̂k

)]
|0〉, (29)

where Âk and B̂k label the different ultrafast pulse modes in the signal and idler arms, and the
parameters rk > 0 describe the generated squeezing amplitudes. A detailed derivation of (29)
is given in [25]. For common PDC sources the squeezing parameters rk form an exponentially
decaying distribution, which can be engineered from emitting a single EPR state to creating a
whole array of twin-beam squeezed states (see [29]).

The standard protocol for single-mode CV teleportation [6] requires CV Bell-
measurements, one-way classical communication and local phase-space displacements. In order
to multiplex the teleportation protocol, these operations have to be performed on several pulse
modes parallel. There is a certain arbitrariness in that, because in principle different multi-mode
orthogonal basis sets can be chosen for quantum information encoding by the communicating
parties Alice and Bob. However, in the following we are focusing on broadband entangled states
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Figure 6. Performing quantum teleportation using multi-mode PDC states in
conjunction with multi-mode detection and displacements on Alice and Bob’s
side, effectively multiplexes the teleportation protocol.

produced via PDC, for which a unique natural mode basis Âk B̂k arises from the Schmidt
decomposition as given in (29). In this basis each pair of modes Âk and B̂k forms a finitely
squeezed EPR state and we can hence treat each teleportation independently of the others.
One could in principle also perform teleportation on a different basis; this however would lead
to correlations between all individual modes, reduce the individual mode entanglement and
consequently lower the overall quality of teleportation. It is hence natural to conjecture that the
basis of the Schmidt modes optimizes teleportation capacity. A detailed discussion on this issue
will be presented elsewhere [30].

These multi-mode PDC states are hence optimally suited to multiplex CV quantum
teleportation as a single source is sufficient for creating many EPR states in multiple orthogonal
ultrafast frequency modes. The general multiplexed protocol is depicted in figure 6. From
the source a multitude of EPR states is transmitted to Alice and Bob. Alice now encodes
the state she wants to teleport in the { Âk} modes of the source, superimposes the two beams
at a beam splitter and then measures all optical modes separately. This can be implemented
by either splitting the frequency modes into different spatial modes [31–34] and guiding the
light to independent measurement setups or by performing multi-mode homodyne detection
[35, 36]. These measurement results are then transmitted to Bob who performs the according
displacements on each individual B̂k mode. He then retrieves the teleported multi-mode
state ρ̂tel.

The experimental implementation of multi-mode teleportation represents the main
challenge for a deployment of our multi-mode coding protocol. Alice has to implement
homodyne measurements in multiple orthogonal modes simultaneously on exactly the same
basis as imposed by the multi-mode EPR source. Furthermore, the phase reference of the
local oscillator beams has to be kept stable over all optical modes. Any errors in the
measurement basis or phase mismatch between the individual modes will decrease the quantum
communication rate. The same reasoning also applies to Bob who has to perform phase-locked
displacements in exactly the same basis. Although experimentally challenging, this problem is
already addressed by various researchers working on multi-mode homodyne detection [35, 36]
and quantum pulse gates [31–34].

Eventually, this approach of expanding the EPR source and the detection apparatus to
incorporate multiple modes allows us to perform multiplexed quantum teleportation. This in
turn leads to several independent CV teleportation protocols being performed simultaneously.
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5. Multiplexed quantum channel capacity analysis

In this section, we characterize the multiplexed CV teleportation channel in terms of its quantum
capacity.

We consider two remarkable settings. Firstly, we assume that the teleportation resource
is given by the multi-mode EPR state in equation (29). Secondly, we introduce a loss model
in which each Schmidt mode is independently (and identically) attenuated by a standard beam
splitter interaction with attenuation parameter η.

In both cases, the resulting multi-mode teleportation channel coincides with n parallel
single-mode teleportations. Hence, proceeding as in sections 2.3.1 and 2.3.2 we obtain the lower
bound on the multiplexed quantum channel capacity

QG =

n∑
k=1

max{0,−1 − ln Nk}, (30)

and the upper bound on the multiplexed quantum channel capacity

Q A =

n∑
k=1

max{0, ln (1 − Nk)− ln Nk}, (31)

for suitable parameters Nk > 0.

5.1. Multi-mode teleportation

Neglecting losses during the EPR state distribution to Alice and Bob, the parameters Nk are
given by Nk = e−2rk , where rk labels the individual squeezing amplitudes of the multi-mode
squeezed state in (29). The bounds on the quantum channel capacities in (30) and (31) evaluate
to the straightforward expressions:

QG =

n∑
k=1

max{0, 2rk − 1}, (32)

Q A =

n∑
k=1

max{0, 2rk + ln (1 − e−2rk )}. (33)

The amount of energy of the multi-mode EPR state arriving at either Alice or Bob’s side is
related to the mean-photon number in each arm given by:

〈nph〉 =

∑
k

sinh2(rk). (34)

In analogy to the single-mode case, we analyze the teleportation channel as a function of the
corresponding energy that is now expressed by the mean-photon number 〈nph〉 of all the modes
involved in the teleportation protocol.

In order to compare the standard single-mode teleportation with our multiplexed coding,
we simulated a PDC source creating EPR states multi-mode in frequency, based on the source
employed in [26]. The source is able to operate in various degrees of multi-modeness and is

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)

http://www.njp.org/


14

Figure 7. Three different squeezer distributions λk normalized via
∑

k λ
2
k = 1

with varying degrees of multi-modeness. Depending on the source properties
states ranging from a single squeezer (a) up to a whole range of EPR states
in orthogonal optical modes are generated. Here k labels the number of the
generated finitely squeezed EPR state and λk its amplitude relative to the other
modes. λk can be converted to the actual squeezing amplitudes rk via the overall
optical gain B of the source: rk = Bλk .

hence perfectly suited for comparison purposes. We designed it to produce three different PDC
states with varying numbers of modes as presented in figure 7, which shows the three normalized
exponentially decaying mode distributions and their different weights, which we use for this
analysis. These normalized mode distributions can be directly converted to the corresponding
EPR state distributions, by multiplying them with the overall optical gain B of the process
rk = Bλk (see [26] for details on the PDC source and [25]). We first simulate a purely single-
mode source (figure 7(a)), which only emits a single EPR state recreating the single-mode
communication discussed in section 3 [6]. Figures 7(b) and (c) present states with rising multi-
mode character, many EPR states generated in orthogonal pulse modes. Their effective mode
numbers K = 1/

∑
k λ

4
k [37] are K = 1, 2 and 6, where it should be stressed that, due to the

generation process, not all modes share the same squeezing, but the entanglement follows an
exponential decay toward higher-order modes.

Using (32) and (33) we derive the lower and upper quantum channel capacity bounds QG

and Q A for the different squeezer distributions presented in figure 7. The obtained quantities are
plotted in figure 8 as a function of the mean photon number or energy inside the channel.

It is evident that multiplexed teleportation relying on several less squeezed optical modes
results in significantly higher bounds on channel capacities with respect to standard single-mode
coding as soon as a certain energy threshold is exceeded. While the blue shaded area, which
corresponds to single-mode teleportation, with the complete energy being concentrated in a
single mode, never reaches quantum channel capacities above 5 q-nats in the considered energy
range, encoding information on multiple modes shows significantly higher quantum channel
capacities9.

The underlying reason for this behavior is the efficiency of the EPR state distribution.
Following the discussion in [25] one finds that it is far more efficient, in terms of energy content,
to utilize several EPR states with a low amount of squeezing than one EPR state with a high
squeezing value. A similar effect is also observed in other contexts such as energy efficient

9 As an alternative to frequency multiplexing one could also transmit multiple weakly squeezed EPR states in
succession instead of one strongly squeezed EPR state. Mathematically both approaches are equivalent.
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Figure 8. Quantum channel capacity bounds (in q-nats) for multi-mode
transmission. From bottom to top K = 1, 2, 6. Applying multi-mode EPR states
for teleportation gives a significant increase in the available quantum channel
capacity as soon as a certain energy threshold is exceeded. This is due to the
increased energy efficiency of multi-mode coding in conjunction with the fact
that a minimum amount of squeezing has to be present in each optical mode to
achieve positive quantum channel capacities (see section 3).

entanglement creation [38], quantum reading [39, 40] and entanglement distribution [41].
However, the fact that a certain energy is required to achieve a positive quantum channel
capacity (see section 3) counteracts the enhanced energy efficiency of multi-mode coding and
consequently there exists a trade-off between using as many optical modes as possible for
enhanced energy efficiency and sufficiently few optical modes to achieve positive quantum
channel capacities.

5.2. Optimal multi-mode coding

In order to achieve the optimal quantum channel capacity one has to carefully balance the
splitting of the energy into different modes. As discussed in section 3 the upper bound Q A will
drop to zero as soon as the applied EPR state is below 3.01 dB. Hence, in order to maximize
the quantum channel capacity of CV teleportation, one has to distribute the energy over as
many EPR states as possible while the created EPR states still bear sufficiently high squeezing
values.

We analyzed the optimal number of modes for multiplexing that achieves maximal
quantum channel capacities for a given amount of energy (mean photon number 〈nph〉). Our
following discussion of the encoding into the optimal number of modes is split into two parts:
first we will elaborate on PDC sources that can be realized in a straightforward manner by the
use of existing setups, and discuss their optimal design. Then we turn our attention to the global
optimum where the necessary squeezer distributions would require further engineering of the
source.

5.2.1. Common EPR sources. Given a common source of multi-mode EPR states—as
presented in [26]—we optimize the capacities Q A and QG over all possible effective mode
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Figure 9. (a) Q A and QG channel capacities (in q-nats) for single-mode and
optimal multi-mode coding given a common EPR source. (b) Effective mode
number K required for optimal multi-mode coding. Adapted multi-mode codes
achieve quantum channel capacities outperforming single-mode approaches.

numbers K for each mean photon number 〈nph〉 under the restriction of a mode distribution rk

given by the formula [29]:

rk = B
√

1 −µ2µk, 06 µ6 1. (35)

The results are depicted in figure 9. Figure 9(a) shows the Q A and QG bounds for the
standard single-mode CV teleportation in comparison with the obtained optimized multi-mode
coding. In the case of low energies both approaches yield identical rates. However, given
mean-photon numbers above 〈nph〉 ≈ 0.94 (7.47 dB) and 〈nph〉 ≈ 2.40 (10.61 dB) for Q A and
QG respectively the optimized multi-mode coding outperforms the single-mode approach in
each bound individually. Finally, the lower bound QG of the optimized multi-mode encoding
surpasses the upper bound Q A of single-mode coding at 〈nph〉 ≈ 5.37 (13.70 dB).

Most importantly, however, the optimal coding bounds show a linear increase in channel
capacity with energy, whereas the single-mode quantum capacity bounds exhibit a logarithmic
growth for high mean photon numbers. Consequently, the multi-mode coding enables an
exponential increase of the quantum communication rate over single-mode coding in the
presence of energy constraints. The effective mode number K corresponding to the optimal
bounds in figure 9(a) is presented in figure 9(b). As the channel capacities they feature a (mostly)
linear increase with energy.

5.2.2. Optimal encoding with EPR sources. The main drawback of the currently available
PDC sources emitting EPR states is that they feature exponentially decaying squeezing
amplitudes rk for higher-order modes, as already depicted in figure 7. This is not the optimal
encoding because a certain number of squeezers will always reside below the bound to
create positive quantum channel capacities. Hence, they do not contribute to the quantum
communication rate while still occupying energy.

We can negate this drawback by applying multi-mode EPR states exhibiting a flat
distribution rk = r with a mode number K . Experimentally these states can be approximated
by engineering the pump pulse and phase-matching of the PDC process. This flat distribution
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Figure 10. (a) Q A and QG channel capacities, measured in q-nats, for single-
mode and optimal multi-mode coding given a flat mode distribution. (b) Effective
mode number K required for optimal multi-mode coding. Adapted multi-mode
codes achieve quantum channel capacities outperforming single-mode
approaches.

offers the great advantage that all EPR states contribute to the overall channel capacity and no
energy is lost in weakly squeezed modes with zero capacity. Indeed, it can be proven to provide
optimal distribution of the squeezing amplitudes, see appendix C.

In the optimal case of flat mode distributions the formulae for QG and Q A, as a function of
the mode number K and mean photon number 〈nph〉, evaluate to:

QG = max

{
0, K

[
2 arcsinh

(√
〈nph〉

K

)
− 1

]}
, (36)

Q A = max

{
0, K

[
2 arcsinh

(√
〈nph〉

K

)
+ ln

(
1 − exp

(
−2 arcsinh

(√
〈nph〉

K

)))]}
. (37)

We analyze the achievable channel capacities in this optimized configuration by
maximizing over the mode number K for given energies or mean photon numbers 〈nph〉. The
results are displayed in figure 10. Similar to the common EPR state distributions discussed in
section 5.2.1 they feature the advantage of showing a linear gain with mean photon number
〈nph〉 instead of the logarithmic growth present in the single-mode coding case and hence an
exponential growth in quantum communication rate. The achievable channel capacities surpass
the quantum communication rates available using common EPR states as displayed in figure 9,
since no energy is located in weakly squeezed EPR states that do not contribute to the overall
quantum channel capacity.

Furthermore (36) enables us to directly assess the optimal number of modes Kopt required
to encode information for optimal capacity given a certain mean photon number 〈nph〉:

Kopt(QG)≈ 1.1133 〈nph〉, Kopt(Q A)≈ 2.7523 〈nph〉. (38)

From equation (38) we conclude that for the optimum mode number the squeezing of individual
modes stays fixed between 4.96 and 7.33 dB. Consequently using energy to achieve squeezing
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Figure 11. Frequency multi-mode teleportation setup including standard beam-
splitter like losses during the distribution of the EPR states to Alice and Bob.

values above this threshold is actually detrimental for the overall quantum capacity and it is
much more resourceful employing it to create EPR states in additional modes.

5.3. Multi-mode analysis under loss

We finally consider the impact of loss for multi-mode coding similar to the single-mode case
discussed in section 3. For a first analysis of the robustness under losses, we assume that all the
modes are attenuated by the same attenuation factor η. The more realistic setting of frequency
depending attenuation will be considered elsewhere [30]. Under these conditions the channel
capacity formulae evaluate to:

QG =

n∑
k=1

max{0,−1 − ln [1 − η(1 − e−2rk )]}, (39)

Q A =

n∑
k=1

max{0, ln [η(1 − e−2rk )] − ln [1 − η(1 − e−2rk )]}. (40)

Using (39) and (40) we determine the loss resilience of the three exemplary states. We start
by tuning the three test states to exhibit identical mean-photon numbers 〈nph〉 = 30 and study
their behavior under loss. Our results are visualized in figure 12 where we plot the quantum
channel capacity as a function of the transmissivity η. Clearly an enhanced loss resilience
is observed for multi-mode coding with respect to the single-mode protocol, which quickly
degenerates under loss. The reason for this advantage is well known: Strongly squeezed EPR
states are highly susceptible to loss whereas the encoding of information on multiple weakly
squeezed states is much more robust against this type of noise (see, e.g., [38]).

5.4. Optimal multi-mode coding under loss

In a similar manner to the discussion in section 5.2, we search for the optimal number of modes
to encode information yet including loss during the EPR state transmission.
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Figure 12. The loss resilience of the quantum information transmission rate
visualized for multi-mode and single-mode coding. From bottom to top K =

1, 2, 6. Multi-mode coding offers the advantage of an increased loss resilience
and gives significantly higher rates over almost the whole η range in comparison
to the single-mode approach.

Figure 13. (a) Q A and QG channel capacities (measured in q-nats) for single-
mode and optimal multi-mode coding given a common mode distribution as a
function of loss. (b) Effective mode number K required for optimal multi-mode
coding. Adapted multi-mode codes outperform single-mode approaches in the
low-loss regime.

For this purpose, we use an input state with mean photon number 〈nph〉 = 30 and in
dependence of the transmissivity η optimize the channel capacity over all possible input
mode distributions. In figure 13(a), we display the achievable rates using common squeezer
distributions readily available in the lab, as already discussed in section 5.2.1. Figure 13(b)
depicts the effective mode numbers required to achieve optimal coding. This analysis shows
that in the case of losses the optimal squeezing values differ from the ones for lossless coding
(see section 5.3) and the advantages of multiplexing are partially lost depending on the amount
of loss in the system. In the low-loss regime the optimized multi-mode coding outperforms
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Figure 14. (a) Q A and QG channel capacities (in q-nats) for single-mode and
optimal multi-mode coding given an optimal flat mode distribution as a function
of loss. (b) Effective mode number K required for optimal multi-mode coding.
Adapted multi-mode codes outperform single-mode approaches in the low-loss
regime.

the standard single-mode approach. However, in the case of high losses approaching 50%—the
exact value depends on the initial energy or the mean photon number—the single-mode coding
surpasses our multi-mode approach. This is to be expected for the applied CV quantum
communication protocol since it is not designed for transmission under extreme loss but for
low-loss applications. Its optimal operational area is the transmission of large amounts of
quantum information over short distances where it excels. For quantum communication over
longer distances—without repeater stations—other quantum communication protocols are more
suitable.

However, these results are still not optimal. For this purpose, we investigated attainable
quantum channel capacities using a flat mode distribution as discussed in section 5.2.2. The
attainable rates are presented in figures 14(a) and (b). Again the optimized coding on flat mode
distributions outperforms single-mode coding in the low-loss regime and achieves higher rates
than the use of common squeezer distributions.

Next, we turn our attention to the quantum communication rates as a function of the energy
for a constant loss rate. In figure 15(a), we plot the optimal multi-mode coding quantum channel
capacities for a transmissivity of η = 0.8 for common squeezer distributions as a function of
energy. The linear dependence of multi-mode quantum communication on energy for lossless
coding (see section 5.2) remains in this setting including losses during state transmission. The
single-mode coding also still features a logarithmic growth as a function of energy similar to
that of the one observed for lossless state transmission. Consequently, the multi-mode protocol
achieves an exponential increase over single-mode coding even in the presence of loss, as long
as a certain minimum amount of energy is used in the communication.

This effect is even more prominent when we consider optimal flat multi-mode EPR
state distributions, as depicted in figure 16(a). It achieves higher quantum communication
rates in comparison to the multi-mode coding on common squeezer distribution, while still
featuring linear growth as a function of energy as present in the lossless coding discussed in
section 5.2.2.

However, to achieve the optimal quantum channel capacity, the squeezing values of the
individual EPR states in the communication protocol have to be adapted to the losses in the
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Figure 15. (a) Q A and QG (measured in q-nats) for single-mode and optimal
multi-mode coding given a common mode distribution as a function of energy
for a constant loss rate of η = 0.8. (b) Effective mode number K required for
optimal multi-mode coding. Even when considering losses multi-mode coding
shows a linear increase with energy, which constitutes an exponential increase
over the logarithmic growth of the single-mode protocol.

Figure 16. (a) Q A and QG (measured in q-nats) for single-mode and optimal
multi-mode coding given a flat mode distribution as a function of energy for a
constant loss rate of η = 0.8. (b) Effective mode number K required for optimal
multi-mode coding. Even when considering losses multi-mode coding shows a
linear increase with energy, which constitutes an exponential increase over the
logarithmic growth of the single-mode protocol.

channel. Starting from the aforementioned 4.96 dB and 7.33 dB discussed in section 5.2.2 for
lossless communication, rising amounts of EPR squeezing are required for optimal coding. The
exact values, as a function of the transmissivity η, are depicted in figure 17.

In summary, even in the presence of loss, multi-mode coding not only gives an exponential
increase in the observed quantum communication rate in comparison to the single-mode coding
as a function of energy, but also features enhanced loss resilience.
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Figure 17. The optimal squeezing values, in r (a) and dB (b), for the individual
EPR states in the multiplexed protocol adapted to the losses in the channel.

6. Conclusion

In conclusion, we expanded the theory of CV quantum teleportation into the multi-mode
domain and presented a practical approach to implement the proposed multiplexing protocol.
We calculated upper and lower bounds on the attainable quantum channel capacities by
encoding information on multiple optical modes. Our analysis reveals that multiplexing not
only features enhanced energy efficiency leading to an exponential increase in the achievable
quantum communication rates in comparison to single-mode coding, but also gives improved
loss resilience.

However, as reliable quantum information transfer is achieved only for squeezed modes
above a certain threshold value, a careful optimization of the number of used coding modes is
needed.

Our findings show that EPR states with squeezing values between 3.01 and 4.34 dB are
required for having reliable quantum information transfer through the teleportation channel.
Due to the energy constraints inside a quantum channel the optimum is reached when EPR states
with squeezing values in the range from 4.96 up to 7.33 dB are employed. Creating squeezing
above this bound is actually detrimental to the overall quantum communication rate. It is much
more resourceful to invest the excess energy in creating EPR states in multiple optical modes.
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Appendix A. Calculation of the lower bound QG

For computing QG, we have to maximize the coherent information over the Gaussian states. In
this case, we can assume without loss of generality that |ψ〉ρG is an EPR state with the squeezing
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parameter s, shared between the subsystem A and the auxiliary subsystem C , described by the
Wigner function,

W|ψ〉ρG 〈ψ |(qA, pA; qC , pC)= G(0,γ AC
s )(qA, pA; qC , pC), (A.1)

where

γ AC
s =

1

2


cosh 2s 0 sinh 2s 0

0 cosh 2s 0 − sinh 2s
sinh 2s 0 cosh 2s 0

0 − sinh 2s 0 cosh 2s

 . (A.2)

The action of the channel transmitting the state of subsystem A from Alice to Bob, transforms
this state to

W(φ⊗I)(|ψ〉ρG 〈ψ |)(qB, pB; qC , pC)= G(0,γ BC
s )(qB, pB; qC , pC), (A.3)

with

γ BC
s =

1

2


2N + cosh 2s 0 sinh 2s 0

0 2N + cosh 2s 0 − sinh 2s
sinh 2s 0 cosh 2s 0

0 − sinh 2s 0 cosh 2s

 . (A.4)

which is known as the Choi–Jamiołkowski (CJ) state associated with the channel. After tracing
out the C subsystem the reduced state of subsystem B takes on the form

Wφ(ρ)(qB, pB)= G(0,γ B
s )
(qB, pB), (A.5)

with

γ B
s =

1

2

(
2N + cosh 2s 0

0 2N + cosh 2s

)
. (A.6)

In order to evaluate QG, we have to determine the von Neumann entropy of the two states
in (A.3) and (A.5). In the case of Gaussian states this is a straightforward calculation, because
the state is defined by its CM and the von Neumann entropy is determined by their symplectic
eigenvalues [22, 42]. Then we have

S[φ(ρ)] = g(νB
− 1/2), (A.7)

where g(w) := (w + 1)ln(w + 1)−w lnw, and νB is the symplectic eigenvalue of the CM γ B
s .

The symplectic eigenvalue is calculated from the matrix �γ B
s , where �= ıσ2 is the symplectic

form, with

ıσ2 =

(
0 −1
1 0

)
. (A.8)

In particular, the eigenvalues of �γ B
s are ±ıνB .

Similarly,

S[(φ⊗ I)(|ψ〉ρ〈ψ |)] = g(νBC
+ − 1/2)+ g(νBC

−
− 1/2), (A.9)

where νBC
±

are the symplectic eigenvalues of the CM γ BC
s , where ±ıνBC

+ and ±ıνBC
−

are the
eigenvalues of (�⊕�)γ BC

s .
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The resulting coherent information is an increasing function of s:

νB
= N + 1

2 cosh 2s, (A.10)

νBC
±

=
1
2

√
1 + 2N 2 + 2N cosh 2s ± 2N

√
1 + N 2 + 2N cosh 2s. (A.11)

In the limit of an infinitely squeezed state (s → ∞), we obtain

νB
' N +

1

4
e2s, (A.12)

and

νBC
±

'
es

√
N

2
± N . (A.13)

Finally, after straightforward algebra, we obtain

QG = max
{

0, lim
s→∞

g(νB
− 1/2)− g(νBC

+ − 1/2)− g(νBC
−

− 1/2)
}

= max{0,−1 − ln N }. (A.14)

Appendix B. Classical communication allowed

In the main part of the paper, we have considered a scenario in which Alice and Bob make
use of error correction to convey quantum information through the noisy teleportation channel.
Alternatively, if they are also allowed to exchange classical information in a two-way fashion,
they can perform a protocol of entanglement purification to extract maximally entangled
states up to a rate equal to the two-way distillable entanglement [43], denoted D2, of the CJ
state (A.3). Alice and Bob can then use the maximally entangled states to establish a perfect
teleportation channel, allowing reliable quantum communication up to a rate Q2 = D2 [43]. The
assistance of two-way classical communication can in general augment the quantum capacity10,
i.e. Q2 > Q [43].

We then compute the logarithmic negativity of the CJ state, denoted QE , which is an upper
bound for D2 [44]. To compute the logarithmic negativity, first we have to apply the operation
of partial time reversal, denoted 0, on the CJ state (A.3), which transforms the CM (A.4) to

0(γ BC
s )=

1

2


2N + cosh 2s 0 sinh 2s 0

0 2N + cosh 2s 0 sinh 2s
sinh 2s 0 cosh 2s 0

0 sinh 2s 0 cosh 2s

 .
Then, we compute its symplectic eigenvalues:

d± =
1

2

√
2N 2 + 2N cosh 2s + cosh 4s ± (N + cosh 2s)

√
4N 2 − 2 + 2 cosh 4s. (B.1)

The logarithmic negativity of the CJ state equals max{0,− ln (2d−)}. Taking the limit s → ∞,
after straightforward algebra, we obtain

QE = max{0,− ln N }. (B.2)

10 That does not hold true for one-way classical communication [43].
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Figure B.1. Upper QE and lower QG bounds, in q-nats, for the quantum channel
capacity of CV quantum teleportation using a single-mode EPR state when
classical communication between Alice and Bob is allowed.

Finally, generalizing this expression to the multi-mode setting, and putting Nk = e−2rk we
obtain

QE = 2
n∑

k=1

rk. (B.3)

Figure B.1 shows the bounds QG 6 Q2 6 QE as functions of 〈nph〉. The analysis of
subsections 5.1–5.3 can be repeated for the quantity Q2 leading to similar results: the only
qualitative difference relies on the fact that the upper bound QE is strictly non-zero for all
non-vanishing values of the squeezing. In order to maximize this bound it is hence optimal to
distribute the energy over as many modes as possible since there is no trade-off between the
multi-mode structure and having zero quantum capacity [38].

Appendix C. Optimal squeezing distributions

Our aim is to optimize the squeezing distribution under energy constraint. Let us denote

Q :=
K∑

k=1

q(rk), (C.1)

(K integer) the function to be optimized. We want to consider general distributions, including
those with an infinite number of non-zero squeezers (K → ∞). To fix the ideas, we consider
the case of lossless teleportation (the extension to the lossy case is straightforward). Hence, the
optimization of the lower and upper bounds on the lossless quantum teleportation capacity is
recovered by identifying the function q(r) with

qG(r)= max{0, 2r − 1} (C.2)

or

qA(r)= max{0, 2r + log (1 − e−2r)}. (C.3)
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These functions are zero if the value of r is below a certain threshold. It hence follows that it
is sufficient to consider a finite number of squeezers corresponding to values of the squeezing
parameters above the threshold; hence we can assume without loss of generality that K <∞

in (C.1). That also allows us to substitute the functions qG, qA with

q̃G(r) := 2r − 1, (C.4)

q̃A(r) := 2r + log (1 − e−2r). (C.5)

In order to optimize the quantum capacity bounds under the constraint

〈nph〉 =

K∑
k=1

sinh2 rk, (C.6)

we introduce the Lagrange function

F(r1, r2, . . . , rn, λ)=

K∑
k=1

q̃(rk)− λ

K∑
k=1

sinh2 rk, (C.7)

with λ being the Lagrange multiplier, whose value is determined by 〈nph〉, and q̃ stands for either
q̃G or q̃A. Differentiating with respect to rk , we get the Lagrange equations

dq̃(rk)

drk
= λ sinh (2rk), (C.8)

which implies
1

sinh (2rk)

dq̃(rk)

drk
= λ. (C.9)

That means that the optimal distribution is that in which the function 1
sinh (2rk)

dq̃(rk)

drk
is constant for

all values of k. It hence follows that the flat distribution of the squeezing parameters is optimal.
To check the uniqueness of the solution, we first note that

1

sinh (2rk)

dq̃(rk)

drk
=

dq̃(r(nk))

dnk
, (C.10)

where r(nk)= arcsinh
√

nk . The Lagrange equations are then rewritten as follows:

dq̃(r(nk))

dnk
= λ. (C.11)

A sufficient condition for the uniqueness of the solution is that the function q̃(r(nk)) has a given
concavity as a function of nk . The derivatives with respect to nk ,

dq̃G(r(nk))

dnk
=

1
√

nk(1 + nk)
, (C.12)

dq̃A(r(nk))

dnk
=

e2arcsinh
√

nk

e2arcsinh
√

nk − 1

1
√

nk(1 + nk)
, (C.13)

are both monotonically decreasing functions of nk , which proves the concavity of q̃G(r(nk)),
and q̃A(r(nk)), as functions of nk .

In conclusion, we have proven that, for any given integer K , the flat distribution is the
unique optimal squeezing distribution over the modes, as long as all individual modes feature a
positive quantum channel capacity. Then, the optimal mode number K can be evaluated for any
given 〈nph〉, yielding the expressions presented in (38).
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