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Abstract. We investigate up to the fourth order normalized factorial moments
of free-propagating and pulsed single photons displaced in phase space in a
phase-averaged manner. Due to their loss independence, these moments offer
expedient methods for quantum optical state characterization. We examine
quantum features of the prepared displaced states, retrieve information on their
photon-number content and study the reliability of the state reconstruction
method used.
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1. Introduction

The observation of quantum light in phase space is typically associated with homodyne
detection [1]. However, photon counting also provides attractive approaches for studying the
distinct quantum character of the quasi-probability distributions [2, 3]. Using the photon-parity
operator, for example, even individual points of the Wigner function can be directly probed
despite Heisenberg’s uncertainty relation of the field quadratures [4–6]. In the optical regime,
this technique has already been utilized for the characterization of cavity confined optical
states [7–10] as well as free-propagating light fields [11–14]. Even though the photon-number
parity can be straightforwardly deduced from the measured photon statistics, the detection
losses of practical photon counters tend to destroy the real quantum characteristics featured in
the photon-number distribution. Therefore, sophisticated methods for testing the nonclassical
character of the loss-degraded states via their photon-number content have been developed
[15, 16], and techniques allowing a loss-tolerant reconstruction of photon statistics are of great
importance [17–22]. Still, an accurate determination of the state’s properties from the loss-
degraded data is challenging, especially when the studied state incorporates higher-photon-
number contributions [23–25].

Genuine quantum features can fortunately be recognized even without access to the state’s
complete phase-space representation. One of the pioneering techniques was introduced by
Hanbury Brown and Twiss [26], and in an extended form [27] their experiment allows us to
access the higher order factorial moments of photon number [28–30]. In general, the mth-order
normalized factorial moment is determined as

g(m)
= 〈n(m)

〉 / 〈n〉
m , (1)

where 〈n(m)
〉 = 〈: n̂m :〉 =

∑
n n(n − 1) . . . (n − m + 1) %(n) and 〈n〉 = 〈n(1)

〉 can be evaluated
either as normally ordered (::) moments of the photon-number operator n̂ or via the photon
statistics %(n) with n being the photon number [31]. Usually, the normalized form of the
factorial moments can be extracted loss independently [29, 32]. However, care has to be taken
when detecting multimode states since the individual modes may suffer from different amounts
of losses [33]. Nonetheless, these moments provide versatile alternatives for investigating the
properties of quantum optical states.

Regarding single photons [34], already their second-order normalized factorial moment,
which ideally takes the value g(2)

= 0, can be employed as a valuable characterization tool. The
real measured values are widely used to classify the practical single-photon sources [35]. More
generally, however, observing g(2) < 1 can be regarded as a signature of the nonclassicality [36]
and as an indication of the sub-Poissonian photon-number characteristics [37–39]. Nonetheless,
when single photons are displaced their g(2) values gradually increase and finally exceed unity,
which signalizes a super-Poissonian photon-number distribution [40]. In this region, a more
sophisticated test for the nonclassicality should also be found [41, 42]. Further, once having
accessed the photon-number content of displaced single photons [14, 43], many other intriguing
phase-space features can be directly scrutinized such as the nonclassical oscillations in the pho-
ton statistics [44, 45]. Moreover, the factorial moments of displaced states indeed provide routes
for accessing more elaborate moments of the photon creation and annihilation operators [27].

Here, we measure up to the fourth order normalized factorial moments of phase-averaged
and displaced single photons directly in a coincidence counting experiment by employing
the time-multiplexed detector (TMD) [46, 47] that has proven to be a powerful tool for

New Journal of Physics 14 (2012) 105011 (http://www.njp.org/)

http://www.njp.org/


3

measuring the higher order moments of pulsed quantum states of light [29]. Even without
access to the complete photon statistics we can loss-independently observe quantum features
in the prepared states. Further, by calibrating the mean photon number of the loss-degraded
states we gain information about their photon-number content. At low detection efficiencies,
it is generally a highly nontrivial task to invert the action of losses [48]. Further, in order to
estimate the reliability of the state reconstruction often numerical methods are applied such
that the effects of statistical fluctuations, losses and highest resolved photon number can also
be taken into account [14, 25]. In contrast to the ordinary loss inversion, our technique allows
us to study the effect of different experimental limitations separately from each other. As a
consequence, we can directly define the boundaries that an experimental realization sets for the
state reconstruction in phase space. Further, the artifacts introduced by the nonideal detection
can be recognized in a straightforward manner.

This paper is organized as follows. In section 2, we review the properties of factorial
moments, which are connected to the photon statistics via the moment generating function.
In section 3, we survey the properties of displaced single photons and review the effects caused
by experimental imperfections. In section 4, we utilize the factorial moments to investigate the
characteristics of the prepared displaced single photons.

2. Retrieving state characteristics via factorial moments

The normalized factorial moments can be directly utilized for different state characterization
tasks such as discrimination between sub- (g(2) < 1) and super-Poissonian (g(2) > 1) photon-
number distributions [49, 50] or the classification of different quantum states [29]. Additionally,
they provide several alternatives for the direct examination of quantum features [29, 51]. One
option for investigating phase-insensitive nonclassical behavior in a single mode is to study
whether it is possible to violate the criterion

g(m+1) > g(m) > 1 (2)

that classical states obey [52], and we treat the multimode states equivalently. For this purpose,
also the measurement of the normalized factorial moments with orders higher than two becomes
relevant when regarding states with super-Poissonian characteristics [41].

A more detailed investigation of the state’s photon-number content via the factorial
moments is possible by employing the moment generating function [32, 53] that is described in
terms of a real-valued variable 06 µ6 2 as

M(µ) =

∑
n

%(n)(1 − µ)n. (3)

At the upper bound, that is, when µ = 2, the moment generating function provides information
on the photon-number parity. Nevertheless, equally interesting is the lower bound since the
derivatives of equation (3) at µ = 0 are directly connected with the factorial moments by

〈n(m)
〉 =

(
−

d

dµ

)m

M(µ)|µ=0 . (4)

Once having accessed the factorial moments the expression in equation (3) can be re-
written as an expansion

M(µ) =

∑
m

(−1)m
〈n(m)

〉

m!
µm, (5)
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and the photon statistics is again reconstructed from the moment generating function in
equation (5) by

%(n) =
1

n!

(
−

d

dµ

)n

M(µ)|µ=1 =

∑
m>n

(−1)m+n

n!(m − n)!
〈n(m)

〉 , (6)

which obeys the conventional normalization
∑

n %(n) = 1. Thus, the photon statistics is gained
by summing up the factorial moments with proper weight factors. However, we note that this
method for reconstructing the photon statistics can only be successful when the expansion in
equation (5) converges near µ = 1.

The loss tolerance in equation (6) is achieved after re-writing 〈n(m)
〉 = g(m)

〈n〉
m and

deducing the mean photon number 〈n〉 from the loss-degraded measurement via 〈n〉lossy = η〈n〉,
in which η is the detection efficiency [32]. Thus, apart from recording the different orders
of g(m), this method further entails a calibration of η and measurement of 〈n〉lossy. If the
mean photon number can be calibrated accurately, the reconstruction of photon statistics via
normalized factorial moments becomes especially expedient at low detection efficiencies. The
only constraint lies in measuring enough orders of g(m) with good precision during a finite
integration time. As a consequence, the highest statistically accessible moment, which is known
from the experimental data, limits the possibilities to completely reconstruct the state’s photon-
number content. Natural limits are determined by the physical bounds 06 %(n)6 1. More
stringent conditions may be found by investigating the distinctive features in the photon statistics
of the studied states.

3. Modeling free-propagating displaced single photons

Even though displaced single photons have been studied in several experiments [8, 10, 14, 43],
the generated states are seldom ideal and imperfections in the preparation process have to be
taken into account. We first investigate the properties of ideal displaced single photons and
then regard the effect of experimental imperfections. We consider a displacement with a mode
mismatch and take into account higher photon-number contributions of the prepared state.

In the single-mode picture, an ideal displaced single-photon state is described as D̂(α) |1〉,
where D̂(α) (with the hermitian conjugate D̂†(α)) defines the displacement by an amount
of α and |1〉 is the single-photon Fock state. We deduce its factorial moments by evaluating
the normally ordered mean values in equation (1) with the help of the transformations
D̂†(α)â D̂(α) = â + α and D̂†(α)â† D̂(α) = â† + α∗ of the photon annihilation (â) and creation
(â†) operators. After a straightforward calculation, the normalized factorial moments of the ideal
displaced single-photon state can be expressed as

g(m)

ideal =
|α|

2(m−1)(m2 + |α|
2)

(1 + |α|2)m
. (7)

These moments as depicted in figure 1(a) rapidly grow from zero with increasing the mean
photon number given by 〈n〉ideal = 1 + |α|

2. By following the behavior of the second normalized
moment, one directly concludes the gradual transition in the photon-number characteristics of
the displaced states [40, 45], and this moment reaches the maximal value of g(2)

ideal ≈ 1.333 at
the displacement |α|max =

√
2. Further, the ideal displaced single-photon states always violate

the criterion in equation (2). However, as seen in figure 1(a), the verification becomes more
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Figure 1. Four orders of the normalized factorial moments, shortly g(m)

(m = 2, 3, 4, 5), with respect to the mean photon number (a) for the ideal
displaced single-photon states evaluated according to equations (7) and (b) in the
case of no mode overlap between the single-photon Fock state and the reference
state as predicted by equation (9). Dashed lines separate the sub- and super-
Poissonian regions.

and more challenging when increasing the displacement since moments with higher and higher
orders have to be resolved.

In practical applications, the displacement can be implemented with an asymmetric beam
splitter, at which the studied state is overlapped with a coherent reference state (see, e.g., [25]
and the references therein). The mismatch of the two overlapping modes in temporal, spectral or
spatial degrees of freedom can be modeled with a simple overlap factorM. In order to evaluate
the required mean values in equation (1), the photon-number operator can be replaced with

n̂ → η n̂eff = η
[

D̂†(
√
Mα)â†â D̂(

√
Mα) + (1 −M)|α|

2
]
, (8)

where η is the total detection efficiency, M is the mode overlap and α is the amount of the
applied displacement [25]. The effective photon-number operator n̂eff in equation (8) is a sum
of a displaced photon-number operator and a background term.

The total detection efficiency cancels out when evaluating the normalized factorial
moments, and we can write them loss independently in the form

g(m)

eff =
〈: n̂m

eff :〉

〈n̂eff〉
m =

∑
k

(m
k

)
〈n(k)

〉D 〈n(m−k)
〉bg

(〈n〉D + 〈n〉bg)
m

, (9)

in which 〈n(m)
〉bg = [(1 −M)|α|

2]m describes the properties of the background and

〈n(m)
〉D = 〈: [D̂†(

√
Mα)â†â D̂(

√
Mα)]m :〉 = 〈D̂†(

√
Mα)â†m âm D̂(

√
Mα)〉

(10)

predicts the behavior of the displaced part. If the mode overlap is imperfectly aligned, the results
of the measurement change drastically. As shown in figure 1(b), in the case of the single-photon
Fock state the effective normalized factorial moments cannot take values larger than unity when
M= 0. Therefore, the super-Poissonian region becomes a loss-independent indicator that the

New Journal of Physics 14 (2012) 105011 (http://www.njp.org/)

http://www.njp.org/


6

Figure 2. Experimental setup in accordance with [14]. Ti:sapphire laser pulses
(wavelength 796 nm, bandwidth 10 nm, repetition rate 2.4 MHz) are frequency
doubled in a nonlinear crystal (NC) and coupled to a 1.45 mm long, periodically
poled, type-II KTiOPO4 waveguide (WG). While color glass filters (GF) block
the residual beams, in the WG generated twin beams are separated at a polarizing
beam splitter (PBS). Selected by the orientation of a half-wave plate (HWP), one
of them—the herald—is filtered to a bandwidth of 1 nm with an interference
filter (IF) and sent to a silicon avalanche photodiode (Si-APD). Meanwhile the
heralded single photon is coupled to the same spatial and temporal mode with
a cross-polarized coherent reference beam attenuated to the single-photon level
with a neutral density filter (ND) and filtered to a bandwidth of 1 nm. The cross-
polarized beams are then sent through a spectral filter with a bandwidth of 1 nm.
The displacement is realized in a phase-averaged manner with a PBS placed
after a HWP, whose axis was minimally tilted from the polarization direction of
the heralded state. Finally, the TMD divides the incoming light pulse in three
subsequent symmetric beam splitters (BS) into eight temporal bins that were
detected with two Si-APDs. Components in dashed boxes were implemented
with fiber-integrated optics.

displacement takes place, in other words, thatM 6= 0. Nevertheless, our model in equation (9)
provides inaccurate results if only single-photon Fock states are regarded. This can be corrected
by considering the higher photon-number contributions of the real single-photon source. We
assume that the single photon is prepared into a photon-number mixed state [54], and we take the
higher photon-number contributions of it into account in equation (10) when fitting equation (9)
against the values measured for the displaced single-photon states. The overlap factor M is
held as a fitting parameter. Moreover, the amount of displacement applied to the prepared single
photon can be straightforwardly extracted in our model from the effective mean photon number.
Even in the case of imperfect mode overlap, this is given by 〈n̂eff〉 = 〈n〉sp + |α|

2, in which 〈n〉sp

is the mean photon number of the prepared single photon.

4. Experimental investigation of displaced single photons

In our experiment, shown in figure 2, we heralded single photons from a pulsed waveguided
twin-beam source based on parametric downcoversion. For preparing displaced states, the
heralded single photons were overlapped at an asymmetric beam splitter with coherent reference
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states in a phase-averaged manner. The amount of displacement was controlled by altering
the mean photon number in the reference beam. The heralded displaced single photons were
then coupled to a TMD for detection. Our experimental arrangement is similar to the one
used in [14] except that the TMD is employed for measuring manyfold coincidence counts and
not the so-called click statistics. We note, however, that the values of the normalized factorial
moments could also be deduced via the loss-degraded photon statistics that can be retrieved
from the click statistics recorded with TMD by taking into account the intrinsic detector
characteristics [50].

As described in [29], the higher order correlations in a light beam can be accessed with the
TMD detection scheme, and the time-integrated measurement delivers the desired expectation
values [55]. Thence, the value of g(m) is extracted from the raw data by dividing the probability
to measure a coincidence click between m selected temporal TMD bins by the product of the
single click probabilities in these bins—all of them conditioned on the detection of the herald. In
order to apply the measured normalized moments for the loss-tolerant reconstruction of photon
statistics, we further require a calibration of the detection efficiency such that the mean photon
number can be determined. The perfect photon-number correlation between the twin beams
empowers us to estimate the detection efficiency according to Klyshko [56]. For this purpose
we block the reference beam, subtract the amount of accidental counts from the coincidences
between the twin beam detection and compare this number to the number of single counts in
herald. The mean photon number of the displaced state merely follows from dividing the first
unnormalized factorial moment—the probability of measuring a single click conditioned on the
detection of the herald—by the estimated detection efficiency.

We first study the values of the moments g(2) to g(4) in order to categorize the photon-
number properties of the prepared states. For the prepared heralded single-photon state, we
extracted the values g(2)

= 0.184(4) and g(3)
= 0.04(2), the accuracy of which is limited

by the statistical fluctuations only. In contrast to a genuine single-photon state, one clearly
recognizes an additional two-photon contribution in the heralded state. This is the trade-off
from a rather high pump power—on average 12 µW, which nevertheless yielded a heralding
rate of 11.8 kHz. When the prepared single photon is now displaced, the values of g(2) to g(4)

gradually increase. This behavior is shown in figures 3(a) and (b) with respect to the calibrated
mean photon number. Maximally, we observed the values g(2)

max = 1.148(6), g(3)
max = 1.18(3) and

g(4)
max = 1.00(15). A comparison of these results with the ones gained for the case of vanishing

mode overlap (figures 3(c) and (d)) reveals, as expected, the rapid appearance of higher order
normalized factorial moments when the prepared single photon is displaced. In contrast to our
earlier studies [14], we now fit our model in equation (9) against the properties of the higher
photon-number contributions. Our model assumes that all the photon-number components of
the prepared single photon possess the same overlap factor and a reasonable match for the
data in figures 3(a) and (b) is found. If the overlap factor was drastically lower for the higher
photon-number contributions—in our case the two-photon contribution—we would expect to
encounter difficulties when fitting our model against the values measured for the third or higher
order normalized factorial moments.

Even without information on the complete photon statistics, we conclude from our results
in figure 3(a) that the expected transition between the sub- and super-Poissonian photon statistics
takes place. Further, our displaced states show quantum features at small values of displacement.
As seen in figure 3(a), the inequality g(2) � 1 guarantees the nonclassicality of the prepared
states below the mean photon number of approximately 1.6. Our results in figure 3(a) clearly
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Figure 3. The measured values (symbols) of (a) g(2) and g(3) as well as (b) g(4)

in dependence of the calibrated mean photon number when the mode overlap is
optimized toM= 0.71(2). (c) The same as panel (a); and (d) the same as panel
(b) for the case of deliberately mismatched mode overlap. Solid lines are fitted,
whereas dotted lines predict the results forM= 0. Vertical error bars are given
by statistical fluctuations only, whereas the horizontal ones are dominated by the
accuracy of the efficiency estimation. Dashed lines are a guide to the eyes.

also violate the classicality via g(3) � g(2). However, this criterion becomes inadequate close
to the mean photon number of 1.9, beyond which we are unable to detect quantum features
in the prepared displaced states. In order to do so, a more accurate measurement of the fourth
normalized moment g(4) than the one shown in figure 3(b) is required.

Next, we examine how much information on the displaced state’s photon-number content
can be deduced via the measured moments. We estimate the photon-number contributions of
the heralded and displaced states by plugging the measured values in figures 3(a) and (b)
into equation (6) together with the calibrated mean photon numbers. For the heralded single
photon, the photon statistics of which is shown figure 4(a), we extracted the loss-calibrated
mean photon number of 〈n〉sp = 1.07(3) that was estimated in a measurement with a little less
than 1% detection efficiency per TMD bin. Further, we note that the accuracy at which the
mean photon number is deduced depends not only on the statistical fluctuations but also on the
approximative estimation of the detection efficiency. As shown in figure 4(b), we can recover
the behavior expected for the displaced single photon—increasing the vacuum contribution and
decreasing the one-photon contribution—at the mean photon number of 1.30(4).

However, the limited resolution restricts the acceptable phase-space displacement and
sets a boundary to a region, in which the photon statistics of the prepared displaced state
can reliably be reconstructed. Being able to statistically resolve moments only up to the
fourth order, in other words, the experiment delivers g(n>4)

= 0, the two highest accessible
photon-number contributions are deduced according to equation (6) as %(4) = 〈n〉

4/4! g(4) and
%(3) = 〈n〉

3/(3)! [g(3)
− g(4)

〈n〉]. The nonnegativity of the photon-number components provides
us with a condition 〈n〉6 g(3)/g(4) for the accessible reconstruction range. By employing the
fits in figures 3(a) and (b) we obtain the bound 〈n〉. 1.4. Looking closer at the individual
photon-number contributions in figure 5, a second, stricter condition is obtained by studying the
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Figure 4. The reconstructed photon statistics of the (a) heralded and (b) mini-
mally displaced single-photon states.

Figure 5. The reconstructed photon-number contributions %(0)–%(4) (a)–(e) for
the displaced states prepared in figures 3(a) and (b). The symbols originate
from the measured values. The (orange) dashed lines present the truncation of
moments up to g(4) and are obtained from the fits in figures 3(a) and (b), whereas
the (black) dash-dotted and dotted lines include the prediction of moments up
to g(5) and g(6), respectively. The (gray) solid line represents the theoretically
expected photon statistics.

boundary, close to which the reconstructed photon-number contributions start to significantly
deviate from the expected behavior. As the highest resolvable photon-number component, in our
case %(4) (figure 5(e)—dashed line), gradually increases with respect to mean photon number,
it eventually surpasses the contribution %(3) (figure 5(d)—dashed line). This is an artifact not
expected in the photon statistics of the displaced single photon at the studied region. Therefore,
we use the limitation %(3)> %(4) as the boundary of the reliable reconstruction range for the
displaced prepared states and obtain the ultimatum 〈n〉. 1.3. Furthermore, we note that the
vacuum component (figure 5(a)—symbols) of the prepared displaced states could be fairly
reliably extracted from our measurement even beyond the determined range, whereas the higher-
photon-number contributions (figures 5(b)–(e)—symbols) are not as resilient.

In order to accurately reconstruct the complete photon statistics outside the determined
region, one is required to resolve moments with orders higher than four. Thus, we predict
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the values of the moments g(5) and g(6) in order to interpret their influence on the photon
statistics. As depicted in figure 5, the accessible reconstruction range gradually increases when
moments with higher orders are resolved. Clearly, the method used provides us with insight
into the reliability of the state characterization at low detection efficiencies. In our example it
allows us to estimate the bounds of the reconstruction range in phase space and to recognize
the artifacts caused by the nonideal detection. Systematical deviations in the reconstructed
photon statistics become apparent if enough orders of the normalized factorial moments cannot
be measured due to the limited detection time. Further, the statistical fluctuations in the
measured moments and the precision at which the mean photon number is extracted affect
the accuracy of the reconstructed photon statistics. Fortunately, their effect can be investigated
separately from the systematical deviations and in our case the error bars are dominated by the
fluctuations in the resolved moments rather than by the inaccuracy in the mean photon number.
In summary, our results can give direct specifications for the experimental parameters when
studying the fine structure in the photon statistics of displaced single photons at low detection
efficiencies.

5. Conclusions

We measured up to the fourth order normalized factorial moments of displaced single photons
in a loss-independent manner. By studying the second normalized moment, we confirmed
as expected that the sub-Poissonian photon-number distribution of a single photon gradually
moves toward the super-Poissonian photon statistics when the state is displaced. The prepared
displaced states further violated the classicality even in the super-Poissonian regime. Moreover,
the measured moments provide means for the loss-tolerant reconstruction of photon statistics
after determining the mean photon number of the studied state. However, it is essential to
accurately measure enough orders of the factorial moments in order to reliably reconstruct the
investigated properties. Our results show the versatility of the factorial moments for the state
characterization, and we believe that they prove to be useful in examining genuine quantum
features at low detection efficiencies.
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