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Abstract. We present a pulsed and integrated, highly non-degenerate
parametric down-conversion (PDC) source of heralded single photons at telecom
wavelengths, paired with heralding photons around 800 nm. The active PDC
section is combined with a passive, integrated wavelength division demultiplexer
on-chip, which allows for the spatial separation of signal and idler photons with
efficiencies of more than 96.5%, as well as with multi-band reflection and anti-
reflection coatings which facilitate low incoupling losses and a pump suppression
at the output of the device of more than 99%. Our device is capable of preparing
single photons with efficiencies of 60% with a coincidences-to-accidentals ratio
exceeding 7400. Likewise, it shows practically no significant background noise
compared to continuous wave realizations. For low pump powers, we measure
a conditioned second-order correlation function of g(2) = 3.8 ⇥ 10�3, which
proves almost pure single-photon generation. In addition, our source can feature
a high brightness of hnpulsei = 0.24 generated photon pairs per pump pulse at
pump power levels below 100 µW. The high quality of the pulsed PDC process
in conjunction with the integration of highly efficient passive elements makes
our device a promising candidate for future quantum networking applications,
where an efficient miniaturization plays a crucial role.
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1. Introduction

Recent progress in the field of quantum information processing has highlighted the prospects
of using integrated optic devices for quantum applications [1–5]. Integrated quantum photonics
offers several advantages in comparison with free-space experimental setups with bulk optic
components [6]. The miniaturization of systems with increased complexity not only drastically
reduces the required space and paves the way for future commercialization, but also enables
the implementation of optical networks with a large number of optical modes and an extremely
high stability.

In 2008 Politi et al [7] demonstrated the first quantum interference and photonic gates on-
chip, whereas different groups developed sophisticated and integrated experiments with two-
photon interference [8, 9] or photon entanglement [10, 11], controlled qubit operations [12] and
the controlled phase shifts in linear optical circuits [5, 13]. In 2012, Metcalf et al [14] realized
the first three-photon experiment inside a linear optical network, and recent research on boson
sampling in an integrated device demonstrates four-photon quantum interference [15].

However, in all these experiments the preparation of the photon pairs has actually been
performed outside the integrated devices employing traditional bulk crystal parametric down-
conversion (PDC) sources. The efficient coupling between these sources and the integrated
circuit remains a bottleneck for designing systems with increasing complexity.

On the other hand, remarkable efforts have been devoted to the development of integrated
PDC sources for photon pair generation inside channel waveguides [16–23] over the last few
decades. The main benefits of guided-wave PDC processes include high conversion efficiencies
and spatial mode control.

Among several fabrication techniques with different nonlinear materials used for the
implementation of PDC sources (see e.g. [17, 24–27]), titanium-indiffusion is a standard method
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Figure 1. Schematic representation of the Ti : PPLN photon pair source.

to manufacture waveguides in lithium niobate (Ti:LN). It provides extremely low loss [28] and
the guiding of both polarizations.

In this paper, we report on the fabrication and analysis of an integrated type-I PDC source in
titanium-indiffused periodically poled Z-cut lithium niobate waveguides (Ti:PPLN) for heralded
single photons. We combine an optically active component providing PDC of high brightness
with a passive element on-chip allowing for excellent spatial separation of the converted, highly
non-degenerate photon pairs. This enables us, on the one hand, to transmit prepared PDC states
via low-loss fibers at the telecom L-band around 1575 nm and, on the other hand, to herald these
states with off-the-shelf silicon-based detectors at around 800 nm. Together with two home-
deposited end-face coatings for close-to-perfect incoupling and outcoupling of the respective
wavelengths, our device is a potential candidate to serve as a basic building block in more
complex and miniaturized quantum network realizations in the future.

2. Device design, characterization method and technology

Our PDC source basically consists of two integrated building blocks. Figure 1 shows the general
design of the whole device. In the periodically poled area (the first building block) the PDC
process takes place and the integrated S-bend-type wavelength division demultiplexer (WDM
coupler, the second building block) allows for subsequent spatial separation of signal and idler
photons. Home-deposited high-quality optical end-face coatings provide our PDC source with
low coupling losses of the respective colors.

2.1. The first building block—the parametric down-conversion process

In � (2)-nonlinear lithium niobate, PDC represents a three-wave-mixing process, where one
pump photon (p) decays into two daughter photons, commonly labeled signal (s) and idler (i)
with the signal photon having the higher angular frequency. For this process, the conservation
of photon energy

h̄!p = h̄!s + h̄!i (1)

must be fulfilled.
In waveguides, the momentum conservation of the collinear traveling waves can be

represented by the corresponding effective refractive indices of the individual guided modes
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of pump, signal and idler beams. For the ferroelectric lithium niobate the occurring phase
mismatch

1k = k
�
�p

�
� k (�s) � k (�i) (2)

caused by dispersion, can be compensated by periodical inversion of the spontaneous material
polarization, such that a first-order quasi-phasematching with

1k � 2⇡

3G
= 0 (3)

for the appropriate period 3G of the inverted domains is achieved. The technology for achieving
periodic poling is explained in more detail in section 2.4.

Quasi-phasematching allows for arbitrary wavelength combinations by choosing
appropriate poling periods. However, short pump wavelengths in the visible regime require
small poling periods. For fixed poling periods and pump wavelengths, the wavelength
combination of signal and idler is determined. In this case, wavelength tuning of the signal and
idler wavelength is only possible thermally due to the temperature dependence of the effective
refractive indices.

Here we focus on a type-I PDC process, in which pump photons at 532 nm wavelength
decay into non-degenerate signal and idler photons of transverse magnetic (TM) polarization,
accessing the highest nonlinear tensor element in lithium niobate d33 for high conversion
efficiencies. In order to determine the degree of non-degeneracy we varied the poling period
of the device around 6.8 µm in several on-chip test structures.

2.2. Heralding and conditioned g(2)(0)

In 1977, Kimble et al [29] demonstrated, for the first time, photon anti-bunching on sodium
atomic emission. A well-established way to estimate the mean photon number of a PDC source
is using the anti-correlation parameter ↵. In 1986, Grangier et al [30] applied the concept
of Clauser [31] in a Hanbury Brown-Twiss geometry [32] to characterize anti-correlation
phenomena by the conditioned preparation of single-photon states. The value of ↵ can be
determined by relating the count rates of binary photon detectors [33] when making conditioned
correlation measurements.

In our experiments, we pump our PDC source with pulsed light. For low pump powers one
pair of photons is generated with a probability much lower than unity and higher photon number
contributions are insignificant. When increasing the pump power, higher pair generation rates
are possible, but at the cost of increasing higher-order components. These are detrimental to the
quality of the heralded single photons, such that the appearing higher-order photon pairs should
be carefully quantified.

Note that in the following we do not distinguish between the terms trigger, signal photons
and heralding photons anymore.

The scheme of our heralded single-photon preparation is shown in figure 2 (left), where
the Si-avalanche photodiode (APD) measures a detection rate RSi with an efficiency ⌘Si. The
two InGaAs-APDs are conditioned on a Si-APD detection event and register the rates of the
collected idler photons RId,1 and RId,2. We assume similar detection efficiencies ⌘Id1 = ⌘Id2 = ⌘Id

for both InGaAs detectors and neglect the influence of dark counts. Since the idler photons are
sent through a 50/50 beamsplitter in front of the detection, the rates RId,1 and RId,2 individually
reflect genuine photon pair generation events, whereas threefold coincidences between all
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Figure 2. Conditioned PDC detection scheme (left); temporal PDC event
behavior with a pulsed pump (right).

detectors indicate the generation of at least two photon pairs in the PDC process. These occur
with the rate Rc. In this setting, the anti-correlation parameter ↵ is given by [30, 33]

↵ = RSi Rc

RId,1 RId,2
. (4)

For judging the amount of higher-order photon components in the generated PDC state, we
can utilize the second-order auto-correlation or Glauber function g(2)(0). For our measurement
scheme, it has been shown, for example in [34], that g(2)(0) is given by

g(2)(0) ' 4
RSi · Rc

(RId,1 + RId,2)2
(5)

if we assume that the probability for the generation of higher-order components is much smaller
than that for the generation of single-photon pairs. Note that, in the case discussed here, the
two values ↵ and g(2)(0) are both measures for the ratio between photon pairs and unwanted
higher-order components, although they are derived from different conceptual approaches.

The Klyshko efficiency [35] ⌘K of the idler arm is given by

⌘K = RId,1 + RId,2

RSi
(6)

and is a general measure for generation of single-photon pairs. Since our InGaAs-APDs have
efficiencies below 1, we also calculate the heralding efficiency

⌘H = ⌘K

⌘Id
, (7)

which describes the performance of the single-photon preparation in our experimental setup.
Like in continuous wave experiments, the coincidences-to-accidentals ratio (CAR)

provides valuable information about the performance of our PDC source, but the fact that we
work with pulsed light requires a careful definition of CAR in our experiment. Figure 2 (right)
schematically illustrates the typical measurement results. From this, we immediately see that
the CAR is dependent on the relative time delay between signal and idler detection.

When shifting the delay of the trigger pulse A and the measured correlated idler gradually
to a point between two idler pulses, we expect decreasing Klyshko and heralding efficiencies.
Relating the maximum Klyshko efficiency (i.e. perfect pulse overlap) to the minimum Klyshko
efficiency, we obtain

CAR1⌧ = ⌘K(Pp, 1⌧ = 0)

⌘K(Pp, 1⌧ = T )
, (8)
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where |T | must be larger than the gating time window width but smaller than the repetition time
⌧rep of our pump. Whenever parasitic fluorescence with long lifetimes is induced, CAR1⌧ will
drop significantly due to artificial coincidences outside the region of perfect temporal pulse
overlap. Note that our definition of CAR1⌧ is equivalent to the inverse output noise factor
(ONF), defined in [36] and used for heralded single-photon sources working in the continuous
wave (cw) regime [37].

By defining a different CARrep, we indirectly get information about two-photon-pair
contributions if we shift the relative time delay such that pulse A overlaps with the neighboring
pulse B, given by an integer multiple of the repetition time ⌧rep. Then, detected coincidences
originate from non-correlated PDC events. From the expression

CARrep = Rc,double(Pp, 1⌧ = 0)

Rc,double(Pp, 1⌧ = m ⌧rep)
m 2N, (9)

we can deduce the photon pair generation probability p, which is closely linked to the mean
photon number per pulse and hence to the brightness of our source. The value of CARrep must
be the same, regardless of the number of skipped pulses.

A third CAR evolves as a general measure of higher-order photon contributions if we relate
the rate of all twofold coincidences Rc,double to the rate of unwanted threefold coincidences Rc

at perfect temporal pulse overlap (i.e. 1⌧ = 0). The purity of our source—in addition to the
g(2)(0) value—is then characterized by

CARHOP = Rc,double(Pp, 1⌧ = 0)

Rc(Pp, 1⌧ = 0)
. (10)

The value of CARHOP is expected to drop drastically with increasing pump powers according
to the increasing generation of higher-order photon pairs. Note that, for the case of perfect
detectors, CARrep and CARHOP result in exactly the same values, whereas deviations of this
equality can be attributed solely to imperfect detectors.

2.3. The second building block—the wavelength division demultiplexer (WDM) coupler

In order to separate signal and idler photons spatially, we implemented a passive demultiplexer
(WDM coupler) behind the periodically poled area.

The most accurate way to treat a waveguide directional coupler is to describe its properties
in terms of local normal modes of the dual channel structure [38–40]. In our case the local
normal modes comprise a symmetric (00) and an anti-symmetric (10) mode, as shown in
figure 3. For sufficiently large channel gaps d compared to the mode size, the propagation
constants of the two modes are degenerate.

The launching of light into one input channel O is described by constructive interference
of these local normal modes in the launching channel and a destructive interference in the cross
channel X. Upon approaching of the two channels toward the homogeneous central section of
the coupler, the degeneracy of the propagation constants of the two modes is gradually removed,
as the propagation constants exponentially depend on the center-to-center distance d(z). This
causes an increasing amount of phase difference

1� =
Z z2

z1

(�00(d(z)) � �10(d(z))) dz 6= 0 (11)
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Figure 3. Details of the WDM coupler (left); local normal mode evolution
scheme (right).

and the corresponding interference change between the two modes. As a result the power flow
gradually bounces from the launching channel to the adjacent one. Complete overcoupling to
the cross channel is achieved when the accumulated phase difference is 1� = ⇡ . From this we
can deduce that the power flux will oscillate with a squared sinusoidal behavior dependent on
the coupler stem length LC.

Applying finite element method (FEM) calculations [40, 41], we anticipated the respective
propagation parameters very precisely. For our non-degenerate PDC process, we designed
the coupler such that first-order coupling is only provided for the fundamental waveguide
mode at the idler wavelength whereas the signal power almost fully remains in the original
channel due to the stronger confinement at the shorter signal wavelength. Bending losses are
circumvented by the implementation of S-bend input and output ports with sufficiently large
radii of curvature [42]. On our chip we only varied the coupler stem length from 2750 µm6
LC 6 4250 µm at a fixed center-to-center gap of 13 µm within different test structures to
determine the optimum coupling behavior of the idler wavelength, which is shown schematically
in figure 3. Fixing the output port gap to a value of 165 µm provides us with the opportunity for
a direct fiber connection via silicon V-groves.

As a measure of the demultiplexing dependence on the coupler’s stem length LC, we define
the power suppression in the unwanted output ports using a logarithmic scaling, where

Ss = 10 ⇥ log
✓

PX(LC, �s)

PO(LC, �s)

◆
(12)

denotes the signal suppression in the cross port (X) and

Si = 10 ⇥ log
✓

PO(LC, �i)

PX(LC, �i)

◆
(13)

denotes the idler suppression in the original port (O).
We carefully analyzed the coupling properties using classical light. It turned out that the

power suppression in the unwanted WDM output ports does depend on the stem length LC as
expected (see figure 4). In the optimum case at LC = 4000 µm, we get close-to-perfect coupling
behavior for both, signal and idler. While the signal remains with a ratio of ⌘WDM,s = 96.5% in
the original channel, the idler couples by ⌘WDM,i = 99.1% to the cross channel, corresponding
to suppressions of Ss,opt = �15 dB and Si,opt = �20.6 dB, respectively.
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Figure 4. WDM coupler characteristics for signal (red) and idler (blue).

2.4. Waveguide, WDM and poling technology

The realization of low-loss waveguides and WDM coupler structures for efficient type-I PDC
has been achieved using Z-cut lithium niobate propagation along the x-direction.

In our specific case, titanium of 80 nm homogeneous thickness was deposited by electron
beam evaporation onto the Z-surface of the substrate. The waveguide structure was defined by
photolithograpic delineation of the titanium layer using deep UV contact printing. The residual
Ti stripes were indiffused at 1060 �C for 8.5 h in an oxygen-rich atmosphere, allowing for the
idler wave to be guided in its fundamental spatial mode, whereas pump and signal photons can
be guided in multiple modes.

For periodic poling the standard electric field-assisted poling method [43] was applied,
using a waveguide selective segmented resist patterning for electrical insulation and lithium
chloride solution as the contact electrolyte. By applying short voltage pulses of 11.5 kV and
monitoring the displacement current due to the periodic polarization reversal, the accumulated
charge was controlled to provide the proper duty cycle of the 30 mm long domain grating. A
typical poling structure is visualized in figure 5 (left).

In order to achieve the best possible coupling of light into and out of the waveguides,
the end-facettes were polished perpendicularly to the propagation direction. We designed and
deposited different end-face coatings for optimized incoupling of the pump as well as for the
best possible outcoupling of signal and idler wavelengths including the reflection of the pump.
The transmission characteristics for both coatings are shown in figure 5 (right). Note that the
coating at the waveguide output reaches more than 99% of reflection for the pump, while the
idler wavelength is transmitted with more than 96.5%.

An important linear optical feature of the waveguides is their low intrinsic loss of
0.07 dB cm�1 on average, which we measured for straight control channels next to the coupler
structures. For this measurement, we applied the well-established low-finesse Fabry–Pérot
interferometric method [28].
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Figure 5. Domain structure of the periodically poled waveguide area (left);
characteristics of the end-face coatings (right).

An issue for later nonlinear measurements arises from the fact that the mode size of the
idler wave and its symmetry are both important for the coupling to single-mode fibers (SMFs),
since any asymmetry decreases the overlap. Therefore, we measured the waveguide mode sizes
at the idler wavelength and calculated a theoretical mode overlap integral to standard SMFs
in TM polarization of 90.1%, which is the benchmark for the Klyshko efficiency under the
assumption of perfect transmission in the idler beam path and perfect detectors.

3. Experimental setup

Figure 6 illustrates our experimental setup, which can be divided into three major divisions:
incoupling, sample adjustment and analysis part.

We used a frequency-doubled pump source (Katana-05, Onefive GmbH Zürich), which
converts amplified diode laser light at 1064 nm to the green in a second harmonic generation
process. The laser is running at 10 MHz repetition rate with Fourier-limited pulses of 43 ps
duration and a Gaussian shape. Its spectral width is specified with 0.19 nm while it offers a
low pulse-to-pulse timing jitter of less than 10 ps. In order to spectrally filter out any residual
1064 nm pump light, we added a prism-based cleaning stage in front of a variable attenuator and
neutral density filters, which allow for additional power control. The required TM polarization
for the type-I PDC process is set using a �/2-plate right in front of an anti-reflection (AR)-coated
incoupling lens.

The PDC source is stabilized at TOP = (185 ± 0.2) �C on a home-assembled five-axis stage
with high precision. The analysis part of the setup is kept in a free-space configuration as far as
possible.

Right behind the AR-coated outcoupling lens we placed a home-deposited RG715 filter,
which transmits signal and idler with 97% and has an overall pump suppression larger than six
orders of magnitude.

Two D-shaped mirrors further split up the on-chip spatially separated beams into a
signal and an idler arm. The signal arm consists of a multi-mode fiber coupling stage, which
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Figure 6. Experimental setup for spectral characterization and conditioned
measurements. NDF: neutral density filters; BL: beam blocker; ECL: external
cavity laser for idler coupling adjustment; HWP: half-wave plate; RG715:
customized absorptive filter; NF: needle filter; BPF: band-pass filter; FC: fiber
coupling stages; SMF: single-mode fiber; MMF: multi-mode fiber; FBS: fiber
beamsplitter 50/50; 1⌧ : delay generator; APD: avalanche photodiode; FPGA:
field programmable gate array.

is connected to a spectrometer system (Andor iKon-M 934P-DD/Shamrock SR-303iA) for
spectral PDC characterization. It can also be connected to the free-running silicon avalanche
photo diode (Si-APD, Perkin Elmer SPCM-AQRH-13) for the heralding experiments and for
conditioned g(2)(0) measurements at room temperature. The Si-APD is specified to have a
detection efficiency of ⌘Si(�s) = 55% at around 800 nm and was measured to have an average
dark count rate of RT,dark = (238 ± 16) s�1. To extract the PDC signal photons from any noisy
background in the heralding experiments, we can flip an additional bandpass filter (FWHM =
12 nm, Tpeak > 99.5%) as well as a needle filter (FWHM = 0.5 nm, Tpeak = 78%) into the signal
beam path.

The idler arm also includes a high-precision fiber coupling stage for injecting the idler
photons to the InGaAs-APDs (ID Quantique ID201) via 40 m of AR-coated SMF, the length of
which ensures the optical compensation of electrical delays. For g(2)(0) measurements, a fiber
beam splitter enables us to address a second InGaAs-APD. At the idler wavelength both APDs
have the specified detection efficiencies of ⌘Id(�i) = 0.23. Their aquisition time gate for idler
click events was set to 2.5 ns with zero additional deadtime.

Electronic compensation of the occurring temporal gap in the arrival of signal and idler
at the respective detector is realized using a Stanford Research DG645 delay generator. Data
acquisition and the evaluation of single and coincidence events are carried out using an FPGA
interface card operating at 40 MHz.

A classical characterization of the overall idler transmission loss from the device’s end-
face to the InGaAs-APDs input resulted in a transmission factor of Ti = 0.663. This includes
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Figure 7. Tunability of the PDC signal wavelength with the crystal’s poling
period (left) and the device’s temperature (right).

the device’s end-face throughput as well as filters, lenses, fiber coupling and the optical loss in
the fiber beamsplitter.

In contrast to the benchmarking Klyshko efficiency described in section 2.4, the maximum
Klyshko efficiency of our experimental setup is limited by the overall transmission in the idler
arm, by the respective detector efficiency and by the coupling efficiency of the on-chip integrated
WDM coupler to

⌘K,System = Ti ⌘Id (�) ⌘WDM,i = 0.151,

resulting in a maximum achievable heralding efficiency of ⌘H,max = 65.6%. This upper
experimental boundary only holds for very low pump power levels, where higher-order photon
pair contributions can be neglected.

4. Results and discussion

4.1. Spectral characteristics

The spectral dependences of the generated PDC signal on temperature and poling period
have been determined and are plotted as normalized curves in figure 7. These results prove
a convenient wavelength tunability to be either coarse (with poling period) or fine (with
temperature). Note that there are practically no significant sidepeaks or higher-order mode
excitations, indicating an excellent waveguide homogeneity and the best possible incoupling of
the pump to its fundamental waveguide mode. In any case the signal FWHM is around 0.7 nm,
which is mainly contributed by the on-chip nonlinear interaction length of 30 mm, while the
influence of the spectral width or limiting temporal properties of the pump is neglectable. We
can clearly identify a broad structure in the lower wavelength region next to the PDC signal
peaks in figure 7. We suspect this to be nonlinear Cerenkov radiation associated with the quasi-
phasematching process [44]. These background effects have been suppressed for the following
experiments with the help of a needle filter as mentioned in section 3.
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Figure 8. Pump-dependent count rates of the trigger (black), the sum of the
twofold coincidences (blue) and the triple coincidences (red) in conditioned
measurements. The solid lines serve as a guide to the eye.

4.2. State preparation rates

Our power-dependent g(2)(0)-measurements yielded the trigger rates RSi, the overall twofold
coincidence rates Rc,double = RId,1 + RId,2 and the triple coincidence rates Rc within 1 s of
measurement time. Repeating this hundredfold provides us with small error bars. The threefold
coincidence rate contributes the highest uncertainities. Figure 8 shows the respective rates in
double-logarithmic scaling. The trigger rate has an almost linear dependence on the increasing
pump power, while the coincidence rates both increase superlinearly in the pump power range
above 10 µW. Note that the linearity of the trigger rate disappears above 105 counts s�1 due to
deadtime effects.

4.3. Heralded single-photon preparation

From the count rates we calculated the Klyshko and heralding efficiencies according to (6)
and (7), which are plotted in figure 9 (left). The g(2)(0) values and the anti-correlation parameter
↵ were calculated using (5) and (4), respectively.

We identified an almost constant heralding efficiency as high as 60% at pump powers
less than 10 µW, where seemingly only first-order photon pairs contribute to the measurement
(compare plots in figure 8) and the trigger rate is up to RSi = 105 kHz. To the best of our
knowledge, this is the first time that in a Ti : PPLN-based type-I PDC source such high heralding
efficiencies have been reported, while other sources using comparable detection schemes (see
e.g. [45–47]) rely on bulk nonlinear materials or photonic crystal fibers and do not offer
more than one integrated functionality. The coupling limitations of our laboratory system can
probably be overcome when a completely fiber-based setup is used in the future. This should
further improve the heralding efficiencies to around 80%.

As shown in figure 9 (right), the auto-correlation function at very low power levels
(Pp 6 1 µW) reaches a minimum value of g(2)(0) = 0.0038, which is one of the best results for
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Figure 9. Pump-dependent Klyshko efficiency and heralding efficiency (left);
auto-correlation function g(2)(0) and its relative difference to the anti-correlation
parameter ↵ (right).

heralded single-photon sources in general, while it marks the lowest obtained value in titanum-
indiffused PPLN waveguide PDC sources to date. It could be driven even lower at the cost of the
heralding rate. But for applications such as quantum key distribution (QKD) with this kind of
PDC sources, low trigger rates are always related to low key transmission rates, and a trade-off
between high rates and purity of the single photons is unavoidable.

From our results, we can conclude that the approximation made in (5) and in [33, 34] is
only valid and suitable for low pump powers. At the upper end of our power scale, we see that
g(2)(0) approaches the value of 1, which would correspond to an infinite average photon number.
Note, however, that at these high pump power levels our assumption that the probability of
generating higher-order photon pairs is much smaller than the probability of generating single-
photon pairs is no longer valid. The triggering rate RSi and the triple coincidence rate Rc both
tend to be overestimated due to higher-order photon contributions. The Si-APD fires only once,
when there is more than one trigger photon arriving and internal deadtime effects of the InGaAs-
APDs limit the repetition rate of the detection of double coincidences. We can derive from the
graph in figure 8 in conjunction with figure 9 (right) that trigger rates higher than 310 kHz
should be avoided for this kind of detectors in combination with our kind of measurement. It
also shows that the relative differences between the calculated values of g(2)(0) and the anti-
correlation parameter ↵ are very small, which is a proof of the equivalence of (4) and (5) for our
measurements.

4.4. Measurement of coincidences-to-accidentals ratios

For the analysis of detrimental background photons, we determined the source’s heralding
efficiency around the optimum time delay between trigger and heralded photons at two different
power levels, measuring the count rates in step widths of 0.2 ns for 5 s, each. The characteristics
in figure 10 show almost a Gaussian shape. This is mainly caused by the intrinsic gate width
of the InGaAs-APDs of ⌧gate = (1.16 ± 0.32) ns, where the error includes the timing jitter of
the InGaAs-APD, the Si-APD and of the delay generator. The graph visualizes the slight
increase of the Klyshko efficiency with increased pump power due to higher-order photon
pair contributions. In figure 11 we see that the Klyshko efficiency is almost not affected by
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Figure 10. Dependence of the Klyshko efficiency on the temporal overlap
between signal and idler detection.

Figure 11. Pump dependence of the three calculated CARs.

pump-induced fluorescence of any optical component. In particular, at 500 nW and 5 µW, the
CAR1⌧ have been calculated to be 1383 and 1165, respectively, and thus do not decrease
significantly. Please note that in figure 10 this feature cannot to be seen intuitively due to the
scaling of the accidentals. Inverting the CAR1⌧ values provides us with ONFs of 0.072 and
0.086%, respectively, which are both a factor of 3 smaller than the best ONFs in comparable cw
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Figure 12. Linear dependence of a pulse’s average photon number on increasing
pump power.

experiments [37]. Together with the fact that we are still in the single-photon regime (0.0276
g(2)(0)6 0.24) and with the high heralding rates 5.3 kHz6 RSi 6 56 kHz, this impressively
points out the benefits of heralding single-photon experiments in the pulsed regime.

Figure 11 shows that the CARrep for two adjacent pulses asymptotically tends to the value
of 1 at the highest suitable pump power, while the CARHOP dropped from 7440 to around 10.
This emphasizes the impact of higher-order photon contributions and the usefulness of a trade-
off between high heralding rates and a low g(2)(0).

One of the most important and remarkable figures of merit of our source is its brightness.
We determined the pump-dependent mean number of generated photons per pulse by dividing
the heralding rate RSi by the transmissivities of all optical components in the signal arm and
by the repetition rate Rrep = 10 MHz, which is shown in figure 12. We identified a maximum
mean photon number per pulse of hnpulse,maxi = 0.24 at the highest applied pump power of
85.14 µW. A linear extrapolation yields an average photon number per pulse of hnpulse,thi ⇡ 34
at PP = 10 mW of cw-equivalent pump power, which is easily available with our pump laser.

5. Conclusion and outlook

We demonstrated the on-chip integration of an efficient waveguide-based type-I PDC source in
combination with a passive WDM coupler for spatial separation of signal and idler photons.
It shows close-to-perfect demultiplexing behavior at wavelengths of 803 and 1575 nm as well
as very low scattering loss. We achieved high heralding efficiencies of 60% in conjunction
with a second-order auto-correlation function as low as 0.0038. At pump power levels below
10 µW only a minor influence of higher-order photon pairs to the detection can be deduced from
the results. We determined a coincidence-to-accidentals ratio of CARHOP > 7400 at low power
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levels and output noise factors ONF < 0.1% in the regime of low auto-correlation function
values for our pulsed experiments. This indicates almost pure single-photon pair generation
together with high (although unoptimized) heralding rates as well as practically no influence of
background noise.

The high brightness of the source was derived from the extrapolation of the mean photon
number per pulse of hnpulse,thi ⇡ 34 at PP = 10 mW cw-equivalent pump power.

At higher power levels PP > 30 µW our commercially available Si- and InGaAs-detectors
tend to saturate, which distorts the calculation of correct g(2)(0) values, while the detection part
of our analysis seems to be the limiting factor in terms of temporal resolution and dark counts.
This limitation could be lifted in the future by novel detectors exhibiting drastically improved
temporal properties (e.g. in [48, 49]) in conjunction with a careful characterization of photon
statistics using photon number resolving detection schemes (see [50–52]). Then pump lasers
with higher clock rates could yield higher heralding rates, which would be required for the
commercialization, e.g., of quantum cryptography applications.

Besides, more difficulties can arise in the used heralding scheme with regard to the
transmission of timing information within a wide-area quantum network (compare [53]). Note,
however, that—in contrast to cw realizations—in our pulsed scheme an intrinsic clock can
be transferred from sender to receiver for the security of commercial QKD systems (compare
e.g. [54]).

Due to the strong dependence of the heralding efficiency on the coupling of the heralded
photons to optical fibers, we will proceed in our work with the implementation of an all-fiber-
connected device. This could increase the heralding efficiency to around 80%.

The general design of our device together with its figures of merit constitute an important
step for the implementation of integrated sources with multiple functionalities in future quantum
networks with miniaturized nodes. Additional functionalities such as electro-optic phase shifters
or polarization controllers in combination with passively working add-ons such as polarization
splitters and sophisticated end-face coatings could open up new routes to establish quantum
networks with novel node architectures.
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