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Abstract. High dimensional quantum states are of fundamental interest for
quantum information processing. They give access to large Hilbert spaces and,
in turn, enable the encoding of quantum information on multiple modes.
One method to create such quantum states is parametric down-conversion
(PDC) in waveguide arrays (WGAs) which allows for the creation of highly
entangled photon pairs in controlled, easily accessible spatial modes, with unique
spectral properties.

In this paper we examine both theoretically and experimentally the PDC
process in a lithium niobate WGA. We measure the spatial and spectral properties
of the emitted photon pairs, revealing correlations between spectral and spatial
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degrees of freedom of the created photons. Our measurements show that, in
contrast to prior theoretical approaches, spectrally dependent coupling effects
have to be taken into account in the theory of PDC in WGAs. To interpret
the results, we developed a theoretical model specifically taking into account
spectrally dependent coupling effects, which further enables us to explore
the capabilities and limitations for engineering the spatial correlations of the
generated quantum states.
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1. Introduction

The process of parametric down-conversion (PDC) [1] provides a versatile resource for the
creation and engineering of sophisticated quantum states of light. In particular, the creation of
photon-pair states, entangled in various degrees of freedom, is of special interest for quantum
information and quantum communication applications. To date several experiments have
investigated the entanglement of these photon pairs in various degrees of freedom, for example
using their spectral properties [2–6], the orbital angular momentum of the photons [7–9],
transverse modes of a single waveguide [10], polarization [11, 12] and energy–time [13, 14].

Recently, PDC in a waveguide array (WGA) with a nonlinear optical response has been
proposed as a resource for preparing highly entangled photon pairs into controllable and easily
accessible spatial modes [15–17]. In a nonlinear WGA several waveguides are embedded
into a nonlinear material, such as lithium niobate [18], and are grouped so close to each
other, that the created PDC photons are able to couple evanescently to the nearest-neighbour
waveguides. This introduces, aside from the spectral degree of freedom present in the PDC
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process [19–21], a new spatial degree of freedom, where each waveguide channel represents an
individual, easily accessible spatial mode. In general, the use of the spatial degree of freedom is
a well-known tool for state engineering in bulk crystals [22]. PDC in WGAs, however, benefits
from the bright and efficient photon-pair production in waveguides [23, 24], and offers several
further advantages: these systems are not subjected to any in-coupling losses and thus maintain
the process efficiency and quantum features. Further, a miniaturized, on-chip realization is
also highly beneficial concerning the scalability, stability, adjustability and coherence of the
system. Moreover, active optical devices can be implemented in the nonlinear substrate of
lithium niobate, thus allowing the implementation of flexible, fast switching integrated optical
components on the chip for controlling the properties of quantum light [25].

The linear and nonlinear characteristics of WGAs have attracted enormous interest for
the investigation of classical wave phenomena [26]. In the context of quantum optics these
systems enable the implementation of quantum walks [27–29]. In combination with non-
classical light sources, WGAs have further been utilized for the study of bosonic and fermionic
behaviour [30–32]. WGAs have also become a resource for simulating the properties of other
quantum systems. Utilizing classical light sources, WGAs with different types of architectures
have been used to mimic the properties of photon-pair states [33], displaced Fock states [34]
and faithful quantum state transfer [35].

Consequently, integrating WGAs in nonlinear materials offers a variety of possibilities for
quantum optical experiments and a high potential for integrated quantum state generation and
manipulation. For this purpose a detailed and accurate understanding of the process properties
is necessary to enable precise quantum state engineering.

In this paper, we theoretically as well as experimentally, investigate PDC in a nonlinear
WGA with special attention to the correlations between the spatial and spectral degrees of
freedom. We explicitly take into account frequency dependent coupling effects and show how
the frequencies of the created photon pairs are connected with their spatial properties. With this
knowledge we then explore the preparation of specific spatial correlations between the created
photon pairs.

The paper is structured into three main parts. In section 2, we introduce our theoretical
PDC model including spectrally dependent coupling effects. In section 3 we investigate the
occurring spatio-spectral correlations and introduce different ways to utilize them in order to
create highly sophisticated quantum states. Finally, in section 4, we perform a spectrally and
spatially resolved measurement of the PDC emission in a periodically poled lithium niobate
(PPLN) WGA. Our measurement results demonstrate the predicted spatio-spectral correlations
and confirm the necessity to include spectrally dependent coupling effects into the theoretical
treatment of PDC in a WGA. Furthermore our experimental investigations enable us to extract
the phase-matching curve of the WGA from the acquired data, which is in very good agreement
with the theoretical prediction.

2. Parametric down-conversion (PDC) in nonlinear waveguide arrays (WGAs)

During the PDC process a pump photon is converted inside a nonlinear crystal into a photon pair
usually labelled signal and idler. In this paper we consider PDC in a WGA, where the generated
photons can couple from waveguide to waveguide before they exit the crystal, while the pump
is constrained to one waveguide, as schematically depicted in figure 1.
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Figure 1. Sketch of PDC in a WGA: a pump photon, in the illuminated
waveguide channel decays via the � (2) nonlinearity, into a signal and idler photon
pair which then couples from waveguide to waveguide until it exits the crystal.

2.1. Electric fields in WGAs

Following the theoretical treatment of type-I PDC in nonlinear WGAs by Solntsev et al
in [15] we start with the mathematical description of the quantized electric fields propagating
through the WGA and use coupled mode theory to solve the corresponding Maxwell’s
equations [36–39]. The nearest neighbour coupling in the WGA induces a modified, discretized
dispersion [26] altering the propagation vector � in the z direction

�(!, k?) = �(0)(!) + 2C(!) cos(k?), (1)

where �(0)(!) describes the propagation vector in a single waveguide at frequency !, given
by �(0)(!) = n(eff)(!)!/c, and k? = kxd is its normalized transverse momentum, with d as
the distance between the waveguides7. The effective refractive index n(eff)(!) characterizes
the dispersion of a light field which propagates inside a single waveguide taking into account
material and modal dispersion contributions [21]. The term 2C(!)cos(k?) corresponds to the
modification of dispersion due to the presence of the WGA. Hereby the impact of the WGA
on the dispersion is given by the coupling parameter C(!), which is firstly dependent on the
distance between the individual waveguide channels and secondly impacted by the frequencies
of the propagating fields (see appendix A). The signal and idler fields Ê (+)

n (z, t) in the nth
waveguide can be expressed in the form

Ê (+)
n (z, t) = Ê (�)†

n (z, t) = B
Z ⇡

�⇡
dk?

Z 1

�1
d! eik?n ei[�(!,k?)z�!t]â(!, k?), (2)

where B collects all constants [41]. The pump field driving the PDC process is considered as
a bright, undepleted optical beam, which allows us to treat it classically. Moreover, the pump
does not couple to neighbouring channels, because it resides at wavelengths far below signal and
idler. In this regime the waveguide mode size is smaller, and thus, the mode overlap governing
the coupling parameter can be approximated as zero. Therefore the influence of the WGA on
the propagation vector can be neglected (see appendix A). Thus, the pump (p) field in the nth
waveguide is described as

E (+)
p,n(z, t) = E (�)⇤

p,n (z, t) =
Z 1

�1
d!p A(n)↵(!p) ei(�(0)(!p)z�!pt)

=
Z ⇡

�⇡
dk?

p

Z 1

�1
d!p ↵(!p) Ã(k?

p ) eik?
p n ei(�(0)(!p)z�!pt), (3)

7 A more detailed introduction to transverse momenta of particles and bandstructures may be found in [26] or [40].

New Journal of Physics 15 (2013) 083046 (http://www.njp.org/)

http://www.njp.org/


5

where ↵(!p) is the spectral shape of the pump beam. The spatial illumination pattern of the
pump A(n) in the nth waveguide is connected to its Bloch mode distribution Ã(k?

p ) via a Fourier

transformation Ã(k?
p ) = 1

2⇡

P
n A(n) e�ik?

p n.

2.2. The PDC state

Using the electric field definitions in (2) and (3), we are able to express the effective Hamiltonian
of the PDC process in a nonlinear WGA by

ĤPDC(t) = ✏0

2

Z 0

�L
dz

X

n

� (2)[E (+)
p,n(z, t)Ê (�)

n (z, t)Ê (�)
n (z, t) + h.c.], (4)

where ✏0 denotes the electric constant, � (2) is the nonlinearity of the material and L the length
of the WGA with an infinite number of channels n.

The nonlinear interaction inside the medium is weak, which enables us to calculate the
output state using first-order perturbation theory

| i ⇡ |0i � i
h̄

Z 1

�1
dt ĤPDC(t)|0i. (5)

We have extended the integration boundaries to plus and minus infinity, since we regard the
PDC state long after the interaction in the crystal [42]. We further post-select on the detection of
photon pairs, which enables us to drop the vacuum contribution appearing in (5) and renormalize
the state accordingly. A straightforward calculation delivers the expression for the two-photon
PDC state emerging from the WGA as

| i = 1p
N

Z 1

�1
d!s

Z 1

�1
d!i

Z ⇡

�⇡
dk?

s

Z ⇡

�⇡
dk?

i f (!s,!i, k?
s , k?

i )â†(!s, k?
s )â†(!i, k?

i )|0i, (6)

i.e. two photons are created into a superposition of spectral and spatial modes, where 1/
p
N

is the normalization constant. The spatial and spectral structure of the created photon pair is
determined by the form of the joint spatio-spectral amplitude f (!s,!i, k?

s , k?
i ) of the generated

signal (s) and idler (i) photons. It assumes the form

f (!s,!i, k?
s , k?

i ) = ↵(!s +!i) Ã(k?
s + k?

i )

⇥ sinc


L
2
1�(!s,!i, k?

s , k?
i )

�

| {z }
8(!s,!i,k?

s ,k?
i )

exp

�i1�(!s,!i, k?

s , k?
i )

L
2

�

| {z }
'(!s,!i,k?

s ,k?
i )

= ↵(!s +!i) Ã(k?
s + k?

i )8(!s,!i, k?
s , k?

i )'(!s,!i, k?
s , k?

i ), (7)

in which the phase-mismatch 1�(!s,!i, k?
s , k?

i ) is defined as

1�(!s,!i, k?
s , k?

i ) = �(0)
p (!s +!i) ��(!s, k?

s ) ��(!i, k?
i ). (8)

The four terms determining the properties of the two-photon state in (7) can be attributed to the
following sources. The spectral and spatial properties of the pump field determine the functions
↵(!s +!i) and Ã(k?

s + k?
i ), respectively. The phase-matching function8(!s,!i, k?

s , k?
i ) and the

phase factor '(!s,!i, k?
s , k?

i ) are given by the nonlinear and linear properties of the photonic
structure, i.e. the dispersion in the medium, periodic poling and waveguide spacing.
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3. Spatio-spectral properties of PDC in WGAs

3.1. Origin of the spatio-spectral correlations between the created photon pairs

The key for understanding the spatio-spectral properties of the generated PDC state lies in the
phase-matching function 8(!s,!i, k?

s , k?
i ). Significant down-conversion rates require nearly

perfect phase-matching, satisfying 1�(!s,!i, k?
s , k?

i ) ⇡ 0. This constraint induces spatio-
spectral correlations between the frequencies (!s,!i) and k?-components (k?

s , k?
i ) of the

generated signal–idler photon pairs.
In order to understand its exact nature we split the phase-mismatch 1�(!s,!i, k?

s , k?
i ) in

equation (8), into its contributions from the single, isolated waveguide 1�! and the dispersion
effects from the WGA 1�A

1�(!s,!i, k?
s , k?

i ) =1�!(!s,!i) +1�A(k?
s , k?

i ,!s,!i). (9)

The first term describes the spectral phase-mismatch, known from PDC in a single isolated
waveguide,

1�!(!s,!i) = �(0)
p (!s +!i) ��(0)(!s) ��(0)(!i), (10)

which stems mostly from the dispersion of the material with a contribution from the modal
properties of the waveguides [21]. The second term is the phase-mismatch induced by the
dispersion of the WGA,

1�A(k?
s , k?

i ,!s,!i) = �2C(!s) cos(k?
s ) � 2C(!i) cos(k?

i ), (11)

which depends on the transverse k?-components of the generated photons
�
k?

s , k?
i

�
and the

frequency dependent coupling parameter C(!).
In figure 2(a) we sketch the contours of the spectral phase-mismatch 1�! defined in (10)

for various values. Due to dispersion effects of the material, this yields curved lines aligned
along the �45�-axis, for constant 1�! in (!s,!i)-space. In the case of negative spectral
phase-mismatch (1�! < 0) the contours (red lines) for different values of 1�! run below the
central contour, colour-coded in black, (1�! = 0), while for positive spectral phase-mismatch
(1�! > 0) the contours run above (green lines).

In order to achieve phase-matching in the WGA, i.e 1� = 0, the spectral phase-mismatch
1�! has to be compensated by a spatial phase-mismatch of 1�A = �1�! with opposite sign
to satisfy 1�(!s,!i, k?

s , k?
i ) ⇡ 0. The pairing of these values, 1�! and 1�A creates the spatio-

spectral correlations between the PDC photons. The different contours for which the different
values of 1�! and 1�A yield perfect phase-matching are colour-coded in figures 2(a)–(d).

To investigate the induced correlations we choose three different scenarios for 1�A:
!s � !i, !s ⇡ !i and !s ⌧ !i, as shown in figures 2(b)–(d).

In figure 2(b) we show the (k?
s , k?

i ) combinations yielding a constant 1�A at the
degeneracy point (!s ⇡ !i). A numerical simulation illustrating this scenario can be found
in appendix C. In this regime both coupling parameters are identical and, in the considered
frequency range, constant: C(!s) = C(!i) = C0. In order to understand the depicted shapes we
regard three different cases, where (i) 1�A = 0, (ii) 1�A = �2C0 and (iii) 1�A = 2C0:

Scenario (i): If 1�A = 0 the contributions from k?
s and k?

i in (11) cancel each other. This
means that if the transverse momentum of the signal photon is in the center of
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Figure 2. Phase-mismatch 1� in the spectral and spatial domain. (a) In
the spectral domain the phase-mismatch 1�!(!s,!i) consists of curved lines
oriented along the �45� axis in frequency space. (b) 1�A(k?

s , k?
i ) is defined

by 1�A(k?
s , k?

i ,!s,!i) for frequencies !s,!i as depicted in (a). For degenerate
frequencies !s ⇡ !i implying identical coupling parameters for signal and idler,
1�A(k?

s , k?
i ) is given by circular shapes around the middle or the edges of

the Brillouin zone with corresponding colour coding. If the signal and idler
frequencies are distinct, the 1�A(k?

s , k?
i ) patterns get stretched from their

symmetric shape in (b) into the forms depicted in (c) C(!i) � C(!s) and (d)
C(!i) ⌧ C(!s).

the Brillouin zone8 (k?
s = 0) the momentum of the idler has to be at the edge

(k?
i = ±⇡ ) or vice versa. This results in a rectangular shape in (k?

s , k?
i )-space,

depicted in figure 2(b).
Scenario (ii): If 1�A = �2C0, the correlations between k?

s and k?
i form a circle-like shape in

the (k?
s , k?

i )-space, as depicted by the green line in figure 2(b). If either signal
or idler is at the center of the Brillouin zone (k?

s or k?
i = 0) than the other one

has to have a k?-component with a value of ±⇡
2 in order to reach the required

phase-mismatch.

8 The Brillouin zone is the elemental cell of a lattice in Fourier space. Due to its periodic nature all momenta can
be expressed in this part of the Fourier space [40].
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Scenario (iii): If 1�A = 2C0, the solutions are located at the corners of the (k?
s , k?

i )-space, as
visualized by the red line in figure 2(b). In order to reach the required negative
phase-mismatch the transverse momentum of scenario (ii) has to be shifted from
the center to the edges of the Brillouin zone.

In figure 2(c) we depict the case C(!i) � C(!s) in a frequency range where both coupling
values are constant (C(!s) = Cs, C(!i) = Ci). The different coupling values lead to stretched
contours, in comparison to figure 2(b). Finally, in figure 2(d) we depict C(!i) ⌧ C(!s), which is
a flipped version of figure 2(c), due to the fact that we regard type-I PDC, where signal and idler
are interchangeable. Here the different coupling constants are selected such, that the difference
is strong enough to impact the spatial correlations.

In conclusion our investigations reveal that the origins of the spatio-spectral correlations
of PDC in WGA, are located in the phase-matching condition 1�(!s,!i, k?

s , k?
i ) ⇡ 0. Every

spatial correlation pattern, as depicted in figures 2(b)–(d) has a fixed spatial phase-mismatch
1�A, which must be compensated by an appropriate spectral phase-mismatch 1�!, satisfying
1�A = �1�!. Next, we will illustrate, how to utilize this spatio-spectral correlation in order to
generate sophisticated spatial correlations between the generated signal and idler photons.

3.2. Engineering spatial correlations via pump shaping

In section 3.1 we have shown that the spatial and spectral correlations in the phase-mismatch1�
have a significant influence on the emitted photon pairs. Driving the PDC process in the WGA
with an adapted spatio-spectral pump shape enables us to engineer a variety of different spatial
correlations between the generated photon pairs. The emerging joint spatio-spectral amplitude
is given by (7)

f (!s,!i, k?
s , k?

i ) = ↵(!s +!i) Ã(k?
s + k?

i )8(!s,!i, k?
s , k?

i )'(!s,!i, k?
s , k?

i ). (12)

This means we can regard ↵(!s +!i) Ã(k?
s + k?

i ) as a function which, via multiplication, selects
a subset of the spatio-spectral correlations 8(!s,!i, k?

s , k?
i ) inherent in the WGA. The phase

'(!s,!i, k?
s , k?

i ) is neglected in the discussion, since it does not influence the k?-space
correlations, while only refining the correlation patterns in real space.

For degenerate signal and idler frequencies, the whole process is sketched, from top to
bottom, in figure 3. This corresponds to the configuration presented in figure 2(b). In this
special case the spectral phase-mismatch1�! is aligned along the �45�-axis in frequency space
(dashed black lines in figures 3(a1)–(a3)).

Choosing a specific pump frequency (!p = !s +!i) defines a line in frequency space,
aligned along the �45�-axis (torquoise shaded area in figures 3(a1)–(a3)) and consequently
selects a specific phase-mismatch 1�!.9 Due to the spatio-spectral coupling, discussed in
section 3.1, this in turn demands that all created photons satisfy 1�A = �1�! in the spatial
domain. The resulting k?-correlations in the created photon pair for a flat spatial pump shape
Ã(k?

s + k?
i ) = 110 are depicted by the dashed black lines in figures 3(b1)–(b3), i.e. a rectangle

in figure 3(b1) for pumping at the central frequency, outward circles in figure 3(b2) in the
case of pumping below the central frequency and a circular shape in figure 3(b3) for pumping
above the central frequency. The corresponding correlations in real space, obtained via Fourier

9 In this configuration the impacts of the curvature of 1�! are negligible.
10 This corresponds to pumping in a single waveguide.
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Figure 3. In (a1)–(a3) we show, how different spectral pump shapes (turquoise
lines) ↵(!s +!i) are able to select an individual frequency mismatch 1�!
(dashed grey lines). This enables us to excite photon pairs with a variety of k?-
correlations as depicted by the dashed black lines in (b1)–(b3). These can further
be modified by adapting the spatial pump shape Ã(k?

s + k?
i ), by displacing the

rectangular spatial pump shape in k?-space, as colour-coded with green, red and
blue in (b1)–(b3). The corresponding photon-pair correlations in real space are
depicted by red, green and blue squares in (c1)–(c3). Due to the finite width of
the spatial pump shape, the real space correlations will also have a finite width
in +45�-direction. The grey shaded areas in (a)–(c) indicate regions with no PDC
signal. Appendix C gives a numerical simulation without spatial pump shaping.
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transformation, are depicted by the coloured squares in figures 3(c1)–(c3), where each square
represents a different signal-idler output channel combination. Here 0n(ns, ni) is the correlation
function for measuring two photons at positions (ns, ni), as defined in appendix B. They vary
from an X-shape in figure 3(c1) to the square-like11 shapes sketched in figures 3(c2)–(c3).

We can gain an enhanced control by adapting the spatial illumination of the WGA to
modify Ã(k?

s + k?
i ), i.e. we change from pumping in a single channel ( Ã(k?

s + k?
i ) = 1) to

pumping in different channels simultaneously. Here, we choose a rectangularly formed spatial
pump shape in k?-space, which offers the advantage that we can finely select the spatial
correlations. The spatial illumination pattern of the WGA to reach this shape in k?-space is
highly intricate, such that an experimental realization becomes more involved.

Three different scenarios are colour-coded in figures 3(b1)–(b3) by the red, green and blue
shaded areas, where we have displaced the rectangular spatial pump shape in k?-space. Each
consists of a different range of k?

p -components specifically chosen to excite distinct correlations
in real space. This simultaneous pumping in different channels enables us to individually select
various parts of the phase-mismatch 1�A, as given by colour-coded areas, only constrained by
the fact that the function Ã(k?

s + k?
i ) has to be aligned along the �45�-axis in k?-space. This

enables us, for example, to engineer photon bunching and antibunching effects12, as already
discussed in [15], but it is also evident that steering the created photon pairs to the right or to
the left is possible as well.

3.3. Phase engineering of Ã(k?
s + k?

i )

In the previous section we have concentrated on the influence of real valued pump shapes
Ã(k?

s + k?
i ) on the correlation functions in both k?- and real space. However, we are also able

to engineer the signal–idler correlations by tuning the phase of the spatial pump distribution
Ã(k?

s + k?
i ). For this discussion, we restrict ourselves to the scenario discussed in section 3.2

figures 3(a1)–(c1) with a rectangular pump corresponding to an Ã(k?
s + k?

i ) selecting the red
shaded area.

The applied pump shapes are given in figures 4(a1)–(a3), where red denotes the absolute
value and green the phase of the function Ã(k?

s + k?
i ). We vary from a constant, over a linear to

a quadratic phase in the spatial pump distribution. The exact parameters for the simulation are
given in appendix C.

Note, that the absolute value of the k?-correlations | f (k?
s , k?

i )|2, as depicted in
figure 4(b1)–(b2) remains unchanged, as there is no variation in the absolute value of the pump
function. The phases of the k?- correlations �( f (k?

s , k?
i )) however, vary with the induced phase,

as depicted in figures 4(c1)–(c3).
In the case of a constant, zero-phase distribution in Ã(k?

s + k?
i ), the resulting real space

correlations in figure 4(d1) show the anti-bunching contribution, which has already been
discussed in section 3.2.

Next, we introduce a linear phase in the pump shape, as depicted in figure 4(a2). This is a
trivial phase distribution, since a linear phase in k?-space, can be realized by simply centering
the spatial pump pattern around a waveguide different than zero. It leads to an asymmetry
in the corresponding phase correlation as depicted in figure 4(c2). Under Fourier transformation

11 For higher spectral phase-mismatch the shapes are of a circular form.
12 Due to the Fourier limitation, the finite width of the spatial pump will lead to finite widths in the real space
correlations as well.
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Figure 4. Introducing different phase distributions in the spatial pump shape as
indicated in (a1)–(a3) changes the real space correlations (d1)–(d3). Since the
absolute value of the spatial pump shape does not vary, the k?-space correlations
in (b1)–(b3) remain unchanged, while the phase correlations in (c1)–(c3) show
the influence of the pump phase. Linear phases introduce a shift of the real space
correlations, without changing the internal shape of the correlation function,
while quadratic phases introduce a ‘stretching’ of the internal structure.

the phase asymmetry results, as expected, in a shift of the real space correlations, as given in
figure 4(d2), leaving the internal shape of the correlation function unchanged.

Quadratic phases, as shown in figure 4(a3) introduce curvatures in the phases of the k?-
correlation (figure 4(c3)). The result is a ‘stretching’ of the real space correlations in figure 4(d3).
This is due to the linear slope of the quadratic functions, leading to different displacements in
the real space correlations.
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In general the shapes shown in figures 3 and 4 highlight both the flexibility and the
limitations of PDC in WGA structures. More complicated pump shapes, like sinusodial shapes
in the absolute value of the pump functions or different phase distributions only lead to various
superpositions, displacements or stretching of the already discussed real space correlations in
section 3.2.

3.4. Enhanced engineering of spatial correlations via frequency filtering

We are able to further engineer the spatial correlations between the emitted photon pairs via
frequency filtering [43]. In this approach we use two distinct rectangular filters, with upper
!smax,!imax and lower bounds !smin,!imin , to select photon pairs within a narrow frequency
range. This enables us to select a single point in the (!s,!i)-space depicted in figure 2(a) and
consequently the corresponding contour1�A in figures 2(b)–(d). Post-selecting on both photons
passing their individual filters, this procedure modifies the output state to

| i = 1p
N 0

Z !smax

!smin

d!s

Z !imax

!imin

d!i

Z ⇡

�⇡
dk?

s

Z ⇡

�⇡
dk?

i f (!s,!i, k?
s , k?

i )â†(!s, k?
s )â†(!i, k?

i )|0i.

(13)

A particular example is visualized in figure 5, for non-degenerate photon-pair filtering,
which corresponds to figure 2(c). In this scenario we assume signal photons with a wavelength
of about 1400 nm and idler photons at about 1600 nm. The exact simulation parameters are
given in appendix C, while the corresponding coupling parameters are depicted in figure C.1.
Figures 5(a1)–(a3), show the spectral shape of f (!s,!i, k?

s , k?
i ), where the rectangle depicts

the individual filter placement. Below, in figures 5(b1)–(b3) we depict the selected (k?
s , k?

i )
correlations. Finally figures 5(c1)–(c3) show the corresponding spatial correlations 0n(ns, ni) (as
defined in appendix B), obtained via Fourier transformation, where (ns, ni) label the individual
waveguide channels.

3.5. Summary: spatio-spectral correlations

In summary, we explored the spatio-spectral structure of PDC in WGAs with special
attention to spectrally dependent coupling effects. Our investigations revealed that the spatio-
spectral correlations are fundamentally determined by the phase-mismatch 1� =1�! +1�A.
Furthermore the explicit frequency dependence of the coupling parameter C(!) leads to a
spectral dependence of the emerging k?-space correlations. Via pump shaping and adapted
spectral filtering this system allows for the flexible preparation of photon pairs featuring a
variety of spatial correlations. It is, however, fundamentally limited to correlations already
present in the phase-mismatch 1�.

4. Experiment

In this section we present a first preliminary experiment to test our theory and investigate the
PDC process in a WGA. We examine the spatial and spectral properties of the PDC emission to
reveal spectrally dependent coupling effects.

In our experiment, schematically depicted in figure 6, we employed tunable picosecond
Ti:sapphire laser pulses (76 MHz repetition rate, 775 nm central wavelength and 0.8 nm
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Figure 5. Filtering specific wavelengths (�s, �i) from the PDC spectrum as
indicated by the squares in (a1)–(a3) selects different features in k?-space
(b1)–(b3). The corresponding correlations in real space are depicted in (c1)–(c3),
where n labels the waveguide channel.

Figure 6. Schematical picture of the experimental setup for measuring the
spectral and spatial distributions of the PDC photons created in a PPLN WGA.
Abbreviations: SM; spectrometer; HWP; half-wave plate; AL; aspheric lens;
WG; waveguide; SF; spectral filter; InGaAs-DA; InGaAs detector array. For
more details see text.
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bandwidth) as a pump for the PDC process in a 40 mm long, type-I, PPLN WGA. The array
includes 101 waveguides packed into a region with a total width of 1.6 mm and it is held during
the experiment in an oven at the temperature of 185.0 ± 0.1�C. A small portion of the pump
beam is directed to a bright light spectrometer in order to control the pump wavelength. After
passing through the power and polarization control (not shown), the pump beam illuminates
a single waveguide. The PDC light generated in the pumped waveguide then couples to the
neighbouring channels. The light launched out of the WGA was sent via a periscope (not
shown) to a spectral filter, which blocks the residual pump. Thereafter, the spatially spread
PDC emission passed through a dispersive prism and was imaged with a single lens (not
shown) on an InGaAs detector array sensitive down to the few-photon level. Note that by using
a two-dimensional detector array, this configuration allows us to simultaneously resolve the
properties of impinging light both spectrally and spatially. Thus, we can analyze any spatio-
spectral correlations of the generated photons and compare it with our theoretical predictions.
The applied detector has a nearly flat response in the near infrared wavelengths. However,
its sensitivity drops fast in the vicinity of 1.7 µm. The spectral resolution of our detector is
approximately 10 nm, which was calibrated with a tunable telecommunication continuous-wave
laser coupled through a single isolated test waveguide on the same chip. This finite resolution
introduces a smoothing of the experimental data.

After setting the pump wavelength close to the degeneracy point, which was found via a
measurement of the second-harmonic response in the WGA, we recorded images of the spatially
and spectrally resolved PDC emission. Our results in figures 7(a)–(d) show the measured signal
and idler wavelengths in each waveguide channel, illustrating the spatio-spectral structure of the
PDC state.

Close to the degeneracy point (figure 7(a)), the spatial spread spans over five waveguide
channels and the central channel has a spectral bandwidth of approximately 100 nm. We
then tuned the pump wavelength in small steps from the degeneracy point towards lower
wavelengths. As shown in figures 7(b)–(d), we observe that the PDC emission is separated
into two spectral regions due to the curvature of the phase-matching function. Additionally, one
can recognize that the spatial spread of the PDC photons clearly behaves differently at the upper
and lower spectral branches. The coupling of the PDC photons into the neighbouring channels
increases with the growing wavelength and causes an obvious and detectable imbalance to the
measured distributions.

In order to evaluate the quality of our theoretical model in section 2, we compare the
experimental results with numerical simulations. Since our model explicitly takes into account
the wavelength-dependent coupling, it explains the differences in the observed spatial spreads
at different wavelengths. The parameters governing the wavelength dependent coupling (see
appendix A) are determined by comparing the spatial spread given by the theoretical model
to the measured ones. Additionally, the order of magnitude of the coupling parameter was
confirmed by illuminating a single waveguide with a laser featuring a fine linewidth, tuning
the light in the range 1520–1600 nm and measuring the linear spread of the light in the WGA.

For the comparison between the experimental and the numerical results, we have adapted
the wavelength dependent coupling parameter together with the degeneracy wavelength of
the process to reproduce the measured spatial spreads and central wavelengths of the PDC
photons as well as their spectral marginals. The obtained numerical simulations depicted in
figures 7(e)–(h) show a very good quantitative agreement with the experimental data. For the
details of the simulation see appendix C. Besides the wavelength-dependent spatial spread,
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Figure 7. Spectrally and spatially resolved PDC emission from the WGA.
The contour plots illustrate the PDC light in different waveguide channels
with respect to the wavelength. The spectra on right hand side show the
marginal distribution of the central waveguide channel. The measured data was
recorded at the pump wavelengths near (a) 774.9 nm, (b) 774.5 nm, (c) 774.2 nm
and (d) 773.9 nm. The numerical simulations in (e)–(h) correspond to the
measurements in (a)–(d), respectively. The solid lines illustrate the marginals,
whereas the dotted lines are fits to the data to obtain the maxima of the spectral
distributions.

reflecting clear correlations between the spatial and spectral degree of freedom, the theoretical
model also predicts a spectral double peak structure for the non-degenerate PDC emission,
which is clearly visible at the higher wavelength branch in figures 7(f)–(h). This effect is caused
by the splitting of the phase-matching function into two regions due to the different coupling
parameters for signal and idler outside the degeneracy. We, however, are not able to observe
this effect in the experiment due to the limited spectral resolution of the applied spectrometer.
For the same reason the measured spectral marginals are slightly broader than the ones predicted
with our theoretical model.

Due to the high pump powers utilized in our experiment, we cannot eliminate the possibility
of higher order photon-number contributions. However, in our system, the generated photons
are widely spread in the spatial and spectral domain, preventing stimulation or other high
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(b)

Experiment Theory

(d)

(a) (c)

Figure 8. The spatial marginal distributions deduced from figures 7(d)
and (h) for the upper and lower spectral branches. The measured spatial
marginals are illustrated at the wavelength regions of (a) 1550–1750 nm and
(b) 1350–1550 nm. The simulated spatial marginals are shown in (c) and (d)
for the same spectral regions as in (a) and (b), respectively. The intensity in the
central waveguide channel is in each case normalized to unity.

gain regime effects [44, 45]. In this regime, the generated higher order photon pairs are
independent and possess the spatio-spectral characteristics, as discussed in section 3. As such,
our measurements are equivalent to measuring many photon-pair states subsequently.

For a more direct test of our theoretical model with the experiment, we firstly compare
in figure 8 the spatial marginal distributions from figures 7(d) and (h) both at the upper and
the lower spectral branches. Although some differences appear in the shape of the spatial
spreads between the experiment and theory, our model reproduces their widths correctly.
Further, the measured spatial distributions also illustrate an excellent symmetry with respect
to the central waveguide channel, which indicates a homogeneous WGA quality. Secondly,
we deduce the phase-matching curve from the maxima of the measured spectral distributions
in figure 7 and compare the experimental curve to the one gained from our theoretical
model. As seen in figure 9 our simulation accurately predicts the observed shape of the
phase-matching curve. Small discrepancies arise from the accuracy at which the degeneracy
point can be determined, limited resolution of the home-made spectrometer and fast decrease
of its sensitivity at higher wavelengths. The splitting of the signal and idler spectra into two
non-overlapping spectral regions caused by the curvature of the phase-matching function is
already visible when tuning the pump wavelength by only a fraction of a nanometer from the
degeneracy.

In regard to the spatio-spectral characteristics, we find a very good agreement between
the theory for photon pairs and our experiment, even though our detector lacks true single-
photon resolution and several photon pairs can be created by the pump at high power levels.
Our results show that a detailed model, taking into account wavelength dependent coupling
effects, is necessary in order to understand the experimental results. With our results we are
able to determine the relevant physical parameters required for measuring the desired correlation
properties between the signal and idler photons.
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Figure 9. The phase-matching curve of the WGA (squares) extracted from
the marginal spectra in figures 7(a)–(d). The error bars in the signal and idler
wavelength are given by the full-width at half-maximum (FWHM) of the
measured marginal distributions. Circles correspond to the simulated values
including the data shown in figures 7(e)–(h), whereas the black solid lines and
the shaded grey area provide guides for the eye and represent the maxima and
FWHM of the theoretical marginal spectra, respectively. As an effect of the
wavelength dependent coupling, the theory predicts that the upper wavelength
branch splits in two spectral regions.

5. Conclusion

In this paper we have theoretically and experimentally investigated the PDC in nonlinear WGAs,
explicitly taking into account spectrally dependent coupling effects. Our analysis revealed that
the spatial and spectral degrees of freedom of the PDC process in the WGA are connected
via the phase-mismatch 1�. A phase-mismatch introduced in the spectral domain 1�! is
compensated via an opposite phase-mismatch in the spatial domain �1�A, leading to spatio-
spectral correlations in the generated quantum states. Thus, being able to select only specific
regions of the phase-matching, by means of appropriate spectral filtering or by choosing the
suitable spectral and spatial characteristics of the pump beam, we can modify the joint spatio-
spectral amplitude. Consequently, we are able to engineer the emerging spatial correlations of
the two-photon state. This leads to a variety of well defined spatial correlation patterns between
the signal and idler photons limited only by the dispersion relation of the transverse momentum.

Our experimental investigations show that a wavelength dependent coupling parameter,
which quantifies the strength of the evanescent overlap within the WGA, must be taken into
account to understand the properties of the generated two-photon states. With our model,
which takes into account the wavelength dependency of the coupling constant, we were able to
accurately predict the spatial spread of the PDC photons into the adjacent waveguide channels
at different wavelength regimes. Furthermore, we found that the phase-matching curve of the
PDC process, extracted from the measured data is in very good agreement with the theoretical
prediction.

In conclusion, our analysis provides a framework for a detailed understanding of the
possibilities and limitations of quantum state generation in nonlinear WGAs and enables an
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Figure A.1. Form of the electric fields for a rectangular refractive index profile.
The overlap of the electric fields determines the coupling parameter.

accurate engineering of a variety of spatio-spectral correlations. Our results are important for
the advancement of future applications such as quantum walks or other sophisticated optical
networks on WGAs.
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Appendix A. Wavelength dependence of the coupling parameter

Only over a narrow frequency range the coupling parameter C(!) can be approximated as
a constant C0 [15, 26]. In this paper, however, we consider spectral widths spanning over
100 nm in range. We therefore include wavelength dependent coupling effects C(!) into our
analysis [38]. Much work on the frequency dependence of C(!) in LiNbO3 has already been
performed [46, 47], but it has mainly relied on numerical calculations. Here we consider a
simple model for the wavelength dependence of the coupling parameter C(!), as shown in
figure A.1.

In coupled mode theory, the coupling parameter C(!) is given by the overlap integral
from the mode of waveguide (I) with the mode in the neighbouring waveguide (II) as described
in [48]

C(�) = C0
2⇡
�

Z d+w

d
1n2(x)E⇤

1(x)E2(x) dx . (A.1)

Here C0 is a constant depending on the mode number and 1n(x) is the refractive index
difference between the waveguide n2 and the surrounding bulk material n1 [47] and is zero
outside waveguides (I) and (II). Assuming a very simple model for the waveguide modes, which
only considers the exponential part of the evanescent field, we arrive at

E1(x) = E10 e�� x , (A.2)

E2(x) = E20 e� (x�d). (A.3)

Here Ei0 are the amplitudes of the electric field, and � is the damping factor determined by the
difference between the propagation vector in the waveguide �(0) and in bulk material k [49].
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We model the wavelength dependence of this parameter via � / n(�)
�

, where n(�) describes
the refractive index in terms of wavelength �. We further neglect the possible influence of
the waveguide dopant on the wavelength dependent refractive index. Solving (A.1) with these
assumptions and integrating over the region of waveguide (II) yields

C(�) = C 1
�

exp
✓

��0
n(�)

�

◆
, (A.4)

where C is a constant depending on the width of the waveguides and their mode profiles, as well
as on the refractive index difference between the waveguide and substrate and �0 is a constant
that is determined by the distance between the waveguides and the waveguide mode profiles.

Appendix B. Spatio-spectral correlation function

The most straightforward way to obtain information about the joint spatio-spectral distribution
of signal and idler are spectrally and/or spatially resolved correlation function measurements.
The correlation function between one photon at (!s, k?

s ) and the other photon at (!i, k?
i ) from

the two-photon PDC state in (6) is given as:

0̃k,!(k?
s , k?

i ,!s,!i) = h |â†(!s, k?
s )â†(!i, k?

i )â(!i, k?
i )â(!s, k?

s )| i

=
(

4/N | f (!s,!s, k?
s , k?

s )|2 if !s = !i and k?
s = k?

i ,

1/N | f (!s,!i, k?
s , k?

i )|2 else.
(B.1)

By tracing over the spectral degree of freedom, the correlation function in k?-space can be
written in the form

0̃k(k?
s , k?

i ) =
Z

d!s

Z
d!i 0̃k,!(k?

s , k?
i ,!s,!i). (B.2)

In the real space the correlation function is determined as

0n(ns, ni) =
Z

d!s

Z
d!i 0n,!(ns, ni,!s,!i), (B.3)

in which 0n,!(ns, ni,!s,!i) = h9|â†(!s, ns)â†(!i, ni)â(!i, ni)â(!s, ns)|9i, and the bi-photon
state |9i in real space, is given by a two-dimensional Fourier transformation of | i in k?-space.

Appendix C. Numerical simulation of the WGA

In the scope of this paper we consider extraordinarily polarized type-I PDC in lithium niobate
using the dispersion relations from [50]. We run our experiments far above room temperatures.
Consequently our theoretical model takes into account the temperature dependence of the
refractive indices, also given in [50].

We adjust the signal and idler frequencies with the help of quasi phase-matching [21],
where a periodic sign change of the � (2) nonlinearity in the material introduces a modification
in the spectral phase-matching condition

1�!(!s,!i) = �(0)
p (!s +!i) ��(0)(!s) ��(0)(!i) � 2⇡

3eff
. (C.1)

In the simulation 3eff is an effective grating period, fitting the theoretically predicted
wavelengths of the phase-matched PDC process to the experimental values.
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Figure C.1. Wavelength dependence of the coupling parameter C(�) used to fit
the numerical simulations to the experimental results.

Table C.1. Parameters for the simulation of the spatial correlations in figure 5
and the modelling of the experimental results in figures 7 and 9.

Properties of WGA (numerical simulation)

Waveguide length L (m) 0.04
Total number of waveguides on the array 41
Temperature T (�C) 185.0
Effective coupling parameter C 6.5 ⇥ 10�2

Effective damping coefficient �0 (m) 4.9 ⇥ 10�6

Phase engineering (figure 4)
Phase-matched wavelength pair (�s, �i) (nm) (1550.0, 1550.0)
Narrowband filtering (�min, �max) (nm) (1549.9, 1550.1)
Real valued spatial pump width dk?

p
⇡
2

Number of waveguides in the array (only this section) 49
Effective coupling parameter C 13 · 10�2

Effective damping coefficient �0 [m] 4.9 · 10�6

Correlation calculation (figure 5)
Phase-matched wavelength pair (�s, �i) (nm) (1400.0, 1600.0)
Effective coupling parameter C 13 · 10�2

Effective damping coefficient �0 [m] 4.9 · 10�6

Experimental comparison (figures 7(e)–(h))
Phase-matched wavelength pair (�s, �i) (nm) (1549.8, 1549.8)
Spectral pump bandwidth 2⇡1�p (nm) 0.5

Near-degenerate correlation calculation (figure C.2)
Phase-matched wavelength pair (�s, �i) (nm) (1550.1, 1550.1)
Spectral pump bandwidth 1�p (nm) 0.5
Coupling parameter C0 (1 m�1) 400
Number of waveguides in the array (only this section) 51

The wavelength dependent coupling parameter C(�) is fitted to the experimental results
using the description in appendix A. Its exact form is depicted in figure C.1.

The process properties for the numerical modelling are given in table C.1, while the
experimental parameters can be found in section 4.
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Figure C.2. Numerical simulation of the output correlation patterns in the
WGA by exploiting the tunability of the correlations via the spectral pump
shape. Figures (a1)–(a3) show the corresponding joint spectral amplitudes of the
process, illustrating the different pump frequencies. The inlays give the position
of the pump shape in relation to the phase-matching function. The resulting
correlation functions in k?-space are depicted in figures (b1)–(b3), according to
the discussed spatio-spectral interplay in figures 2(a) and (b). In figures (c1)–(c3)
the real space correlation function of the WGA is shown. We observe a distinct
X-like shape in figure (c2), while the coincidence intensity in figures (c1) and (c3)
is localized around the pumped waveguide.

Figure C.2 shows the output correlations available when pumping near the degeneracy
wavelength, corresponding to figure 2(b) in section 3. Here, we exploit the tunability of the
spatial output correlation patterns via the spectral pump shape, as discussed in section 3.1.

The selection process is shown from top to bottom. In figures C.2(a1)–(a3) we select the
spatial correlations by tuning the pump frequency according to the selection rules discussed in
section 3.1. The small inlays depict the position of the pump shape in relation to the phase-
matching function, serving as orientation in the spectral domain. Figures C.2(b1)–(b3) depict
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the selected spatial correlation in k?-space in accordance to the spatio-spectral interplay shown
in figures 2(a) and (b). The corresponding real space correlation functions in figure C.2(c1)–(c3)
are then determined via Fourier transformation.
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