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Pulsed parametric down-conversion (PDC) processes generate photon pairs with a rich spectral-temporal
structure, which offer an attractive potential for quantum information and communication applications. We
investigate the four-dimensional chronocyclic Wigner function WPDC(ωs,ωi,τs,τi) of the PDC state, which
naturally lends itself to the pulsed characteristics of these states. From this function we derive the conditioned
time-bandwidth product of one of the pair photons, a quantity which not only is a valid measure of entanglement
between the PDC photons but also allows us to highlight a remarkable link between the discrete- and
continuous-variable descriptions of PDC. We numerically analyze PDC processes with different conditions
to demonstrate the versatility of our approach, which is applicable to a large number of current PDC sources.
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I. INTRODUCTION

In today’s quantum optical applications, parametric down-
conversion (PDC) sources are a well-established tool for
the generation of a large variety of quantum states. Their
versatility covers the heralding of single photons, the creation
of highly entangled photon-pair states, and the generation
of bright single-mode as well as two-mode squeezed beams
of light [1–4]. Pumping the PDC sources with spectrally
broad ultrafast pump pulses further increases the repertoire
of realizable quantum states, including the generation of
genuine single-photon quantum pulses [5] and the creation
of multimode quantum frequency combs [6,7].

Naturally, the experimental progress during recent years
has been accompanied by elaborate theoretical considerations
which aim for a complete understanding of the PDC process
[8–13]. However, when it comes to the description of PDC
output states, two at first glance disparate methods are still
prevailing.

In continuous-variable quantum optics, quantum states are
typically described by their Wigner function, and the analysis
concentrates on evaluating the fluctuations of two conjugate
phase-space quadratures. Nonclassical features are mostly
associated with negative values of the Wigner function or
with quadrature fluctuations smaller than those of a coherent
state. In this respect, nondegenerate PDC states exhibit
reduced joint fluctuations of the conjugate (Xs + Xi) and
(Ys − Yi) quadratures and can thus overcome an apparent
Heisenberg’s uncertainty relation. This feature is known as
two-mode squeezing and is an intuitive way for depicting the
entanglement which is generated in a PDC process.

In contrast, in the context of discrete-variable systems re-
search mainly focusses on the photon-pair picture, neglecting
higher-order photon number contributions but taking into ac-
count modal characteristics. The spectral-temporal properties
of PDC states are commonly described by their complex-
valued joint spectral amplitude (JSA) function f (ωs,ωi), from
which also the entanglement between signal and idler can be
retrieved. However, this description has one major drawback.
Generally, the measurements used to determine the joint
spectral distribution of a PDC state are phase-insensitive
intensity measurements and thus do not yield the JSA but

the joint spectral intensity (JSI) function. Therefore, any
information hidden in the phase term of the JSA gets lost
during measurement. This can be deceptive when trying to
generate decorrelated PDC states, which are highly valuable
for the heralded generation of pure single photons [5,14,15].
By judging the purity of the heralded photon from spectral
intensity measurements only, one possibly overestimates the
performance of the heralded single-photon source.

In this paper we combine the advantages of both
continuous-variable and discrete-variable systems into another
approach towards describing the spectral-temporal behavior
of PDC states. We utilize the chronocyclic Wigner function
formalism which is well known in classical ultrafast optics,
where it is routinely used to describe the spectral-temporal
properties of pulses [16] and forms the basis of ultrafast
pulse-characterization schemes [17]. Here we apply it to a PDC
pumped by an ultrafast pulse. Note that this approach naturally
lends itself to the pulsed characteristics of PDC sources,
and since the Wigner function is real valued, all quantities
are accessible by direct measurements of the respective time
and frequency distributions. We present a compact analytic
expression for the Wigner function which is valid for a large
number of current PDC sources and introduce the concept
of a conditioned time-bandwidth product (TBP). In classical
optics, the TBP of a pulse is ultimately bounded from below
by the Fourier limit. However, this paradigm does not hold true
in the quantum regime. In particular we show that, for PDC
states, spectral-temporal entanglement between signal and
idler overcomes this classical boundary and the conditioned
TBP forms a valid measure of entanglement.

II. DERIVATION OF THE CHRONOCYCLIC
WIGNER FUNCTION

In order to derive an analytic expression for the chrono-
cyclic PDC Wigner function WPDC(ωs,ωi,τs,τi), we start by
assuming a PDC state |ψ〉 of the form

|ψ〉 = B

∫
dωsdωif (ωs,ωi)â

†(ωs)b̂
†(ωi) |00〉 . (1)

Here, the parameter B is an overall coupling constant, â†

and b̂† are the standard signal and idler creation operators, and
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the function f (ωs,ωi) is the complex-valued JSA which fully
characterizes the generated state [9]. Note that we neglect
any higher-order photon number contributions of the PDC
state, which is a good approximation in the limit of low pump
powers, and that we restrict our analysis to one dimension in
space, which is applicable in the case of wave-guided PDC.

The chronocyclic Wigner function can then be retrieved
from the PDC density operator ρ̂ = |ψ〉 〈ψ | by a two-
dimensional Wigner transform

W (ωs,ωi,τs,τi)

= 1

(2π )2

∫ ∞

−∞
dω′dω′′eiω′τs+iω′′τi

×
〈
ωs − ω′

2
,ωi − ω′′

2

∣∣∣∣ ρ̂
∣∣∣∣ωs + ω′

2
,ωi + ω′′

2

〉
. (2)

Since we aim to present a compact analytical expression for
WPDC(ωs,ωi,τs,τi), we introduce two simplifications, which do
not limit our general theory. All calculations can be performed
numerically for cases in which our simplified model does not
yield a satisfying description.

First, we express the JSA in terms of Gaussian functions,
with the constituents α(ωs,ωi) called the pump envelope
function and φ(ωs,ωi) called the phase-matching function,
which reflect energy and momentum conservation of the PDC
process, respectively.

f (ωs,ωi) = α(ωs,ωi) φ(ωs,ωi) = exp

(
−	ω2

2σ 2
− ia	ω2

)

× exp

[
−γ

(
L

2
	k

)2
]

exp

(
i
L

2
	k

)
. (3)

Here, we introduced the abbreviation 	ω = ω(0)
p − ωs − ωi,

which denotes the difference between the central pump
frequency ω(0)

p and signal and idler frequencies ωs and ωi.
The spectral width of the pump pulse is given by σ , the length
of the waveguide by is given by L, and � denotes the periodic
poling period, deployed to remove the phase mismatch
	k = kp(ωp) − ks(ωs) − ki(ωi) − 2π

�
between pump, signal,

and idler. In contrast to the standard description of PDC, we
explicitly take into account a temporal chirp of the pump pulse,
characterized by the parameter a.

The approximation of the phase matching with a Gaussian
can experimentally be achieved by applying an appropriate
spatial chirp to the poling period � [18]. However, this
simplification is a good approximation for PDC sources in
general.

Second, we use a Taylor series expansion of the phase
mismatch 	k up to first order around the perfectly phase
matched central frequencies ω(0)

p , ω(0)
s , and ω(0)

i and end up
with [19]

	k ≈ (
k(1)

p − k(1)
s

)
νs + (

k(1)
p − k(1)

i

)
νi, (4)

where k(1)
p,s,i are the inverse group velocities of the pump, signal,

and idler, given by the ratio between group refractive indices
n

(g)
p,s,i and the speed of light. Note that we neglect second-order

contributions here since the group-velocity dispersion of the
crystal does not play a role in the PDC investigated here [20].
In Eq. (4), the variables νs = ω(0)

s − ωs and νi = ω(0)
i − ωi

describe the frequency offsets of the signal and idler from their
perfectly phase matched central frequencies. By rewriting the
JSA as a function of the frequency offsets νs and νi we find

f (νs,νi) = exp

[
− (νs + νi)2

2σ 2
− γL2

4c2
(npsνs + npiνi)

2

]

× exp

[
−ia(νs + νi)

2 + i
L

2c
(npsνs + npiνi)

]
,

(5)

where we abbreviated nij = n
(g)
i − n

(g)
j for i,j = p,s,i and

used k(ω) = n(ω)ω
c

, with c denoting the speed of light. After
straightforward calculations employing Eq. (2) we derive a
compact analytic expression for the four-dimensional chrono-
cyclic PDC Wigner function:

W (νs,νi,τs,τi)

=
√

2

γ

|B|2cσ
Lπ |nsi| e−1/2γ exp

[
− 1

σ 2
(νs + νi)

2

−γL2

2c2
(npsνs + npiνi)

2 − 4a2σ 2(νs + νi)
2

]

× exp

[
− 2c2

γL2n2
si

(τs − τi)
2 − σ 2

n2
si

(npiτs − npsτi)
2

+ 2c

γLnsi
(τs − τi)

]
exp

[
4aσ 2

nsi
(νs + νi)(npiτs − npsτi)

]
.

(6)

Note that a nonvanishing chirp of the pump pulse introduces
spectral-temporal correlations between the two sibling photons
generated in the PDC which cannot be observed by common
measurements of the spectral intensity distribution.

From Eq. (6) we can directly deduce the limits of our
second simplification. As soon as signal and idler photons
have similar group velocities, nsi becomes very small, and
Eq. (4) is not valid anymore because higher-order terms have
to be taken into account in the Taylor series expansion of the
wave vectors. Thus, the analytic expression is not valid for
degenerate type-I PDC sources, where the signal and idler
share the same polarization. Numerical calculations have to be
applied then. For most other PDC sources based upon type-II
and nondegenerate type-I processes, however, this analytic
expression is valid and provides a practical approach for
studying the biphoton state.

III. ENTANGLEMENT BETWEEN THE PDC PHOTONS

Having derived an analytic expression for the chronocyclic
PDC Wigner function, we now deploy it to analyze the
entanglement between the signal and idler photons created
during the PDC process. We start by calculating single-photon
Wigner functions (SPWF) from the PDC Wigner function.
Note that detailed considerations on the SPWF have also been
presented in [21] that investigate the single-photon purity of a
heralded PDC photon under several experimental conditions.

Here, we concentrate on the striking similarity between
the spectral-temporal description of PDC states, common in
discrete-variable quantum optics, and the Wigner formulation,
used in the field of continuous-variable quantum optics, by
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introducing the notion of a conditioned SPWF. To highlight
the close relationship between the two approaches we first
recall two-mode squeezing and the cooperativity, two concepts
associated with continuous- and discrete-variable approaches,
respectively. Thereafter we introduce the notion of the condi-
tioned TBP and point out its link to both representations.

A. Continuous-variable description

In the context of continuous-variable systems, PDC states
are mostly understood by deploying a four-dimensional
Wigner function W (X1,Y1,X2,Y2), where X1,2 and Y1,2 are
conjugate quadratures of the signal and idler, respectively.
The amount of two-mode squeezing ζ , which is tantamount to
the amount of entanglement between the PDC photons, can be
determined when regarding joint fluctuations of the signal and
idler as

	2(X1 + X2) = 	2(Y1 − Y2) = exp(−2|ζ |) � 1. (7)

Thus when fixing X2 and Y2 to distinct values X
(0)
2 and

Y
(0)
2 , 	2(X1 + X

(0)
2 )	2(Y1 − Y

(0)
2 ) can overcome Heisenberg’s

uncertainty limit. The fact that two quadratures of the same
field of a PDC state can apparently be defined with arbitrary
precision, or at least below the Heisenberg limit [22], exem-
plifies the Einstein-Podolsky-Rosen (EPR) paradox [23] and
has been demonstrated in [24].

B. Discrete-variable description

The typical representation of the same state becomes quite
different when employing the discrete-variable description of
PDC for biphoton states. In contrast to the previous definition,
higher-photon-number contributions are normally neglected
in this approach. Extracting information on the entanglement
between signal and idler photons is typically accomplished by
means of the Schmidt decomposition of the JSA function [25],
where f (ωs,ωi) is decomposed into two sets of orthonormal
basis functions, such that

f (ωs,ωi) =
∑

n

λnφ(ωs)θ (ωi) (8)

and the Schmidt coefficients λn fulfill the condition∑
n λ2

n = 1. This, in turn, allows us to determine the so-
called cooperativity K = ∑

n 1/λ4
n, a quantity representing

an established measure of entanglement between the PDC
photons. When the photons are uncorrelated, the JSA function
is separable, and only one basis mode for the signal and idler
remains. Consequently, the cooperativity then equals 1. With
increasing entanglement between the signal and idler, the
cooperativity increases and approaches infinity for perfectly
correlated photon pairs.

C. Four-dimensional chronocyclic Wigner function

We can now find an intuitive connection between both
two-mode squeezing and the cooperativity. To this end we
consider, on the one hand, the unconditioned chronocyclic
SPWF, which we obtain by ignoring any knowledge about
one of the two photons. On the other hand, we calculate the
conditioned chronocyclic SPWF by fixing the arrival time and

frequency offset of one photon. The two functions are then
given by

W (uncond)
s (νs,τs) =

∫
dνidτiWPDC(νs,νi,τs,τi), (9)

W (cond)
s (νs,τs) = WPDC

(
νs,τs; νi = ν(0)

i ,τi = τ (0)
i

)
. (10)

In either of the two cases, the SPWF is described by a two-
dimensional Gaussian function in the (νs,τs) plane. Retrieving
the TBP 	νs	τs from this function is a matter of simple
geometric considerations, which are detailed in [26]. Here we
focus on its significance for new insights on the underlying
physics of the generated state.

Because time and frequency share a Fourier relationship,
a given spectral width of a light pulse enforces a minimum
duration due to 	ν	τ � const, where the value of the constant
depends on the pulse shape and the employed width parameter
of the pulse. We chose our normalization such that the Fourier
relationship can conveniently be written as 	ν	τ � 1. The
TBP measures the similarity of the light pulse to its idealized
version and is thus a measure of pulse quality. It has been
shown in [21] that for single-photon pulses a TBP which equals
the lower bound is tantamount to a pure single-photon, whereas
a larger TBP suggests impurity.

However, when employing entangled photon-pair states,
we can also analyze the conditioned TBP of one of the pair
photons. This expression can be retrieved from the conditioned
SPWF presented in Eq. (10). By doing so a classically surpris-
ing and counterintuitive property emerges: the conditioned
TBP can actually become smaller than 1, which is forbidden
for classical light pulses. A similar phenomenon occurs in the
case of two-mode squeezed states, where the joint fluctuations
can overcome an apparent Heisenberg uncertainty relation,
which is a fingerprint of the quantum feature of entanglement
between the signal and idler.

For the upcoming analysis, we write down the analytical
expression for the inverse conditioned TBP (ICTBP) that is
(	ν	τ )−1:

δTBP =
√

n2
pi + n2

ps

n2
si

+ γL2σ 2n2
pin

2
ps

2c2n2
si

+ 2c2(1 + 4a2σ 4)

γL2σ 2n2
si

. (11)

If the PDC photons are uncorrelated, the ICTBP δTBP equals
1. For increasing correlations between the signal and idler, the
violation of the Fourier relationship becomes stronger, and the
ICTBP increases.

IV. ANALYSIS OF THE CHRONOCYCLIC
WIGNER FUNCTION

In this section, we evaluate the chronocyclic PDC Wigner
function WPDC(ωs,ωi,τs,τi) for two distinct cases of PDC
processes. First, we concentrate on the case of spectrally
decorrelated PDC, which has received a lot of attention in
recent years, as it allows for the direct heralding of pure single-
photon pulses without the need for any filtering [5,14,15].
However, the implementation of these kinds of PDC sources
still is a major experimental challenge, and in general, PDC
processes exhibit strong spectral correlations between the
signal and idler. Hence, we investigate, as a second case, a
correlated PDC process.
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FIG. 1. (Color online) (a) JSI of the decorrelated PDC process. It
is not possible to infer the signal frequency from measuring the idler
frequency. (b) Corresponding JTI, exhibiting no correlations between
signal and idler photon arrival times. (c) Conditioned SPWF of the
signal photon. For further information see the text.

In the following we assume the PDC processes to be
pumped by Fourier-limited pump pulses, which do not
comprise any temporal chirp. Moreover, as a test-bed, we
choose the PDC process first presented in [15]. It is realized
in a potassium titanyl phosphate (KTP) waveguide pumped
with ultrafast pump pulses around 775 nm and can generate
decorrelated photons in orthogonal polarizations, centered
around 1550 nm. By changing the spectral width of the pump
pulses, the spectral-temporal correlations between signal and
idler photons can smoothly be tuned.

A. Spectrally decorrelated PDC

In Figs. 1(a) and 1(b), we plot the JSI and joint temporal
intensity (JTI) of the spectrally decorrelated PDC process,
respectively. Obviously, no information on the signal can
be gained from measuring the idler frequency offset or
arrival time, meaning that signal and idler are generated in
Fourier-limited pulses with flat phase distribution. Note that
the offset of the JTI from the center of the figure reflects the
different group velocities of the signal and idler in the nonlinear
waveguide.

Figure 1(c) shows the conditioned SPWF, where we fixed
the idler frequency offset and arrival time to zero. This choice
is arbitrary and does not influence the shape of the conditioned
SPWF, as long as the values are well inside the idler spectrum
and duration. The black circle indicates the 1/e2 width of
the unconditioned SPWF. Obviously, the conditioned and
unconditioned SPWF are similar. In this case, the ICTBP
equals 1, which corresponds to the signal photon residing in a
Fourier-limited pulse. This result has been presented in [21],
and it serves here as a cross-check for our approach.

FIG. 2. (Color online) (a) JSI of the correlated PDC process. (b)
Corresponding JTI, exhibiting inverted correlations. (c) Conditioned
SPWF of the signal. For further information, see the text.

B. Spectrally correlated PDC

We now turn our attention to the more interesting and
common case of a spectrally correlated PDC process, where
we can infer the signal frequency from a measurement of the
idler frequency.

In Figs. 2(a) and 2(b), we show the JSI and JTI of
the spectrally correlated PDC, respectively. It can be easily
seen that spectral anticorrelations correspond to temporal
correlations, as expected for the two-dimensional Fourier
transform between the two domains.

In Fig. 2(c) we plot the conditioned SPWF of the signal,
where the black solid line indicates again the 1/e2 width of
the unconditioned SPWF. In addition, the gray dashed line
indicates the 1/e2 width of the SPWF of a pure single photon,
which exhibits a TBP of 1. We can qualitatively deduce the
TBP from the size of the SPWF and find that the TBP of the
unconditioned signal is obviously larger than 1. Note that this
corresponds to a mixed quantum state. In contrast, the TBP of
the conditioned signal is smaller than 1, which is an indicator
for the entanglement between the signal and idler.

V. ANALYSIS OF THE CONDITIONED TBP

In this section we deploy again the PDC process from [15]
to actually calculate the ICTBP, as well as the cooperativity
K . For the latter, we employ two approaches: on the one hand,
we calculate K directly from the JSA given in Eq. (5); on the
other hand, we calculate K from the JSI, which mimics the
usual situation in the laboratory. The JSI is found by

F (νs,νi) = |f (νs,νi)|2 , (12)

where we mention again that any phase information gets lost
during this step. We concentrate on two scenarios. In the first
case, we consider Fourier-limited pump pulses, whereas in the
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FIG. 3. (Color online) The ICTBP and the cooperativity K ,
calculated from the JSA and the JSI function for different degrees
of spectral-temporal correlation between the signal and idler. The
insets show the respective JSI (left) and JTI (right) for three
distinct spectral widths of the pump pulses. For further information,
see the text.

second case we turn our attention to the more realistic case
of pump pulses, which exhibit a temporal chirp. To simulate
different degrees of correlation between the signal and idler,
we change the spectral width of the pump pulses σ . Note that
the JSI becomes decorrelated for a pump pulse FWHM of
around 2 nm.

In Fig. 3, we plot the ICTBP and the cooperativity K for the
case of Fourier-limited pump pulses. The insets show the JSI
(left) and JTI (right) for three different spectral widths of the
pump. As expected, the cooperativities calculated from JSA
and JSI are equal since in this situation no spectral-temporal
correlations are encoded on the phase of the state. The ICTBP
exactly equals the cooperativities, which justifies its proposed
role as a measure of entanglement.

In the following, we investigate if the similarity between
ICTBP and K persists when introducing a chirped pump and
thus spectral-temporal correlations to the state. To this end, we
consider a pump chirp of 3 × 105 fs2 to clearly visualize its
impact. Lower values of pump chirp decrease the investigated
effects but do not completely suppress them.

In Fig. 4 we plot again the ICTBP and the cooperativity
K . The insets show the JSI (left) and JTI (right) for the
same spectral pump widths as in Fig. 3. Because of the
spectral-temporal correlations, we now find strongly correlated
signal and idler arrival times even for a decorrelated JSI. For
the considered pump chirp, this also holds true for cases where
we would usually expect an anticorrelated JTI, as depicted in
the topmost inset. Since the pump chirp enters Eq. (5) in a
quadratic phase term, we do not see its effect in intensity
measurements. Therefore, the cooperativity calculated from
the JSI strongly deviates from the one retrieved from the
JSA. In contrast, the ICTBP again equals the phase-sensitive
cooperativity from the JSA. Thus, full information on the
entanglement between the signal and idler can be gained from

FIG. 4. (Color online) The ICTBP and the cooperativity K ,
calculated from the JSA and the JSI function for different degrees of
spectral-temporal correlation between the signal and idler under the
assumption of a chirped pump pulse. The insets show the respective
JSI (left) and JTI (right) for three distinct spectral widths of the pump
pulses. For further information, see the text.

the PDC Wigner function WPDC(ωs,ωi,τs,τi). As a practical
note we point out that this knowledge can, in principle, be
obtained from spectral and temporal intensity measurements
but only if both JSI and JTI are measured.

Finally, we want to draw attention to the minimum in the
ICTBP. In the case of Fourier-limited pump pulses depicted
in Fig. 3, the minimum value of ICTBP of 1 is reached for
spectral and temporal decorrelation of the signal and idler.
However, as soon as the pump exhibits a temporal chirp,
the position of the minimum moves towards stronger spectral
anticorrelations, which partially compensate for the temporal
correlations introduced by the chirp. In Fig. 4, the minimum
of the ICTBP is at the point where the spectral anticorrelations
are about as strong as the temporal correlations, as depicted in
the leftmost inset.

VI. CONCLUSION

In this paper we have brought together well-known concepts
from the discrete- and the continuous-variable descriptions
of PDC to form an intuitive and complete description of
the resulting state. We have derived a compact analytic
expression for the four-dimensional chronocyclic Wigner
function WPDC(ωs,ωi,τs,τi) of a PDC state, where we included
the effects of different group velocities of the pump, signal, and
idler fields and the effects of chirped pump pulses. In particular
for the case of a pulsed pump this description naturally lends
itself to the ultrafast characteristics of the generated signal and
idler.

Utilizing this expression, we have introduced the ICTBP
of one of the generated PDC fields. We have shown that this
quantity exactly equals the cooperativity K , which can be
obtained from the JSA of the PDC state and thus forms a
valid measure of entanglement between the signal and idler.
Moreover, we have shown that, given entanglement between

053810-5



BENJAMIN BRECHT AND CHRISTINE SILBERHORN PHYSICAL REVIEW A 87, 053810 (2013)

the signal and idler, the conditioned TBP becomes smaller than
the classical Fourier limit. This surprising feature is similar
to the phenomenon of two-mode squeezing in the continuous-
variable description of PDC, where the conditioned quadrature
fluctuations overcome an apparent Heisenberg’s uncertainty
limit and highlights the similarity between the two seemingly
disparate descriptions of PDC.

We have analyzed the ICTBP for different degrees of
correlation between the signal and idler and for situations with
and without pump chirp, respectively. From the results, we
could show that it is not sufficient to only measure the JSI or
JTI of a PDC state to characterize the entanglement between

the signal and idler. One either has to measure both degrees
of freedom or perform experimentally highly challenging,
phase-sensitive measurements in time or frequency.
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