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Abstract
We present a source of polarization-entangled photon pairs suitable for the
implementation of long-distance quantum communication protocols using
quantum memories. Photon pairs with wavelengths 883 nm and 1338 nm are
produced by coherently pumping two periodically poled nonlinear waveguides
embedded in the arms of a polarization interferometer. Subsequent spectral fil-
tering reduces the bandwidth of the photons to 240 MHz. The bandwidth is well-
matched to a quantum memory based on an Nd:YSO crystal, to which, in
addition, the center frequency of the 883 nm photons is actively stabilized. A
theoretical model that includes the effect of the filtering is presented and
accurately fits the measured correlation functions of the generated photons. The
model can also be used as a way to properly assess the properties of the source.
The quality of the entanglement is revealed by a visibility of =V 96.1(9)% in a
Bell-type experiment and through the violation of a Bell inequality.
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1. Introduction

Spontaneous parametric down-conversion (SPDC) is a simple and efficient technique for the
generation of non-classical light and of photonic entanglement. Several important tasks of
quantum communication require photonic entanglement, but also optical quantum memories to
store this entanglement [1]. A prominent example is the quantum repeater [2, 3], which can
extend the transmission distance of entanglement beyond the hard limit dictated by loss in
optical fibre. In this context, the combination of photon pair sources and multimode quantum
memories was proposed [4]. The essence of this proposal is that the sources create pairs
comprised of one telecom-wavelength photon that is used to distribute entanglement between
distant nodes, while the other photon is stored in a nearby quantum memory. This increases the
probability of successfully heralding a stored photon when the telecom photon is detected.
Multimode storage with selective recall then multiplies the entanglement distribution rate by the
number of stored modes, and is essential to reach practical rates over distances of 500 km or
more [3].

Creating photon pairs such that one photon exactly matches the absorption profile of the
quantum memory, while the other is within a telecom wavelength window of standard optical
fibre, is a challenging task in itself. Sources of photon pairs based on emissive atomic
ensembles or single emitters [3] typically generate photons at wavelengths in the vicinity of 800
nm, where the loss in standard optical fibre is on the order ∼ −3 dB km 1, i.e. at least ten times
larger than in telecom fibres. Reaching telecom wavelengths with such sources therefore
requires frequency conversion techniques, which has been demonstrated [5–10], but imposes an
important technical overhead. SPDC offers much more flexibility, since the wavelengths of the
pump can be easily chosen (and tuned) to directly generate the desired wavelengths. However,
unfiltered SPDC photons have a bandwidth on the order of hundreds of GHz or more. Hence,
they still need to be spectrally filtered to the memory absorption bandwidth, which typically
ranges from a few MHz to a few GHz at most [1].

Different approaches for the filtering of SPDC photons were demonstrated. Direct filtering
(using Fabry–Perot cavities) of frequency-degenerate photon pairs created in a lithium niobate
waveguide was first demonstrated [11], and used for storage of an heralded photon on the D1

line (795 nm) of cold rubidium atoms. The high conversion efficiency of the waveguide was
here used to counterbalance the extreme filtering (down to 9MHz), which effectively rejects
almost all of the generated SPDC bandwidth. A similar source was also developed to
demonstrate the heralded single-photon absorption by a single calcium atom at 854 nm [12].
Another approach is based on pumping a bulk crystal put inside a cavity, yielding a doubly
resonant optical parametric oscillator (OPO) operated far below threshold. The cavity
effectively enhances the length of the nonlinear medium, and is well-suited to generate
narrowband photons. This was first demonstrated with frequency-degenerate photons resonant
with the D2 line of rubidium (780 nm) [13, 14], and later with photons resonant with the D1 line
(795 nm) [15]. It was also demonstrated with photon pairs generated at 1436 nm and 606 nm
[16], and used for storage in a praseodymium-doped crystal [17]. One important technical
difficulty in using an OPO is to fulfill the doubly resonant condition and simultaneously lock
one photonʼs frequency on the quantum memory. Even though such sources can in principle
emit the photons in a single longitudinal mode with the help of the clustering effect [18, 19],
current state-of-the-art sources [16, 20, 21] do not yet achieve all the requirements, and in
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practice some additional filtering outside of the cavity is still necessary to remove spurious
longitudinal modes.

All the aforementioned experiments produced photons with linewidths Δν ranging from 1
to 20MHz, which is dictated by the absorption bandwidth of the respective quantum memory
they were developed for. The coherence time τ Δν∼ 1c of the photons produced can therefore
be as long as a microsecond, which impacts on the rate at which those photons can be
distributed. It is therefore desirable for the quantum memory to absorb over a large bandwidth
to increase the photon distribution rate.

In this article, we present a CW-pumped source of polarization-entangled photon pairs
with 240MHz linewidth using a direct filtering approach. This source was designed for
experiments involving quantum memories based on the atomic frequency comb (AFC) protocol
[22] in a Nd:YSO crystal. Earlier versions of this source produced energy-time entangled
photons with a smaller linewidth, and was used to demonstrate the quantum storage of photonic
entanglement in a crystal [23], heralded entanglement of two crystals [24] and the storage of
heralded polarization qubits [25]. Recently, the source described in this paper was used to
demonstrate the teleportation from a telecom-wavelength photon to a solid-state quantum
memory [26]. We note that a similar source, based on a pulsed pump, was used for the storage
of broadband time-bin entangled photons in a Tm : LiNbO3 waveguide [27].

The paper is organized as follows. We give the requirements for the photon-pair source in
section 2. The concept behind the implementation is given in section 3 with the details of the
actual implementation following in section 4. In section 5 the spectral properties and the
correlation functions of the filtered photons are presented and compared to the predictions of a
model that includes the effect of the filtering. The efficiency and detection rate of the source is
presented in section 6. Section 7 presents measurements showing the high degree of
polarization entanglement of the photon pairs, as well as its nonlocal nature. The appendices
contain all the details pertaining to the characterization of the source.

2. Requirements

The source was designed for experiments involving an AFC type of quantum memory in a
Nd:YSO crystal, so the signal photon of a pair has to be in resonance with the transition from
the I4

9 2 ground state to the F4
3 2 excited state of the Nd3+ ion at λ = 883 nms . Quantum

communication over long distances in optical fibre requires the wavelength of the idler photon
of a pair to be inside one of the so-called telecom windows, which span the region from
1300 nm to 1700 nm. The condition for the idler wavelength can be conveniently satisfied using
a pump wavelength of λ = 532 nmp , for which high-quality solid-state lasers are readily
available. This places the idler wavelength at λ λ λ= − =− − −( ) 1338 nmi p

1
s

1 1 .
The bandwidth of the generated photon pairs is dictated by the bandwidth of the quantum

memory. In earlier experiments this bandwidth was 120MHz [23, 24]. Recently it has been
increased to about 600MHz [26]. Although this is fairly large for a quantum memory, it is still
three orders of magnitude narrower than the typical bandwidth of photons generated by SPDC,
which is given by the phasematching condition and can be as large as 1 THz.

We also require quantum entanglement between the signal and idler photons.
Entanglement can be established between various degrees of freedom. In particular energy-
time entanglement is intrinsically present when using a highly coherent pump laser. In this
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work, however, we focus on polarization entanglement because of the experimental
convenience in manipulating and measuring the polarization state of light.

3. Concept

Various schemes have been devised to generate polarization-entangled photon pairs through
SPDC. These schemes include selective collection of photon pairs emitted at specific angles for
non-collinear type-II phasematching [28], collinear SPDC in two orthogonally oriented crystals
[29, 30], and SPDC in Sagnac interferometers [31, 32]. We wanted to extend our existing and
well-functioning waveguide source [23], which is inherently collinear, to a configuration that
can create polarization-entangled photon pairs. Putting two waveguides back to back is in
principle possible, but as the cross-section of the waveguides is only a few micrometres and
may vary from waveguide to waveguide, efficient and stable coupling from one to the other is
experimentally extremely challenging. Using a waveguide in a Sagnac configuration is
complicated by the need for achromatic optics for coupling into and out of the waveguide and
for the necessary polarization rotation.

To be able to efficiently employ our waveguides we follow the ideas of [33, 34] that
suggest using a nonlinear crystal in each arm of a polarization interferometer, as sketched in
figure 1. We consider the situation of type-I phasematching and that the two nonlinear crystals
may have different down-conversion efficiencies. Let the photons from the pump laser be in a
polarization state ∣ 〉 ⊗ ∣ 〉A BH V , where ∣ 〉A H corresponds to a horizontally polarized coherent
state of complex amplitude A, and similarly for ∣ 〉B V . A polarizing beam splitter (PBS) at the
entrance of the interferometer splits the two coherent state components in two paths. In the
horizontal path the photons can be converted into a photon pair ∣ 〉HH with a probability
amplitude α ∝ A by a first nonlinear waveguide. A second waveguide rotated by 90° in the
vertical path can produce a photon pair ∣ 〉VV with probability amplitude β ∝ B. Another PBS
recombines the two paths, and the final single-pair state ψ∣ 〉1 is given by

Figure 1. Creation of polarization-entangled photon pairs with the help of two
waveguides inside a polarization interferometer. A PBS coherently splits the pump
photons according to their polarization. Each polarization component has a certain
probability to be converted into a photon pair with the same polarization. The two
polarization components of the photon pair are then recombined into the same spatial
mode by a second PBS. The relative phase can be adjusted by moving one of the
mirrors.
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ψ α β∣ 〉 ∝ + ϕHH VVe , (1)1
i

where the phase ϕ depends on the path-length difference of the interferometer, and on the
relative phase between α and β. By choosing the pump polarization such that it compensates the
efficiency difference, i.e. α β∣ ∣ = ∣ ∣, and by slightly varying the position of one of the mirrors to
obtain = ±ϕe 1i , the single-pair state becomes equivalent to one of the two Bell-states
Φ∣ 〉 = ∣ 〉 ± ∣ 〉± HH VV( ) 2 . However, one could equally well produce non-maximally
entangled states by choosing the polarization of the pump laser accordingly.

4. Implementation

In the following we detail the actual implementation of the source of polarization-entangled
photon pairs. We start by describing the two waveguides that have been used. We then discuss
the problem of matching the spatial modes of the photons with the same wavelength from
different waveguides. Next, we consider the relative phase ϕ in equation (1). Finally, we
describe the measures taken to reduce the bandwidth of the photons.

4.1. The waveguides

Waveguides are used instead of bulk crystals because they yield a much higher conversion
efficiency. This is necessary because the spectral filtering we apply is much narrower than the
intrinsic spectral width of the down-conversion process, so only a small fraction of the pump
power is used to create photons in the desired spectral range. Hence, the larger conversion
efficiency essentially compensates the loss in power of the pump.

The photon pair source is based on two nonlinear waveguides made from different
materials and with different parameters. The choice of using two different types of waveguides
was made for practical reasons that are not important for the results presented in this paper.
However, this choice allows for a direct comparison of the performance of the two waveguides.
A selection of parameters for the two waveguides is shown in table 1.

The first waveguide was obtained from AdvR Inc. and has been fabricated in a chip of
periodically poled potassium titanyl phosphate (PPKTP) by ion exchange. The chip contains a
collection of identical waveguides of width and height approximately 4 μm and 7 μm,
respectively. Each waveguide spans the entire 13mm length of the chip. The poling period of
8.2 μm allows to achieve type-I phase matching for the signal and idler wavelengths of 883 nm
and 1338 nm at a temperature of about 53 °C. The chip is heated to this temperature using a

Table 1. A selection of the parameters of the two waveguides for direct comparison.

Waveguide

PPKTP PPLN

Supplier AdvR Inc. University of Paderborn
Poling period 8.2 μm 6.45 μm
Length of poled region 13mm 50mm
Waveguide width ∼4 μm ∼6 μm
Waveguide height ∼7 μm ∼6 μm
Phase-matching temperature ∼53 °C ∼173 °C
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custom oven based on a thermo-electric cooler. No dielectric coatings have been applied to the
end faces of the chip. We previously used this waveguide, henceforth referred to as the PPKTP
waveguide, for the generation of narrowband photon pairs in a series of experiments with solid-
state quantum memories [23–25].

The second waveguide was custom designed at the University of Paderborn. It was
fabricated by titanium indiffusion on a periodically poled lithium niobate (PPLN) chip. The
chip is 62mm long and contains 25 groups of 50mm long regions with poling periods between
6.40 μm–6.75 μm. Within each group there are three waveguides of 5μm, 6μm and 7μm width,
respectively. We achieved the best results with a waveguide of poling period 6.45 μm and 6 μm
width, where the temperature for type-I phase matching at the desired wavelengths is about
173 °C. The chip is heated to this temperature with the help of an oven by Covesion Ltd, which
has been slightly modified to accommodate the long chip. The elevated temperature is chosen to
mitigate the deterioation of the phasematching by photorefraction.

The custom design of the second waveguide, from now on called the PPLN waveguide,
allowed for the addition of a number of features which make it especially suitable for SPDC at
the desired wavelengths. On the input side, a λ 4 SiO2-layer has been applied to the input face
to provide an anti-reflective coating for the pump laser at 532 nm. Additionally, the input side
has a 12mm long region without periodic poling where the waveguide width is linearly
increased from 2 μm to the final width. Such a taper should facilitate the coupling of the pump
laser to the fundamental spatial mode of the waveguide. The output side of the chip has been
coated with a 15-layer SiO2/TiO2 stack optimized for high reflection of the pump light and high
transmission of the signal and idler photons. Measurements on a reference mirror that was
coated simultaneously with the chip revealed reflectivities of 94%, 2.4% and 12% at 532 nm,
880 nm and 1345 nm, respectively.

4.2. Matching of the spatial modes

To obtain a high degree of entanglement between the photon pairs generated in the two
waveguides, it is essential that the spatial mode of the photon does not reveal in which
waveguide it has been created. A small mismatch can be corrected with a suitable spatial-mode
filter, such as a single-mode optical fiber. If, however, the mismatch is large, the asymmetric
losses introduced by the filter can significantly reduce the amount of entanglement.

In theory, the use of identical waveguides should ensure a perfect overlap of the spatial
modes of the generated photons. In practice, however, the production process often introduces
small variations between identically designed waveguides. In our case, the situation is
complicated by the fact that the waveguides are made of different materials, have different
dimensions and the signal and idler photons are at widely separated wavelengths. In short, these
factors make a simple configuration with just a single interferometer, as depicted in figure 1,
impossible for several reasons, in particular when only a single aspheric lens is used to collect
the signal and idler photons at the output of the waveguides. Already for a single waveguide,
the chromatic aberration of the lense does not allow for simultaneous collimation of the signal
and idler beams. On top of that there is the more fundamental problem that the refractive index
profiles of the waveguides depend on the chip and on the wavelength. The result is that the
signal and idler spatial modes have different sizes and are not centered with respect to each
other, even if generated in the same waveguide. For different waveguides, signal and idler
beams can in general not be pairwise matched by even the most sophisticated lens system.
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One way to properly match the spatial modes is to part ways with the idea of using a single
interferometer and instead use two interleaved interferometers, as shown in figure 2. This gives
control of all four spatial modes involved. A single uncoated achromatic lens (Thorlabs C220-
TME) after each waveguide is positioned such that the idler beams are collimated. Right after
that, dichroic mirrors separate signal and idler beams, leading to four individual beam paths.
Telescopes in three of the paths adapt the spatial modes such that the signal and idler modes are
separately matched to each other and to the single-mode fibers that will eventually receive the
photons. Finally, the signal and idler modes are, respectively, recombined on two PBSs.

4.3. Relative phase

The relative phase from equation (1) has contributions from signal and idler photons,
ϕ ϕ ω ϕ ω= +( ) ( )s s i i , and depends, in general, on the frequencies ωs and ωi of the signal and
idler photons, respectively. In turn, ϕs is the difference phase acquired between the horizontal
and vertical paths of the respective interferometer, and similarly for the idler photon. To obtain
a high degree of entanglement, it is important that ϕ is well-defined for all frequencies within
the final bandwidth of the photons. Hence, the path length difference ΔLx ( =x s, i) for the two
interferometers should be much smaller than the coherence length of the photons after spectral
filtering. For the estimation of ΔLx one should not forget the dispersion inside the waveguides
and that also the propagation of the pump light up to the waveguides is important.

In the experiment we actively stabilize ϕ. For this purpose, each interferometer contains a
mirror mounted on a piezo-electric transducer. We use the pump light at 532 nm that is
transmitted through the waveguides and leaks into all parts of the interferometer to continuously
probe the phase. The PBSs at the input and outputs of the interferometers are not perfect at this
wavelength, such that residual interference can be seen on the intensity variations picked up by
two photodiodes. Note that, in general, the pump light transmitted through the horizontal and
vertical paths of the interferometers will not have the same intensity. Additionally, the coating
on the end face of the PPLN chip, the reliance on imperfections and the bad spatial mode-
matching of the 532 nm light at the output result in peak-to-peak intensity variations as low as a
few 10 nW. Using a lock-in technique, an error signal can nevertheless be extracted and used to
stabilize the phases of the interferometers.

Figure 2. The spatial modes of the photons generated in different waveguides can be
efficiently matched by using two interleaved interferometers with appropriate
telescopes.
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Using this technique, the stabilization works reliably for a typical duration of 5–10 h, a
duration after which the thermal drift in the laboratory would typically exceed the compensation
range of the piezos. However, the technique has two limitations to keep in mind. First, the
absolute value of the phase can not be chosen at will and is more or less random for every
activation of the lock. Second, since the 532 nm light follows a slightly different path than the
signal and idler photons, and the temperature dependence of the refractive index inside the
waveguides is wavelength dependent, differential phase shifts can appear. In practice, we
observe residual phase drifts on the order of 1° per hour, as determined by repeatedly applying
the measurement procedure described in section 7.

4.4. Spectral filtering

In experiments where one of the photons in a pair is coupled to a narrowband receiver, such as
an atomic ensemble, spectral filtering is essential. In the typical scenario of SPDC with a
narrowband pump laser, energy conservation ensures that a detection of, say, the idler photon
after a suitable spectral filter guarantees that the signal photon is within the target spectral range.
At first glance such one-sided filtering might seem entirely sufficient. In practice, however, and
in particular in the case of strong filtering, multi-pair production can add a significant
background of signal photons outside the desired bandwidth, which leads to a reduction of the
signal-to-noise ratio of coincidence detections. Hence, also the signal photon needs to be
filtered at least to some extent.

Efficiency, stability and ease of use are typical criteria for choosing suitable spectral filters.
For a given bandwidth, one wants to use as few filtering elements as possible, as all of them are
bound to introduce photon loss and have stabilization requirements. The case of polarization-
entangled photon pairs adds the concern that both the spectrum and the efficiency of the filters
need to be independent of polarization. This precludes the use of traditional techniques such as
diffraction gratings, but also of some more recent developments such as phase-shifted fiber
Bragg gratings and Fabry–Perot cavities based on coated lenses [35].

The spectra of the two waveguides were measured using custom-built spectrometers based
on diffraction gratings and single-photon-sensitive CCD cameras; see figure 3. The
spectrometers have an estimated resolution on the order of 200GHz full width at half
maximum (FWHM) at 883 nm and 100GHz at 1338 nm. Gaussian fits to the respective signal
and idler spectra serve to estimate the phasematching bandwidth. For the PPKTP waveguide the
two fits approximately agree, yielding a FWHM of 791(28) GHz for the signal and 724(39)GHz
for the idler. The signal photons generated in the PPLN waveguide are measured to be
443(12) GHz wide, and the idler photons 328(11) GHz. While both values may be resolution
limited, the discrepancy is most likely due to the inferior resolution at 883 nm.

Assuming the sinc2-shaped spectrum of ideal SPDC and neglecting the dispersion caused
by the refractive index profile of the waveguide, we can use Sellmeier equations for KTP [36]
and LiNbO3 [37] to find a theoretical estimate of the bandwidths (see appendix A). For the
waveguide from AdvR the FWHM is estimated to 540GHz, while for the guide from Paderborn
we find 100GHz. In both cases, the measured bandwidths are larger. Apart from the limited
resolution of the spectrometer, we attribute this deviation to inhomogeneities of the waveguide
structure over the interaction length, which also explains why the measured spectra do not
exhibit a sinc2 shape. Finally, propagation losses of the pump laser in the waveguide can lead to
a reduced effective interaction length and hence a broadening of the spectra.
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We shall now describe the filtering system used to reduce the spectral width of the photon
pairs to 240MHz FWHM. We use two-sided filtering, that is, filters are applied to both the
signal and idler photons. At first glance, it would seem that one-sided filtering is sufficient,
because energy conservation dictates that the two photons in a pair created by a narrowband
pump laser have the same bandwidth, if detected in coincidence. However, accidental
coincidences stemming from different pairs do not have this restriction, such that the cross-
correlations for one-sided filtering are strongly reduced. This reduction is typically much
stronger than the increase in the pair detection rate (corrected for accidental coincidences)
gained by one-sided filtering. A quantitative comparison between one-sided and two-sided
filtering is given in appendix C.

The filtering for the signal and idler photons is very similar and is done in two steps. The
signal photon is first sent onto a volume Bragg grating (VBG) made by Optigrate. The VBG has
a nominal diffraction efficiency of 98.6%, although the value in the experiment is ≈90%. The
spectral selectivity is specified to 54GHz at FWHM. Grating parameters are such that the
diffracted beam forms an angle of about 7°with the incoming beam. We have not seen any
polarization dependence of significance in the performance of the VBG. The second filtering
step is an air-spaced Fabry–Perot etalon made by SLS Optics Ltd. The etalon has a line width of
Γ π =(2 ) 600 MHzs and a free spectral range (FSR) of 50GHz, corresponding to a finesse of
83. The peak transmission of the etalon is about 80%.

For the idler photon, the first filter is a custom-made Fabry–Perot cavity with line width
Γ π =(2 ) 240 MHzi and an FSR of 60GHz, corresponding to a finesse of 250. By itself, we
achieved peak transmissions through the cavity exceeding 80%. Integrated in the setup of the
photon pair source, mode matching was slightly worse, giving a typical transmission around
60%. The cavity was followed by a VBG with a FWHM diffraction window of 27GHz and
nominal efficiency of 99.6%. In this case, experimental observations were compatible with
specifications.

Figure 3. Non-filtered spectra of the photons generated by the two waveguides.
Detunings are given with respect to a reference laser at 883.2 nm for the signal photon,
and for the idler with respect to light from difference-frequency generation using the
same laser. Gaussian fits (solid lines) give estimates of the spectral bandwidths (see
text). For these plots, the temperature of the waveguides had not yet been properly
adjusted.

9

New J. Phys. 16 (2014) 093058 C Clausen et al



The idea behind the combination of Fabry–Perot filter and VBG is to select only a single
longitudinal mode of the cavity or the etalon. In practice, however, a typical reflection spectrum
of a VBG can have significant side lobes [38]. From the measured second-order auto-correlation
functions (see section 5), we estimate that more than 70% of the transmitted signal photons and
more than 95% of the idler photons belong to the desired longitudinal mode.

One issue with narrowband filters is the spectral stability. Long-term stability for the
VBGs is easily achieved by using a stable mechanical mount, as they have practically no
sensitivity to temperature fluctuations. The Fabry–Perot filters are stabilized in temperature, but
exhibit residual drifts on the order of 100MHz per hour. If the center frequencies of the signal
and idler filters drift such that they no longer add up to the frequency of the pump laser, the
coincidence rate will drop. We compensate this by using a reference laser at 883 nm, which may
be stabilized to the etalon, for difference frequency generation (DFG) in the PPLN waveguide,
effectively giving coherent light at the idler frequency. The frequency of the pump laser is then
adjusted to optimize the transmission of the DFG light through the cavity. During experiments,
we switch between DFG and SPDC every few tens of milliseconds, and the transmitted DFG
light is detected with single-photon detectors and integrated over approximately 1 s. The
stabilization was implemented in software for previous work [23–25], and reliably compensates
the slow and weak thermal drifts. This technique also provides a means for active stabilization
to the Nd:YSO quantum memory: tuning the 883 nm reference laser to the relevant transition
ensures that the photon pairs are simultaneously in resonance with the idler cavity and the
quantum memory.

An advantage of the direct filtering approach to generate narrowband photon pairs is the
low sensitivity to fluctuations of the temperature of the waveguides themselves. Techniques
based on OPO are much more sensitive [18, 20, 21]. In our case, temperature fluctuations shift
the phase-matching spectrum as a whole. Since the frequency filters post-select a very small part
of the whole spectrum, these variations can be tolerated as long as the shift is small compared to
the phase-matching bandwidth, such that the pair-creation rate at the position of the filters
remains approximately constant. We measured a temperature-dependent shift of the phase-
matching spectrum of 280GHzK−1 and 190GHzK−1 for the PPLN and PPKTP waveguides,
respectively. Requiring that the spectra shift less than, say, 5% of their width corresponds to a
temperature stability below 0.05K and 0.2K, respectively, which is routinely achieved also in
the long term.

5. Spectral characterization via correlation functions

Correlation functions are a useful tool for the characterization of light sources. We consider, in
particular, the normalized second-order correlation functions, which are unaffected by photon
loss or detector inefficiency. They are defined as

τ
τ τ

τ τ
≡

+ +
+ +

g
E t E t E t E t

E t E t E t E t
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, (2)jk

j k k j

j j k k

(2)
† †

† †

where the indices ∈j k, {s, i} represent the signal or idler photon, respectively. A
measurement of τg ( )jk

(2) consists of first determining the rate of coincidence detections between
modes j and k at a time delay τ. This is effectively a measurement of the non-normalized
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second-order coherence function, which is the numerator in equation (2). The normalization is
then performed with respect to the rate of coincidences between photons from uncorrelated
pairs created at times differing by much more than the coherence time of the photons.

By itself, the second-order cross-correlation function τg ( )si
(2) gives a measure of the quality

of a photon-pair source, because noise photons stemming from imperfect spectral filtering or
fluorescence generated in the down-conversion crystal inevitably reduce the amount of
correlations. The auto-correlation functions τg ( )ss

(2) and τg ( )ii
(2) give information about the

multimode character of the photons and their spectra. Finally, the cross- and auto-correlation
functions can be combined in a Cauchy–Schwarz inequality whose violation proves the
quantum character of the photon-pair source [39].

In this section we look at the normalized auto- and cross-correlation functions of the signal
and idler photons. We show that the shape of the correlation functions is exactly as one would
expect from the spectral filtering, if the jitter of the detectors is taken properly into account.
Additionally, we use the auto-correlation functions to deduce the probability that a detected
signal (or idler) photon stems from the desired mode of the filtering etalon (or cavity).

5.1. Correlation functions

The spectral filtering reduces the uncertainty in energy of the signal and idler photons. The
effect can be directly seen on the normalized second-order auto- and cross-correlation functions,
for which simple analytical expressions can be derived for collinear, low-gain, SPDC with
plane-wave fields. The detailed derivation is given in appendix B. In brief, it procedes as
follows. First, expressions for the first-order field correlation functions without filtering can be
obtained via the Bogoliubov transformation that describes the input–output relation of the
SPDC process [40, 41]. Next, spectral filtering is included through the convolution of the
correlation functions with the filter impulse response [42]. In the case where the bandwidth of
the filters is much smaller than the bandwidth of the SPDC process, the temporal dependence of
the correlation functions is entirely given by the spectral filtering. Finally, higher-order
correlation functions are obtained by applying the quantum form of the Gaussian moment-
factoring theorem [40]. We arrive at the following expressions for the normalized second-order
cross- and auto-correlation functions for Lorentzian-shaped spectral filters
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τ τ
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where the temporal dependence is given by
⎧⎨⎩τ τ

τ
= <

⩾
Γ τ

Γ τ−f ( ) e for 0
e for 0

. (4)jk

j

k

The cross-correlation function depends on the inverse of the ratio of the R B. Here, B is the
phase-matching bandwidth and R is the rate of photon pair creation. Hence, B1 is seen as the
duration of one temporal mode. The low-gain limit of the source is obtained with the probability
to create a pair per temporal mode is much smaller than one, i.e. ≪R B 1. In this regime, the
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rate R is proportional to the pump power. Additionally, the cross-correlation depends on the
ratio of the filter bandwidths. For a given value of R B, a larger mismatch makes it more likely
that only one of the photons in a pair passes the filters, which leads to a reduction of the cross-
correlation.

5.2. Detector jitter

Figure 4 shows an example of a measured cross-correlation function for the PPKTP waveguide.
The combination of detectors, a Perkin–Elmer SPCM-AQRH-13 silicon avalanche photo diode
and a super-conducting nanowire single-photon detector (SNSPD), had negligible dark count
rates. To compare the measured temporal dependence with theory, the jitter of the detection
system has to be taken into account. This can be done by convoluting the expression in
equation (4) with the distribution function of the jitter. In our case the jitter is well modeled by a
normal distribution, and the expression for the refined temporal dependence τf̃ ( )jk is given in
the appendix. After this modification, we find excellent agreement between the measurement
and a theoretical fit, where the only free parameters are a horizontal offset and the ratio R B.
Note that the jitter of σ = 250 ps for this combination of detectors reduces the maximum cross-
correlation by a factor =f̃ (0) 0.65si .

5.3. Multimode properties

Contrary to the cross-correlation function, the normalized auto-correlation functions do not
depend on the spectral brightness. Instead, they reach a maximum value of =g (0) 2jj

(2) , which
reveals the thermal nature of the individual signal and idler fields.

A comparison between theory and experiment for the auto-correlation function of the idler
photons generated in the PPKTP waveguide is plotted in figure 5. Detector jitter has been
included as before by using τf̃ ( )ii instead of τf ( )ii . The detectors were a pair of SNSPDs with
σ = 125 ps. The theoretical prediction is in excellent agreement with the measured data.

Figure 4. Example of a cross-correlation function measured for the PPKTP waveguide
using a binning of 162 ps. The solid line is a fit to the theoretical line shape
(equation (3)), corrected for detector jitter, where the only free parameters are the ratio
R B and a horizontal offset. The dashed line is the cross-correlation that we could have
obtained with a jitter-free detection system.
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A measurement of the second-order auto-correlation function allows, additionally, to
characterize the presence of spurios spectral modes, that is, undesired modes of the Fabry–Perot
filters, in the signal and idler fields. This has first been shown for pulsed and broadband SPDC
in [43], where a set of orthogonal spectral modes is obtained via Schmidt decomposition of the
joint-spectral amplitude of the signal and idler fields. By normalizing the occupation
probabilities pn of these modes such that ∑ =p 1n , the authors define an effective number of
modes = ∑K p1 n

2. This number, also known as the Schmidt number, quantifies the amount of
spectral entanglement and is the reciprocal of the purity of the reduced states of the signal and
idler modes [44]. Furthermore, it is shown in [43] that the inability to resolve these spectral
modes results in a reduction of the auto-correlation functions, given by = +g K(0) 1 1jj

(2) .
Hence, a measurement of g (0)jj

(2) allows to directly determine K.
For continuous-wave SPDC subjected to narrow-band Fabry–Perot filters, the longitudinal

modes of the filter form a suitable basis for the spectral decomposition. We define p0 as the
probability to find the photon in the desired longitudinal mode, and let pn be the nth red-detuned
(or blue-detuned) mode for >n 0 (or <n 0). We would like to determine a lower bound on p0
via a measurement of the auto-correlation function. As in the case of pulsed SPDC, the presence
of spurious longitudinal modes of the Fabry–Perot filter reduces the auto-correlation function.
This is easily seen from the fact that τf ( )jj is proportional to the absolute square of the Fourier
transform of the power spectral density of the cavity transfer function (see also equations (B.6)
and (B.8)). The presence of multiple longitudinal cavity modes will hence lead to oscillations of

τg ( )jj
(2) at a frequency corresponding to the FSR of the filter. If the detectors do not resolve these

oscillations, they will be averaged out, leading to a reduction of τg ( )jj
(2) . However, in our case

the detector jitter is sufficiently strong to give a reduction of the g (0)jj
(2) even for the single-

mode case. To more clearly separate the contributions from detector jitter and spurious modes,
we rewrite the auto-correlation function of equation (2) as

Figure 5. The second-order auto-correlation function of the idler photons generated in
the PPKTP waveguide. Bins are 162 ps. The solid line is a fit to the theoretical line
shape (equation (3) with jitter included), where the only free parameter is a horizontal
offset. The dashed line is the auto-correlation that we could have obtained with a jitter-
free detection system. The dotted line is a simulation corresponding to a 2.5%
occupation of each nearest-neighbor longitudinal cavity mode.
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τ τ= +g f( ) 1 ˜ ( ), (5)jj K jj
(2) 1

where jitter has been taken into account explicitely via the use of τf̃ ( )jj .
For the idler photon, the red dotted line in figure 5 shows the case of p0 = 0.95 for the

central cavity mode and =±p 0.0251 for the neighboring red- or blue-detuned modes, giving
K = 1.1. The mismatch with the experimental data at zero delay is consistent with the selection
of a single cavity mode by the filtering system.

The situation is different for the signal photon, for which auto-correlation measurements
are shown in figure 6. Here, the bandwidth of the VBG is comparable to the FSR of the etalon,
and contributions from spurious modes are to be expected. From a fit of equation (5) to the data,
with K and σ as free parameters, we obtain =K 1.71(8) for the PPKTP waveguide and

=K 1.22(6) for the PPLN waveguide. Assuming the worst case of only a total of two etalon
modes with non-zero population, this corresponds to probabilities of =p 0.71(3)0 and

=p 0.90(3)0 , respectively, for the photon being in the desired etalon mode. We attribute the
larger value of K for the PPKTP waveguide to the larger phase-matching bandwidth.

6. Efficiency characterization of the filtered photon sources

In this section we show a characterization of the individual performances of the two
waveguides, including spectral filtering. The characterization aims at determining the spectral
brightness and the collection and detection efficiencies of the photons. It consists of measuring
as a function of the pump power the detection rates of signal and idler photons. Furthermore, we
measured the photon-pair rate, that is, the signal-idler coincidence rate, corrected for accidental
coincidences, for a coincidence window that is large compared to the coherence time. Finally,
we also determined the power-dependence of the second-order cross-correlation function

τg ( )si
(2) at delay τ = 0. The results are shown in figure 7.

For comparison to a theoretical model, we use the same derivation as for the correlation
functions in the previous section. However, in the previous section the dark counts of the
detectors were negligible. Dark counts add an offset to the signal and idler detection rates.
Additionally, they give rise to accidental coincidences, which set an upper bound on the

Figure 6. The second-order auto-correlation function of the signal photons generated in
the PPKTP (left) and PPLN (right) waveguides. Spurious etalon modes prevent the peak
from reaching a value of 2, even after the correction for detector jitter. Bins are 162 ps.
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normalized cross-correlation function at low pump powers. We included the dark count rate Dj

in the model and also added finite detection efficiencies ηj to end up with the following set of
equations (see also appendix B),
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Figure 7. Characterization of (a) the PPKTP and (b) the PPLN waveguide. For each
waveguide, the signal, idler and pair detection rates are plotted, as well as the value of
the cross-correlation function at τ = 0 delay. The dashed horizontal lines in the panels
for the signal and idler rates indicate the detector noise level. For the measurement of
the pair rate, a coincidence window of 6 ns was used, which is sufficiently large to
encompass the entire coincidence peak (see figure 4). Additionally, accidental
coincidences have been subtracted. The values of the cross-correlation function are
based on a binning of 162 ps. A common fit (solid lines) to all four data sets for each
waveguide was used to extract the spectral brightness and collection efficiencies (see
also table 2).
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Here, the signal and idler rates Ws and Wi are essentially given by the spectral brightness of the
waveguide times the respective bandwidth of the filtering system and attenuated by the
detection efficiency. Since R is proportional to the pump power, so are Ws and Wi. Ws has also
been corrected for the contribution of spurious etalon modes, which will increase the detection
rate by a factor p1 0. The behavior of the pair rate W2 is similar, except that the photon pairs
have an effective bandwidth of Γ Γ Γ Γ+( )s i s i , which is smaller than the bandwidth of the signal
and idler photons individually. Note that the measurement of W2 includes correction for
accidental coincidences, and no correction for dark counts needs to be applied to the theory.
Finally, the expression for g (0)si

(2) is equivalent to the one given in equation (3), but the
inclusion of dark counts prevents further simplification.

We used commercially available detectors for the measurements presented in figure 7. The
signal detector by Perkin–Elmer has a dark-count rate of 150Hz and a detection efficiency of
about 30% at 880 nm. As detector for the idler photon served an ID220 by Id Quantique with
20% efficiency. To reduce the contribution of afterpulsing, the dead time of this detector was set
to 20 μs, and we observed a dark-count rate of 3.0 kHz. The offset on the signal and idler count
rates given by the dark counts is indicated by dashed lines in the top panels of figure 7.

A simultaneous fit to the equations (6) reproduces the measurements to a high extent. The
free parameters in the fit are the spectral brightness R B and the overall collection and detection
efficiencies ηs and ηi. The results of the fit are shown in table 2. For the PPKTP waveguide the
idler rate shows a negative deviation from the expected behavior at pump powers above 1mW,
where the detector starts being saturated. For the PPLN waveguide the saturation seems to be
compensated by a higher pair-creation efficiency, indicated by a positive deviation of the signal
rate and a significant drop in the cross-correlation.

In terms of the spectral brightness, the two waveguides perform on a similar level. We note
however, that the specified pump power is measured in front of the waveguide. For both
waveguides we estimate a coupling of the pump laser into the waveguide between 40–50%. Of
this, only a fraction is coupled into the fundamental spatial mode, and hence contributing to
SPDC. In principle, we would expect a higher brightness for the waveguide from Paderborn,
since it is longer and PPLN has a larger nonlinear coefficient than PPKTP. The reason that we
observe something different could be a non-optimal temperature of this waveguide in this
measurement, which shifts the perfect phase matching slightly away from the filter transmission
maximum. We also note that at pump powers above a few milliwatts, the operation of the PPLN
waveguide is impaired by photorefraction, which leads to strong fluctuations of the spatial mode
of the pump laser inside the waveguide.

Table 2. Parameters as extracted from fitting the data in figure 7 to equations (6).
π R B2 is the spectral brightness, given in conventional units, for a pump power of
1mW. ηs (or ηi) is the overall collection and detection efficiency for the signal (or idler)
photon.

Waveguide

PPKTP PPLN

π R B2 × −2.45(6) 10 (s MHz)3 1 × −3.08(6) 10 (s MHz)3 1

ηs 3.1(2)% 2.6(2)%
ηi 7.4(1)% 6.6(1)%
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In our experiments we are rarely constrained by the available pump laser power, and the
spectral brightness is only of minor importance. More important are the achievable coincidence
rates and the correlations between signal and idler photons. The coincidence rate is proportional
to the product of the signal and idler collection and detection efficiencies, ηs and ηi. Also here
we see similar values for the two waveguides, indicating a spatial mode-matching better than
80% for the signal photon and around 90% for the idler. The expected peak transmission for the
signal path is η ≈ 3.6%s with contributions from a long-pass filter that removes the pump light
(80%), the VBG (90%), the etalon (80%), fiber coupling (60%) and detector efficiency (30%).
Additionally, the setup was already prepared for storage and retrieval in the quantum memory,
adding losses due to a fiber-optical switch (70%), fiber connectors (70%) and another fiber
coupling (70%). On the idler side, we expect η ≈ 8%i , distributed over the cavity (60%), fiber
coupling (70%) and detector efficiency (20%). The measured value for ηs and ηi, given in
table 2, corresponds quite well to the expected values. We attribute the small differences to loss
inside and at the end facets of the waveguides.

The measured cross-correlation function reaches for both waveguides a peak value of
approximately 2600 at a pump power of 50 μW. At lower pump power correlations are reduced
by dark counts, at higher pump powers by multi-pair emission.

7. Entanglement

The characterization of the two waveguides showed that a very high degree of mode-matching
for the photons originating from the two waveguides has been obtained. Additionally, the
spectral brightness is about the same. This means that it should be possible to achieve a high
degree of entanglement by setting the pump polarization to an approximately equal
superposition of horizontal and vertical, such that similar amounts of light arrive at the two
waveguides. In practice, we neglect the small differences in coupling efficiencies and adjust the
pump polarization such that the rate of coincidences from the two waveguides is about the
same. It remains to be shown that the horizontally and vertically polarized photon pairs form a
coherent superposition with a stable phase, which corresponds to an entangled state between the
two photons.

Let us, for simplicity, assume that the photon pairs are produced in the maximally
entangled state

+ ϕ( )HH VV
1
2

e . (7)i

A measurement that verifies the coherent nature of this state is illustrated in figure 8(a). First,
the idler photon is measured in the basis ∣±〉 = ∣ 〉 ± ∣ 〉H V( ) 2 using a half-wave plate and a
PBS. If a photon is detected in the port of the beam splitter corresponding to, say, ∣+〉, the signal
photon is projected onto the state ϕ∣ 〉 = ∣ 〉 + ∣ 〉ϕ

+ H V( e ) 2i . Sending this through a quarter-
wave plate and a half-wave plate whose fast axes are at angles of π 4 and θ to horizontal,
respectively, transforms the signal photon into the linearly polarized state
β β β∣ 〉 = ∣ 〉 − ∣ 〉H Vsin cos with β θ ϕ π= + +2 2 4. We hence expect that the probability
of detecting the signal photon after a PBS shows sinusoidal fringes as a function of θ with a
period of π 2. The phase of the fringes depends on the phase ϕ of the initial entangled state (7),
such that this kind of measurement can be used to determine ϕ. If, instead, the photon pairs are
generated in a maximally mixed state ∣ 〉〈 ∣ + ∣ 〉〈 ∣HH HH VV VV( ) 2, the same measurement of
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the coincidence rate will not show any dependence on θ. A fringe visibility larger than 33% is
necessary to infer the presence of entanglement [45].

In figure 8(b) we show the outcome of the described measurement procedure. A pair of
SNSPDs has been used for the idler photon, and Si avalanche photo diodes (Perkin–Elmer) for
the signal photon. For each value of θ the number of coincidences in a 2 ns window have been
integrated over a duration of 60 s for each of the four possibly detector combinations. The
number of measured coincidences oscillates as a function of θ, as expected. A sinusoidal fit
reveals an average visibility =V 96.1(9)%, which indicates that the source generates photon
pairs that are close to maximally entangled in polarization.

To unequivocally prove the presence of entanglement we performed a violation of the
Clauser–Horne–Shimony–Holt (CHSH) inequality [46]. A quarter-wave plate was added to the
polarization analysis of the idler photon, such that the setups for signal and idler photon of
figure 8(a) were now identical. Additionally, the SNSPDs were replaced by ID220s for their
higher detection efficiency. The wave plate allows to switch the measurement basis of the idler
photon between ∣±〉 and the circular polarizations ∣ 〉 ± ∣ 〉H V( i ) 2 by a rotation of the half-
wave plate. These two basis sets were used for the measurement. Since we do not a priori know
the relative phase ϕ of the photon pairs, we determine the optimal settings for the signal
analyzer as follows. We set the idler analyzer to ∣±〉 and perform another measurement of the

Figure 8. Characterization of the coherence of the pair source. (a) The idler photons are
measured in the bases of diagonal polarization. This projects the signal photon onto a
coherent superposition of ∣ 〉H and ∣ 〉V with unknown relative phase. A quarter-wave
plate at fixed angle transforms this state into a linear polarization, which is analyzed
with the help of a half-wave plate and a polarizing beam splitter. (b) Corresponding
coincidence measurement for a coincidence window of 2 ns for the four detector
combinations. Solid lines are sinusoidal fits with a fixed period and common phase. The
fits yield an average visibility of =V 96.1(9)%.
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type of figure 8 to determine the angle θmax of the half-wave plate of the signal analyzer that
gives a maximum between detectors Si1 and ID2201. For the violation of the CHSH inequality
we then use the angles θ π± 16max . For an acquisition time of 5min per setting we find a
CHSH parameter of =S 2.708(9), which is almost 80 standard deviations above the bound for
separable states of ⩽S 2.

8. Summary and outlook

We have presented a source of polarization-entangled photon pairs based on the nonlinear
waveguides of different materials embedded in the arms of a polarization interferometer. We
have shown that the source emits photon pairs with a high degree of entanglement and is
compatible with the storage of one of the photons in a quantum memory. The wavelength of the
other photon is in a telecom window, which permits the low-loss transmission over optical fiber.
This combination makes the source particularly useful for quantum communication
experiments.

Even though the photon-pair source is conceptually simple, a higher degree of integration
would be desirable. Recent work along this direction includes the integrated spatial separation
of signal and idler photons using an on-chip wavelength-division multiplexer [47] and the direct
generation of 150MHz broad photon pairs using a monolithic waveguide resonator [21]. Both
of these techniques were demonstrated with similar wavelengths as used in this work. In
particular the latter could greatly simplify the efficient generation of narrowband photon pairs,
provided that the intrinsic resonator loss can be reduced. If this could further be combined with
the on-chip generation of polarization-entangled photons using an interlaced bi-periodic
structure [48], one would have the equivalent of the whole setup of figure 2 on a single chip,
including spectral filtering. Together with the recent progress in solid-state quantum memories,
these are promising perspectives for the development of compact and practical nodes for
quantum communication.
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Appendix A. Estimation of phase-matching bandwidth

The frequency dependence of SPDC is given by the joint spectral amplitude ω ωf ( , )s i , which
can be written as the product of two functions,

ω ω α ω ω Φ ω ω= +f ( , ) ( ) ( , ), (A.1)s i s i s i

where ωs (or ωi) is the frequency of the signal (or idler) photon, α ω( ) represents the spectrum of
the pump laser and Φ ω ω Δ= kL( , ) sinc( 2)s i is the phase-matching function. The state of a
single photon pair can be written in terms of the joint spectral amplitude as
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where ωa ( )† is the photon creation operator at frequency ω. We recognize, that ω ωf ( , )s i is the
spectral wavefunction of the photon pair. It follows that the spectral distribution, that is, the
probability to find a photon in an infinitesimal interval at frequency ω, of the signal or idler
photon is given by
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In the case of a highly coherent pump laser, α ω( ) can be approximated by a Dirac delta
function, δ ω ω−( )p , and the spectra of the signal and idler photons is given by the phase
matching, only, i.e.

ω Δ∝S kL( ) sinc ( 2). (A.4)j
2

The phase mismatch is given by
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with nx and λ =x( p, s, i)x the refractive index and wavelength of pump, signal and idler
photons, respectively. Λ is the period of poling. Here, as a first approximation, we have
neglected the effect of the waveguide. A more accurate expression would use the propagation
constants of the pump, signal and idler modes for the given waveguide refractive index profile.

We want to estimate the FWHM bandwidth of the photons generated by SPDC. To this
end, we first remember that λ λ λ= −− − −( )i p

1
s

1 1 due to energy conservation, such that the phase
mismatch becomes a function of the signal wavelength only. For phase-matching Δ =k 0, and
the bandwidth is determined by the dispersion, which to first order is given by
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2

Note that the contributions of the pump wavelength and the periodic poling to Δ λk ( ) are
constant, so they will not affect Δ ′k . Using equation (A.6), the argument of the sinc2 function in
equation (A.4) becomes Δ Δν= ′x k L 2. Knowing that the sinc squared reaches half its
maximum value at =x 1.391561 2 , the FWHM bandwidh is given by

Δν Δ= ′
x

k L

4
. (A.7)FWHM

1 2

Using the Sellmeier equations for KTP [36] and LiNbO3 [37], we can calculate Δ ′k and the
resulting values for ΔνFWHM. These are given in table A1.
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Appendix B. Analytical model for SPDC with spectral filtering

We shall here give a brief derivation of the expressions for the signal and idler rates, the
coincidence rate and the second-order correlation function of the waveguides, including the
application of spectral filtering. As a starting point we will take the treatment presented by
Razavi et al [40] (see also [41]), assuming collinear SPDC with plane-wave fields. Furthermore,
the depletion of the pump and group-velocity dispersion have been neglected.

We start by giving expressions for the first-order correlation functions, from which one can
calculate the event rates. With the help of the quantum form of the Gaussian moment-factoring
theorem, all higher-order correlation functions can be derived [40].

B.1. First-order correlation functions

Defining scalar photon-units positive-frequency field operators

∫π ω ω= =ω
−∞

∞ −E t a j( )
1

2
d ( )e , s, i, (B.1)j

ti

where ωa ( ) is the photon annihilation operator in the frequency domain, Razavi et al use a
Bogoliubov transformation to derive the following set of first-order correlation functions for the
SPDC output state
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where δjk is the Kronecker delta function and ∈j k, {s, i}. In the low-gain regime of SPDC, the
envelope functions τC ( )auto and τC ( )cross are given by
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auto

cross

Here, R is the rate of photon pair creation and proportional to the pump power, and
π Δ= ′B k L2 ( ) is proportional to the bandwidth. The ratio R B is often termed the spectral

brightness of the photon pair source.
When adding spectral filtering, the envelope functions get convoluted with the impulse

response functions Fj(t) of the filters [42]. For the autocorrelation,

Table A1. Values for the estimation of the FWHM bandwidth of the two waveguides.
For the PPLN waveguide we assume a temperature of 180 °C.

Waveguide Δ ′k ( −(mm GHz) 1) L (mm) ΔνFWHM (GHz)

PPKTP −7.93 ×10−4 13 539
PPLN −1.14×10−3 50 97
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where we have taken α δ′ − ″ ≈ ′ − ″C t t t t( ) ( )auto , which is valid if the bandwidth of the filter
is much smaller than B. The constant α is
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We further consider a Lorentzian filter with FWHM Γj whose transfer and impulse response
functions are given by
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where Θ τ( ) is the Heaviside step function. We then arrive at the final expression for the auto-
correlation envelope

τ Γ= Γ τ−C
R
B

( )
1
4

e . (B.8)j
jauto

( ) /2j

Performing a similar calculation for the cross-correlation envelope, we get
⎧⎨⎩τ

Γ Γ
Γ Γ

τ
τ

= + × <
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Γ τ

Γ τ−C
R
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( )
1
2
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j k
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( )

2
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k
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Finally, let us introduce, for convenience, the signal and idler flux,

Γ≡ =W C
R
B

(0)
1
4

, (B.10)j
j

jauto
( )

and the pair flux

∫ τ τ
Γ Γ

Γ Γ
Γ

Γ Γ

≡

= +

= × +

−∞
∞

W C

R
B

W

d ( )

1
4

. (B.11)

jk

j k

j k

j
k

j k

2 cross
( ) 2

The last line of equation (B.11) says that the pair flux is equal to the flux if signal or idler
rescaled by the probability that a photon that has already been projected onto the spectrum of
one of the filters also passes the second filter. We note that this expression is valid only for
perfectly correlated photon pairs and does not contain contributions from multi-pair emission.
These will be included in the next section, where we consider second-order correlation
functions.
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B.2. Second-order correlation functions

The normalized second-order cross-correlation function is defined as

τ
τ τ

τ τ
τ

≡
+ +

+ +

=

g
E t E t E t E t

E t E t E t E t

G

W W

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
, (B.12)
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†

i s

s
†

s i
†

i

si
(2)

s i

where the numerator is the non-normalized second-order cross-correlation function. Applying
the Gaussian moment-factoring theorem, it can be shown that

τ τ= +G W W C( ) ( ) , (B.13)si
si
(2)

s i cross
( ) 2

where the first term is proportional to the coincidence rate that is expected for completely
uncorrelated photons, often called accidental coincidences. Using equations (B.9) and (B.10),
we find

⎧⎨⎩
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τ τ
τ

= +

= +
+
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The derivation of the second-order auto-correlation functions for the signal and idler
photons proceeds along the same lines as that of the cross-correlation. The auto-correlation
function is defined as

τ
τ τ

τ τ
≡

+ +
+ +

g
E t E t E t E t

E t E t E t E t
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. (B.15)jj

j j j j

j j j j

(2)
† †

† †

Applying the same steps as before, this can be shown to be equal to

τ
τ

τ= + = +g
C

W
f( ) 1

( )
1 ( ), (B.16)jj

j

j
jj

(2) auto
( ) 2

2

where we have reused the definition of τf ( )jk from equation (B.14).

B.3. Inclusion of experimental imperfections

Before the expressions derived in the appendices B.1 and B.2 can be compared to the
experimental data, they need to be slightly modified to take into account experimental
imperfections in the shape of finite efficiencies, dark counts and electronic jitter.
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Let us start by considering the jitter of our detection system, which is well modeled by a
normal distribution

πσ
= σ−j t( )

1

2
e . (B.17)t

2
(2 )2 2

The effect on the measured cross- and auto-correlation functions can be calculated as the
convolution of τf ( )jk from equation (B.14) with j(t), and one obtains

⎡
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The spectral filters do not have unit peak transmission. Additionally, the detectors have a
finite efficiency and there is loss on the surfaces of optical elements and when coupling into
single-mode fiber. By gathering all the losses into a single coefficient, they can be taken into
account by adding a prefactor of η j to the transfer function (B.6). This leads to a reduction of
the signal and idler flux (B.10) by a factor of ηj, and the pair flux (B.11) is correspondingly
reduced by a factor η ηj k.

Besides the finite efficiency of the filtering, the etalon or cavity may not be well-
approximated by a single Lorentzian filter. This is the case if more than one longitudinal mode
is excited. Spurious modes contribute the photon flux and increase it by a factor p1 0 where p0 is
fraction of the photons that end up in the desired mode. However, spurious modes cannot
contribute to the pair flux, since the FSR of etalon and cavity are incommensurate. As explained
in the main text, the signal filtering suffers from such spurious modes, and a correction has been
added to the signal flux.

Detector dark counts add an offset to the detected photon flux and will also contribute to
the accidental coincidences. This effect can be added to the formalism by introducing a constant
term Dj to equation (B.10) and using equations (B.12) and (B.13) for comparison with the
measurements, instead of the simplified expression (B.14). Please note that the pair flux W2 by
definition does not contain contributions from accidental coincidences. In summary, the
experimental data presented in figure 7 has been fitted to the expressions
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with the free parameters η η R B, ,s i .
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Appendix C. Comparison between one- and two-sided filtering

We can use our theoretical model to quantitatively compare the situations for one- and two-
sided filtering. In particular, we show that the gain in pair rate obtained by removing the loss
caused by the filters typically does not justify the strong reduction of the cross-correlation.

Suppose that only the idler photon is filtered. This can be introduced into the formulas of
equation (B.19) by substituting Γs with Γ Γ′ ≫s i, and ηs with η η η′ =s s filt, where η = 0.72filt is
the peak transmission of the combination of etalon and VBG. After this substition, the modified
pair rate can be approximated by

η
η η Γ η

Γ Γ
Γ′ ≈ = +

W
R
B

W
1
4

1
. (C.1)2

s

filt
i i 2

filt

s i

s

In our experiment, Γ Γ= 2.5s i, so switching to one-sided filtering would improve the pair rate
by a factor of 2.

Neglecting, for simplicity, detector dark counts, the expression for the zero-delay cross-
correlation function reduces to

Γ Γ
Γ Γ

= +
+( )

g f
B
R

(0) 1 4˜ (0) , (C.2)si
(2)

si
s i

s i
2

which is independent of the filter transmission. Note that the highest cross-correlation is
achieved for Γ Γ=s i. For Γ Γ′ ≫s i, on the other hand, the modified cross-correlation is
approximately

⎡⎣ ⎤⎦ Γ
Γ′ ≃ + ′g f

B
R

(0) 1 4˜ (0) . (C.3)si
(2)

si
i

s

Without filtering of the signal photon Γ ′s is on the order of the phase-matching bandwidth,
which is three orders of magnitude larger than Γi, practically removing any correlations. This is
because the pair rate becomes negligible compared to the accidental coincidences caused by the
large amount of unfiltered signal photons.

The visibility of the sinusoidal fringes used to characterizate the entanglement in section 7
is related to the cross-correlation function via = − +V g g( 1)/( 1)si

(2)
si
(2) . Hence, a reduction of

the cross-correlation entails a lower-quality entanglement.

Appendix D. Details for the violation of the CHSH inequality

The violation of the CHSH inequality requires the joint measurement of the signal and idler
photons in four combinations of bases. In our case, we chose the idler bases X1 and X2 to
correspond to the Pauli matrices σx and σy, respectively. If the source would produce the Bell
state Φ∣ 〉+ , i.e. equation (7) with ϕ = 0, an optimal choice for the signal photon could be

σ σ= ±Y ( ) 2x y1,2 . For non-zero ϕ, this can be generalized to θ σ θ σ= +± ±Y cos sinx y1,2 with
θ ϕ π= ±± 4. In the experiment, we first determined ϕ by a separate measurement and then
proceeded to the violation of the CHSH inequality, which consists of measuring the four
correlators
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= + − −
+ + +( )E X Y

N N N N

N N N N
, , (D.1)i i

11 22 12 21

11 22 12 21

where, e.g., N11 is the number of coincidences between detectors Si1 and ID2201. The CHSH
parameter is then given by

= + + −S E X Y E X Y E X Y E X Y( , ) ( , ) ( , ) ( , ) . (D.2)1 1 1 2 2 1 2 2

We obtained the following values for the correlators

=
=
=
= −

( )
( )
( )
( )

E X Y

E X Y

E X Y

E X Y

, 0.638(5),

, 0.702(5),

, 0.700(5),

, 0.669(5)

1 1

1 2

2 1

2 2

which gives =S 2.708(9).
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