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Efficient algorithm for optimizing data-pattern tomography
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We give a detailed account of an efficient search algorithm for the data-pattern tomography proposed by J.
Rehacek, D. Mogilevtsev, and Z. Hradil [Phys. Rev. Lett. 105, 010402 (2010)], where the quantum state of a
system is reconstructed without a priori knowledge about the measuring setup. The method is especially suited
for experiments involving complex detectors, which are difficult to calibrate and characterize. We illustrate the
approach with the case study of the homodyne detection of a nonclassical photon state.
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Modern quantum technologies rely on the ability to create,
manipulate, and measure quantum states. For the successful
completion of these tasks, verification of each step in the
experimental procedures is of utmost importance: quantum
tomography has been developed for that purpose [1–3].

The main challenge of tomography is simple to state:
given a finite set of identical copies of a system in a state
represented by the density matrix � and an informationally
complete measurement [4], the state � must be inferred from
the measured relative frequencies f�, which sample the true
probabilities p� of distinct measurement outcomes. With these
limited resources, the choice of optimal measurements and
the design of efficient reconstruction algorithms turn out to be
decisive.

The standard tomographic approach assumes a well-
described measurement apparatus; that is, the responses � �→
{p�} to all the states in the search space can be determined.
The issue of the independent characterization of detectors
has recently started to attract a good deal of attention [5].
Quantum detector tomography employs the outcome statistics
in response to a set of complete certified input states, at the
cost of enlarging the set of unknown parameters from d2 to d4,
in dimension d.

However, as shown in Ref. [6], if the measurement itself is
of no interest, the costly detector calibration can be bypassed
by using a direct fitting of data in terms of detector responses to
input probes. Thus, state estimation is done without any prior
knowledge of the measurement, avoiding unnecessary wasting
of resources on appraising the parameters of the setup [7]. In
addition, since all the information used is contained in the
data patterns, the method is free of any assumption that cannot
be verified experimentally. These substantial advantages have
already been experimentally demonstrated [8].

The fitting of data patterns requires an optimization process
with additional physical constraints (such as positivity). It
is precisely the goal of this work to present a detailed
implementation of a simple, robust, and efficient algorithm
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to perform such a job. This is an essential resource for any
potential practitioner of this promising technique.

We recall that the central idea of the method is the
possibility of expressing an arbitrary quantum signal � as a
mixture,

� =
N∑
ξ

xξ σξ (1)

of N linearly independent (generally, nonorthogonal) states
{σξ }, with positive and negative weights {xξ }. We may look at
(1) as some sort of discrete P representation.

An unknown measurement is mathematically interpreted
as a set of positive operator-valued measures {��}, with
� = 1, . . . ,M labeling the measurement outcomes [9]. The
probability for detector outcome � given input state σξ is given
by the Born rule p

(ξ )
� = Tr(�� σξ ). In a practical estimation

with a finite number of copies, what we get is a frequency
distribution f

(ξ )
� . By linearity, the response to an unknown

signal � can be written as

f̂� =
N∑
ξ

xξ f
(ξ )
� . (2)

Once the corresponding relative frequencies f� are measured,
the coefficients xξ can be inferred, and the signal can be
reconstructed.

The goodness of the fit can be assessed with a variety of
convex objective functions. In this work, we shall use the
square distance

F ({xξ }) =
M∑
�

(f� − f̂�)2 , (3)

which provides a robust least-squares fit. Consequently, we
have to minimize the functional F ({xξ }) subject to � � 0
and Tr(�) = 1, which ensure that the reconstructed operator
corresponds to a physical state.

The constraint Tr(�) = 1 can be accounted for by noticing
that it implies xN = 1 − ∑N−1

ξ xξ , which leaves us with N − 1
independent variables we shall denote, for simplicity, by
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x = (x1, . . . ,xN−1) ∈ RN−1. To address the positivity, we em-
ploy a continuous function c(x), such that c(x) � 0 whenever
�(x) � 0 and takes zero value at the boundary of the convex
set of density matrices.

Fitting the data patterns thus takes the simplified form

min
x

F (x)

subject to c(x) � 0 . (4)

For a convex constraint c(x), the primal problem (4) is convex
and strictly feasible. The dual problem associated with Eq. (4)
can be stated as [10,11]

max
λ

min
x

L (x,λ)

subject to λ � 0 , (5)

with L being the Lagrangian of (4),

L (x,λ) = F (x) − λc(x) , (6)

and λ being a dual variable. For strictly feasible convex
problems, strong duality holds: the optimal of the Lagrange
dual problem coincides with the minimum for the primal
problem.

The complementary slackness condition ensures that at the
local optimum x∗ of (5) one has λc(x∗) = 0, and therefore the
Lagrange multiplier must be zero when the constraint is not
active at x∗. The complementary is perturbed by introducing
a parameter μ,

λc(x) = μ , (7)

to keep the search direction biased from the boundary.
The optimality conditions for (4) [or, equivalently, for (5)]

are tantamount to including a logarithmic barrier function [10];
that is, instead of the constrained problem (4), one looks at the
unconstrained version

min
x

F (x) − μ ln c(x) . (8)

Given the properties of c(x), the barrier term ln c(x) goes to
infinity as the point approaches the boundary of the feasible
region. In this way, it penalizes points close to the border and
thus ensures that one searches for an optimum well inside the
region where the constraint is satisfied. The barrier parameter
μ plays the role of a scaling factor: when it becomes very small
the effect of the barrier becomes negligible within the strictly
feasible set and only remains at the border.

By choosing a feasible starting point and gradually de-
creasing the height of the barrier, the optimal points of (8) will
converge to the optimal points of the primal problem (4) from
the interior regardless of the purity of the optimal state.

The extremal equations for the dual problem (5) read

g(x) − λJ (x) = 0 , (9)

along with the constraint (7). Here, g(x) = ∇F (x) and J (x) =
∇c(x) is the constraint Jacobian. There are a variety of
numerical methods to solve (9), although the Newton search
provides a particularly fast convergence. The Newton steps �x
and �λ of the primal and dual variables, respectively, obey(

H −J T

λJ c

) (
�x
�λ

)
=

(−g + λJ T

μ − λc

)
, (10)

where Hij = ∂2L(x,λ)/∂xi∂xj is the Hessian matrix of the
Lagrangian (6). To proceed further, we need to specify the
function c(x). Motivated by the barrier function ln det �(x)−1,
which is strictly convex and analytical on the feasible
space [12] and has been already employed in maximum
likelihood estimations [13], we propose to adopt

c(x) =
{

[det �(x)]m , �(x) � 0 ,

0, otherwise,
(11)

where the parameter m (0 < m < 1) has been inserted to deal
with the numerical issues that arise due to the extremely small
values of det � near a highly rank-deficient optimum. Setting m

to be the reciprocal of the Hilbert-space dimension m = 1/d

works well, and the algorithm is not very sensitive to small
changes in this suggested value.

Using simple matrix identities, we get

Ji(x) ≡ ∂c(x)

∂xi

= mc(x) Tr(
i),

Bij (x) ≡ ∂2c(x)

∂xixj

= c(x)−1JiJj − mc(x) Tr(
i
j ),

(12)

where we have denoted 
i = �−1(σi − σN ).
With all these results in mind, we are ready to work out

the desired solution. Our algorithm consists of outer and inner
iterations; the latter solve (9) and (7) for a fixed value of μ.
This value is gradually decreased to zero in outer iterations.
In practice, only one inner iteration is done per outer iteration
to increase the rate of convergence. The algorithm can be
summarized in the following steps:

(1) Choose μ � 0 and 0 � β � 1. Set xi = 1/N and λ =
μ/c(x).

(2) Solve the system (10) for the primal-dual steps �x and
�λ.

(3) Set x′ = x + α�x and λ′ = λ + α�λ. Start from α =
1 and backtrack α until �(x ′) � 0, λ′ � 0, and a sufficient
decrease of the residuals of (9) is observed.
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FIG. 1. (Color online) Amplitudes of coherent probes used to fit
the data pattern in homodyne tomography. Probes 13, 15, 16, 25, 30,
40, 50, and 60 are marked with larger symbols. The density plot of
the true W (α) is shown in the background: white represent zero of
W (α), while the external part (red) and the internal one (blue) are the
zones where W (α) is positive and negative, respectively.
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(4) Decrease the barrier parameter μ = βλ′c(x′) and update
the variables x = x′ and λ = λ′.

(5) Repeat from step 2 until convergence.
Fine-tuning of the algorithm can be achieved by altering

the initial values of μ and β. Larger values tend to slow down
the convergence but improve stability. Typically, a few tens
of iterations are required to solve a moderately sized problem
(say, d ≈ 7, M ≈ 80, and N ≈ 100).

The complexity of a single iteration depends on the
parameters d, M , and N . Since there are at most M − 1 linearly
independent normalized patterns of size M , we can always set
N < M . Three exclusive cases of interest can be identified:

(1) Oversampled measurements: M > max(d3,Nd2,N2).
Setting up f̂� and ∇F (x) dominates with cost O(NM).

(2) Informationally incomplete measurements: N < d2.
Setting up the constraint Hessian dominates with costs

FIG. 2. (Color online) True vs reconstructed Wigner functions
for different numbers of coherent probes. All the reconstructions
have been performed in an eight-dimensional Fock subspace.
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FIG. 3. (Color online) Reconstructed Wigner functions evalu-
ated at the origin, W (0), with 13, 15, 16, 25, 30, 40, 50, and 60 coherent
probes, as in Fig. 1. The quantum-classical border, W (0) = 0, and the
true negative value, W (0) = −0.4, are indicated by horizontal lines.

O(Nd3) and O(N2d2) to generate all 
i’s and carry out the
pairwise inner products of 
i and 
j .

(3) Informationally complete measurements: N � d2. Solv-
ing the system (10) dominates with cost O(N3).

The complexity can be decreased by adopting a quasi-
Newton method [14] with a Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update of the Hessian matrix [case (2)] or
a Hessian matrix inverse [case (3)] at the cost of slowing down
the convergence [15].

To illustrate the utility of the proposed algorithm we exam-
ine the case of the homodyne measurement of a nonclassical
photon state. We are then concerned with rotated-quadrature
measurements x(θ ) = x cos θ + p sin θ , where x and p are the
basic optical position and momentum observables and θ is the
phase of the local oscillator. With a realistic detector efficiency
of η = 80%, the measurement consists of eigenvectors of x(θ )
quadratures convolved with the vacuum. Explicit formulas for
the measurement operators in the computational Fock basis can
be found, e.g., in Ref. [16]. We discretize the measurement
using six equidistant phases and 61 quadrature value bins
in the interval x ∈ [−6,6]. Each of these six quadratures is
measured 200 000 times for each different state, with the data
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FIG. 4. (Color online) Convergence of the algorithm with 15
(blue stars) and 60 probes (red crosses). F (x∗) is the exact value
at the optimal point, while F (xk) is the calculated value after the kth
iteration. For the latter case, we have also included log10(�k) (on
the right vertical axis), where �k denotes the minimal eigenvalue of
ρ(xk). Observe how the state converges towards the boundary of the
space of density matrices. The parameters are μ = 0.01, β = 0.1,
m = 1/6.
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being drawn from the multinomial distribution describing the
measurement statistics.

As a signal state, we have simulated an incoherent mixture
�true = 0.4|0〉〈0| + 0.6|1〉〈1| of vacuum and a single-photon
state, which can be prepared in parametric downconver-
sion [17]. The pronounced negativity of the corresponding
Wigner function at the origin is a nonclassicality witness and
will be a test for our scheme. As with every genuine quantum
feature, it is rather sensitive to tomography imperfections.

In our simulation, this state is measured together with a set
of known coherent probe states σi = |αi〉〈αi |, which are robust
and easy to generate on demand. The coherent amplitudes are
sampled from a spiral pattern unwinding from the origin, as
sketched in Fig. 1. The resulting samples are equidistant in
radius and angle, but other choices, such as a rectangular grid,
would work as well.

Without a priori knowledge of the true state, one might
think of sampling the phase space starting from the origin and
gradually increasing the size of the probe set until no signifi-
cant updates of the reconstruction are observed. This strategy
is illustrated in Fig. 2, which shows the reconstructed Wigner
function for different numbers of coherent probes. Notice that
13 probes yield a classical state whose Wigner function peaks
near the origin. The central dip develops with 15 probes, and
just 16 probes are enough to observe negativities. Finally,
with 60 probes the reconstruction becomes nearly perfect,
with some residual errors due to unavoidable statistical noise.
The reconstructed W (α) becomes smoother and circularly
symmetrical with larger probe sets, increasing thus the overall
fidelity of the protocol [the fidelity F = Tr(

√√
�true�

√
�true)

of the reconstruction with 60 probes is 99.2%].
In Fig. 3 we plot the reconstructed value of W (0) as a

function of the probe set size N . It is intriguing to observe that
the abrupt drop of W (0) for N ∼ 16 arises when the probe
amplitudes reach the edge of the negative region of the true
Wigner function, as can be seen in Fig. 1. Furthermore, the
drop of W (0) between N = 40 and N = 50 seems to happen
at the point where the coherent probes pass the maximum of W

and start to feel the region in which the true Wigner function
decays to zero.

In Fig. 4 we depict the convergence of the algorithm for
the simulated data in Fig. 2. A slight increase in the number
of iterations with the problem size is observed, as might be
expected.

Last, in Fig. 5 we present typical fidelities of data-pattern
tomography for states of varying purity. The variations of the
fidelity observed are not statistically significant.
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FIG. 5. (Color online) Mean fidelities of data-pattern recon-
struction with true states ρtrue = 0.5|0〉〈0| + 0.5|1〉〈1| + γ |0〉〈1| +
γ |1〉〈0|, γ ∈ [0,0.5] of different purities measured by Tr(ρ2

true). The
averaging was done over 50 runs of simulated homodyne detection
with 60 probes. Standard deviations of those 50 fidelities are also
shown.

We stress that our knowledge about the measurement was
used solely for generating data. The pattern tomography
itself was based on the signal data, probe data, and the
representation of probes in the computational basis. In this
way, the search space, the field of view of the tomography,
was defined uniquely by the measured objects, avoiding the
problematic ad hoc Hilbert-space truncation of the standard
methods [18].

In summary, we have reelaborated on the data-pattern
approach to quantum tomography. The most relevant feature of
the approach is the ability to perform an efficient reconstruction
without ever knowing the exact properties of the measurement
setup. The knowledge required for the precise estimation
of a particular signal state can be obtained a posteriori,
after the measurement on the signal state. One can also
decide which additional probes might be helpful in further
improving the reconstruction. This is a significant advantage
for experimentalists since calibrating the measurement setups
for such weak signals can be a rather challenging task.
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