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Theory of filtered type-II parametric down-conversion in the continuous-variable domain:
Quantifying the impacts of filtering
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Parametric down-conversion (PDC) forms one of the basic building blocks for quantum optical experiments.
However, the intrinsic multimode spectral-temporal structure of pulsed PDC often poses a severe hindrance
for the direct implementation of the heralding of pure single-photon states or, for example, continuous-variable
entanglement distillation experiments. To get rid of multimode effects narrowband frequency filtering is frequently
applied to achieve a single-mode behavior. A rigorous theoretical description to accurately describe the effects
of filtering on PDC, however, is still missing. To date, the theoretical models of filtered PDC are rooted in the
discrete-variable domain and only account for filtering in the low-gain regime, where only a few photon pairs are
emitted at any single point in time. In this paper we extend these theoretical descriptions and put forward a simple
model, which is able to accurately describe the effects of filtering on PDC in the continuous-variable domain.
This developed straightforward theoretical framework enables us to accurately quantify the tradeoff between
suppression of higher-order modes, reduced purity, and lowered Einstein–Podolsky–Rosen entanglement, when
narrowband filters are applied to multimode type-II PDC.

DOI: 10.1103/PhysRevA.90.023823 PACS number(s): 42.65.Lm, 42.50.Dv, 03.67.−a

I. INTRODUCTION

Since the landmark experiment by Hong-Ou-Mandel in
1987 [1] parametric down-conversion (PDC) has become one
of the most widely used basic building blocks for quantum
optical experiments. For example, it serves as a source of
entangled photon pairs [2–6], enables the heralding of single-
photon states [7–11] and the generation of Einstein–Podolsky–
Rosen (EPR) entanglement [12,13].

However, PDC suffers from one major drawback. Standard
PDC sources do not emit their quantum states in a single,
well defined, optical mode, but into a multitude of different
spectral-temporal and spatial modes simultaneously. While
this can be beneficial for multiplexing purposes [14] or
multimode detection schemes [15], to date, most experiments
require single-mode quantum states. To get rid of multiple
spatial modes in the generated PDC state waveguides can be
used to achieve an emission into a single well-defined spatial
mode [16,17].

The spectral multimode structure of PDC has been studied
extensively and there exist two main approaches to achieve a
spectral single-mode emission from PDC source engineering
and filtering: source engineering refers to a pulsed PDC
process where the parameters are specifically adjusted to
ensure an emission of the photon pairs directly into a single
optical mode [7,12,18–22]. However, this approach only

*andreas.christ@uni-paderborn.de

works at specific wavelength ranges within certain materials.
Filtering, on the other hand, relies on placing narrowband
spectral filters after the PDC process to effectively suppress
the multimode structure. It is easy, robust, and straightforward
to implement, at the cost of introducing losses. To date, filtered
PDC sources have been used extensively for the heralding of
pure single photons and the generation of entangled photon
pairs [23–28].

The effects of filters for photon-subtraction experiments
have already been investigated [29]. However, a rigorous
theoretical description of filtered PDC is still missing. While
several theoretical models rooted in the discrete-variable
domain exist [23–26], these are concerned with the low-gain
regime. They are sufficient for the heralding of single photons
and entangled photon-pair generation but are not adequate for
quantum optics experiments in the continuous-variable domain
such as entanglement distillation protocols [13,30,31].

Concerning PDC in the high-gain regime or continuous-
variable domain, i.e., regarding PDC as a source of squeezed
states, several theoretical descriptions already exist [32–40].
These, however, do not consider the effects of filters on the
generated squeezing amplitudes, the multimode character, and
the purity of the filtered state.

In principle, the impacts of filtering on PDC are quite
intuitive. By reshaping the spectrum of the generated photons,
the filter operation suppresses higher-order modes at the cost
of reduced squeezing values and a lowered purity. In this
paper we perform a formal analysis of this intuition and, as
a first step, revisit the mathematical framework of PDC in
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the continuous-variable domain and the theoretical description
of filter operations. By using these we develop a simple
and straightforward theoretical model of filtered PDC in the
continuous-variable domain, which enables us to accurately
quantify impacts of filtering. Finally, we use this model to
analyze the tradeoff between the suppression of higher-order
modes, the remaining EPR squeezing, and purity. To simplify
the discussion we restrict ourselves to type-II PDC processes.

II. OVERVIEW

Figure 1 sketches the overall filtering process: We start
with a standard type-II PDC source, which emits a multitude
of finitely squeezed EPR states in broadband spectral modes.
We then apply narrowband spectral filtering in both the signal
and the idler arm to get rid of the intrinsic multimode spectral
structure.

This paper is structured into four main parts: In Sec. III
we review the process of type-II PDC and discuss the
properties of the generated quantum states. In Sec. IV we
mathematically describe the filtering process and discuss its
impact on type-II PDC. The main result of our research is
presented in Sec. V. In this section we show that a basis
transformation from the original broadband spectral modes
(Schmidt modes) to a new mode set adapted to the applied
filtering (effective Schmidt modes) enables us to accurately
gauge the effects of the filtering on the PDC state; to be
precise the suppression of higher-order modes, the remaining
EPR squeezing, and the lowered purity. To perform this
basis optimization we introduce two approaches: a simple
and straightforward model useful for designing filtered PDC
sources, and a complicated rigorous model which verifies
that our straightforward approach is indeed optimal. Finally,
in Sec. VI we use our developed framework to accurately
quantify the tradeoff between higher-order mode suppression,
remaining EPR squeezing, and the purity of the resulting state.

III. TYPE-II PDC

During the process of type-II PDC a photon of an incoming
pump beam spontaneously decays inside a crystal featuring a
χ (2) nonlinearity into a photon pair usually labeled signal and
idler, where signal and idler exhibit orthogonal polarizations.
In the scope of this paper we consider the strong-pumping

FIG. 1. (Color online) Narrowband filtering of a broadband mul-
timode type-II PDC process, followed by a mode optimization,
enables the creation of EPR entanglement in a single optical mode.

regime, where several photon pairs are created simultaneously,
and the emitted photon pairs form EPR states.

Mathematically, the generated type-II PDC state can be
described as [32,33]

|ψ〉PDC = exp

[
− i

�
(B

∫∫
dωsdωif (ωs,ωi)

× â†(ωs)b̂
†(ωi) + H.c.)

]
|0〉. (1)

Here â†(ωs), the photon creation operator, describes the
generation of a signal photon at frequency ωs and b̂†(ωi)
describes the generation of an idler photon at frequency ωi .
The function f (ωs,ωi) is the joint-spectral amplitude (JSA) of
the emitted photon pairs, which in general exhibits correlations
between ωs and ωi . B collects all constants and is often referred
to as the optical gain which describes the efficiency of the
process.

Equation (1) does not directly reveal the quantum properties
of the emitted type-II PDC state. In order to obtain these we
have to perform a singular-value decomposition or Schmidt
decomposition [41–44] of the JSA, which allows us to express
the state in terms of pulsed pairs of uncorrelated states with
specific broadband spectra. To be precise, we decompose the
exponent in Eq. (1) into a sum of positive amplitudes rk and
broadband-mode functions ψk(ωs) and φk(ωi) [32,33]:

− i

�
Bf (ωs,ωi) =

∑
k

rkψ
∗
k (ωs) φ∗

k (ωi) ,

(2)

− i

�
B∗f ∗ (ωs,ωi) = −

∑
k

rkψk (ωs) φk (ωi) .

Each pair of Schmidt modes ψk(ωs) and φk(ωs) defines
a spectral distribution which, weighted by their individual
amplitudes rk , yields the JSA. We visualized this connection
in Fig. 2 for a PDC state consisting of three optical modes with
equal weights rk . The individual elements of the sum, which
create the JSA, are depicted in Fig. 2(a) and the respective
mode functions are depicted in Fig. 2(b). In general type-II
PDC experiments, the JSA is very close to a two-dimensional
Gaussian and the resulting Schmidt modes are extremely
similar to the Hermite functions [45].

FIG. 2. (Color online) Visualization of a Schmidt decomposition:
Each pair of Schmidt modes of signal and idler, depicted in panel (b),
forms a spectral distribution which, combined and weighted by their
rk values, forms the JSA in panel (a).
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By using these Schmidt modes we are able to define the
broadband single-photon operators [46]

Âk =
∫

dωsψk (ωs) â (ωs) ,

(3)

B̂k =
∫

dωiφk (ωi) b̂ (ωi) ,

that is, we introduce the single-photon creation operators Â
†
k

and B̂
†
k , which create photons not at a single-frequency ω, but

in a broadband frequency range. By using Eqs. (2) and (3) we
are able to rewrite the PDC state from Eq. (1) as [32]

|ψ〉PDC = exp

[∑
k

rkÂ
†
kB̂

†
k − H.c.

]
|0〉

=
⊗

k

exp[rkÂ
†
kB̂

†
k − H.c.]|0〉

=
⊗

k

ŜAB (−rk) |0〉. (4)

From Eq. (4) it is evident that type-II PDC emits a multitude of
finitely squeezed EPR states

⊗
k ŜAB(−rk)|0〉 [47]. The EPR

squeezing is, however, not created at single frequencies but
in the broadband modes Âk and B̂k . From a physical point of
view this means that type-II PDC creates a multitude of optical
pulses which contain finitely squeezed EPR states, as already
schematically depicted in Fig. 1.

This property of type-II PDC is only visible when using the
obtained Schmidt modes, and the individual optical modes are,
solely in this basis, completely independent from each other.
These broadband modes are also referred to as the Schmidt
basis or eigenbasis of the system. In terms of dB the EPR
squeezing in mode k is defined as [32]

squeezing [dB] = −10 log10(e−2rk ). (5)

In the Heisenberg picture we are able to write the type-II PDC
process as [33]

â(out)(ω) =
∫

dω′Ua(ω,ω′)â(in)(ω′)

+ Va(ω,ω′)b̂(in)†(ω′),

b̂(out)(ω) =
∫

dω′Ub(ω,ω′)b̂(in)(ω′)

+ Vb(ω,ω′)â(in)†(ω′). (6)

Here we added the labels (in) and (out) to the single-photon
creation and destruction operators to stress that the modes on
the left, labeled (out), are the modes after the PDC process
has taken place. They are given as a function of the modes (in)
which label the modes before the PDC process. The Ua,b(ω,ω′)
and Va,b(ω,ω′) matrices contain the process properties. They
are of the form [33]

Ua(ω,ω′) =
∑

k

ψ∗
k (ω) cosh (rk) ψk(ω′),

Va(ω,ω′) =
∑

k

ψ∗
k (ω) sinh (rk) φ∗

k (ω′),

Ub(ω,ω′) =
∑

k

φ∗
k (ω) cosh (rk) φk(ω′),

Vb(ω,ω′) =
∑

k

φ∗
k (ω) sinh (rk) ψ∗

k (ω′). (7)

We are able to cast Eq. (6) into the broadband-mode formalism
by using the broadband single-photon creation and destruction
operators defined in Eq. (3). We arrive at

Â
(out)
k = cosh (rk) Â

(in)
k + sinh (rk) B̂

(in)†
k ,

(8)
B̂

(out)
k = cosh (rk) B̂

(in)
k + sinh (rk) Â

(in)†
k .

Again using the Schmidt modes directly reveals the EPR-
squeezing properties of the process. From a physical point of
view the output modes Â

(out)
k and B̂

(out)
k are the modes in which

we observe or measure our quantum state. For example, using
the modes Â

(out)
k and B̂

(out)
k for homodyne detection would

reveal the EPR entanglement, whereas a measurement in a
different basis hides the entanglement.

For our purposes, it is very useful to consider the covariance
matrix of the generated type-II PDC states by using the ob-
tained Schmidt modes [14]. In order to calculate the individual
covariance matrix elements we first define the broadband
quadrature operators for the individual optical modes:

X̂k
a = 1√

2
(Âk + Â

†
k), X̂k

b = 1√
2

(B̂k + B̂
†
k ),

(9)

Ŷ k
a = 1√

2i
(Âk − Â

†
k), Ŷ k

b = 1√
2i

(B̂k − B̂
†
k ).

Here, the label k depicts the number of the individual optical
mode. For one EPR state we required X̂k

a and Ŷ k
a to describe the

signal mode and X̂k
b and Ŷ k

b for the idler mode. For a PDC state
consisting of N EPR states we can group the 4 × N quadrature
operators in the vector

�R = (
X̂1

a,Ŷ
1
a ,X̂1

b,Ŷ
1
b , . . . ,X̂N

a ,Ŷ N
a ,X̂N

b ,Ŷ N
b

)
, (10)

that is, the first four elements of the vector consist of the
four quadrature operators for the first optical mode defined by
Â1 and B̂1, followed by the four quadrature operators for the
second mode, and so forth until mode N . In terms of �R the
individual covariance elements σij are defined as [48]

σij = 1
2 〈R̂iR̂j + R̂j R̂i〉 − 〈R̂i〉〈R̂j 〉. (11)

The covariance matrix σ for a single EPR state with an EPR-
squeezing amplitude r is given by [48]

σ = 1

2

⎛
⎜⎝

cosh (2r) 0 sinh (2r) 0
0 cosh (2r) 0 − sinh (2r)

sinh (2r) 0 cosh (2r) 0
0 − sinh (2r) 0 cosh (2r)

⎞
⎟⎠.

(12)

We visualized the covariance matrix of an EPR state containing
3 dB of EPR squeezing in Fig. 3, where we plotted the
absolute value of the individual elements. Characteristic for
EPR entanglement are the side peaks from the sinh(r) terms.

In the following we are going to demonstrate the impact
of filtering on the exemplary pulsed PDC state depicted in
Fig. 4, which exhibits correlations in frequency and thus
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FIG. 3. (Color online) Covariance matrix of an EPR state with
3 dB of squeezing. Plotted is the absolute value of the individ-
ual elements. The sinh(r) side peaks are characteristic for EPR
entanglement.

several broadband modes. Here, Fig. 4(a) shows its respective
JSA f (ωs,ωi) and Fig. 4(b) shows the EPR squeezing in the
first five modes. We adjusted the optical gain such that the first
mode has an EPR squeezing of about 6 dB. Figure 4(c) depicts
the first three signal and idler modes. Note that we explicitly
choose a real-valued JSA distribution leading to real-valued
Schmidt modes, which facilitate a straightforward visualization
throughout the paper. The exact simulation parameters are
given in Appendix C.

We plotted the corresponding covariance matrix of our
exemplary type-II PDC state in Fig. 5. Here we restricted
ourselves to a visualization of the first three optical modes and

FIG. 4. (Color online) PDC state used to demonstrate the in-
dividual steps of our protocol: (a) JSA f (ωs,ωi), (b) First five
EPR-squeezing values, (c) First three optical modes of the signal
and idler beams.

FIG. 5. (Color online) Covariance matrix of the unfiltered PDC
state depicted in Fig. 4. This figures shows the absolute values of the
individual elements for the first three optical modes. The submatrix
for each mode is identical to a finitely squeezed EPR state.

again plotted the absolute values of the individual elements.
Each submatrix is identical to a finitely squeezed EPR state.
Note that all σij elements between different optical modes
are zero, indicating that the individual modes are completely
independent from each other.

IV. FILTERING

In the context of photon-pair generation and the heralding
of pure single photons, the effects of filters on type-II PDC
have already been studied extensively [23–28]. In the scope of
this paper we extend this analysis to the continuous-variable
domain and the corresponding EPR-state generation via type-
II PDC.

The filtering has two main effects on the PDC state: First,
it introduces losses, i.e., we couple vacuum into the system
and degrade its purity and the EPR entanglement. Second, the
filtering reshapes the frequency spectra, destroying the original
mode structure.

To mathematically describe this process, we model a
spectral filter acting upon an optical field as a frequency-
dependent loss channel or beam splitter [23]:

â(out) (ω) = T (ω) â(in) (ω) + R (ω) v̂ (ω) , (13)

where |T (ω)|2 is the transmission and |R(ω)|2 the reflection
probability at frequency ω. They obey |T (ω)|2 + |R(ω)|2 = 1.
The operator v̂(ω) describes the vacuum introduced into the
system.

In the Schrödinger picture—or photon-number represent-
ation—it is, in general, very difficult to describe filtered PDC
states, since we have to consider a frequency-dependent loss
and further have to take into account all possible combinations
of photons being reflected and transmitted at the filter. In our
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description we work in the continuous-variable domain and
simply apply Eq. (13) to Eq. (6) to obtain the filtered PDC
state in the Heisenberg picture. In this way we avoid having
to evaluate the exact photon-number properties and arrive
at

â(out) (ω) = Ta (ω)

[ ∫
dω′Ua(ω,ω′)â(in)(ω′)

+ Va(ω,ω′)b̂(in)†(ω′)
]

+ Ra (ω) v̂a (ω) ,

b̂(out) (ω) = Tb (ω)

[ ∫
dω′Ub(ω,ω′)b̂(in)(ω′)

+ Vb(ω,ω′)â(in)†(ω′)
]

+ Rb (ω) v̂b (ω) . (14)

Here, Ta(ω) and Ra(ω) describe the action of a filter in the
signal arm, Tb(ω) and Rb(ω) describe the action of the filter
in the idler arm, and v̂a and v̂b label the added vacuum
contributions in the signal and idler arms, respectively.

Similar to the previous section we cast Eq. (14) into the
broadband-mode picture. However, this is more difficult than
in the previous section, since we have to consider the effects
of frequency-dependent loss on the PDC state.

From a physical point of view we can think of this
filtering as a reshaping of the individual optical modes,
where effectively each optical mode is multiplied by the filter
function. The corresponding destruction of the orthogonality
between different modes leads to intermodal couplings, and
cross correlations appear. From a mathematical point of view,
filtered PDC states are a special case of the well-known fact
that mixed states, in general, do not have a Schmidt decompo-
sition [49–51]. It is, in general, not possible any more to find a
Schmidt basis or eigenbasis; this means an orthogonal basis for
the system, where all optical modes are independent from each
other. A detailed mathematical discussion of this effect is given
in Appendix D, where we prove that it is, for all practical pur-
poses, impossible to find a new Schmidt basis for the system.

We consequently introduce the two new broadband-mode
sets, to be able to express the state into a new arbitrary basis,
which we label

Ĉk =
∫

dωfk (ω) â (ω) , (15)

D̂k =
∫

dωgk (ω) b̂ (ω) . (16)

To be precise, the new mode sets {fk(ω)} and {gk(ω)} each
have to form a complete and orthogonal basis set. By using
these new basis sets we can express the filtered type-II PDC
state as

Ĉ
(out)
k =

∫
dω′Uk

a (ω′)â(in)(ω′) +
∫

dω′V k
a (ω′)b̂(in)†(ω′)

+
∫

dωRk
a (ω) v̂a (ω) ,

D̂
(out)
k =

∫
dω′Uk

b (ω′)b̂(in)(ω′) +
∫

dω′V k
b (ω′)â(in)†(ω′)

+
∫

dωRk
b (ω) v̂b (ω) , (17)

FIG. 6. (Color online) A rectangular filter in the signal and idler
arms cuts the JSA and lets only the central frequencies pass.

with Uk
a (ω′), Uk

b (ω′), V k
a (ω′), V k

b (ω′), Rk
a(ω), and Rk

b(ω)
defined as

Uk
a (ω′) =

∫
dωfk (ω) Ta (ω) Ua(ω,ω′),

Uk
b (ω′) =

∫
dωgk (ω) Tb (ω) Ub(ω,ω′),

V k
a (ω′) =

∫
dωfk (ω) Ta (ω) Va(ω,ω′), (18)

V k
b (ω′) =

∫
dωgk (ω) Tb (ω) Vb(ω,ω′),

Rk
a (ω) = fk (ω) Ra (ω) , Rk

b (ω) = gk (ω) Rb (ω) .

These formulas enable us to study the properties of the filtered
type-II PDC states into a variety of different broadband-mode
sets. From a physical point of view the new basis sets Ĉ

(out)
k

and D̂
(out)
k define the modes in which we measure the state.

From a mathematical point of view we simply performed a
basis transformation, with the aim to find a new basis adapted
to the filtered state.

In the scope of this paper we restrict ourselves to identical
rectangular filter functions in the signal and idler, which
enables us to precisely cut different parts of the spectrum from
the PDC state. (Gaussian filters were tested as well and yielded
similar results.) An exemplary rectangular filter in the signal
and idler arm with respect to the JSA, introduced in Fig. 4, is
shown in Fig. 6. The filter cuts the JSA, and only the central
frequencies of the PDC photons are able to pass undisturbed.

The filter with respect to the signal modes of the original
PDC state is shown in Fig. 7(a). Figure 7(b) presents the
individual signal modes multiplied by the filter function.

These two figures already show that the impact of filtering
on a PDC state is very different from standard losses. When
an EPR state undergoes normal losses, vacuum is added to
the system and EPR squeezing is lost, but the mode structure
remains unchanged. In the case of filtering, vacuum is added

FIG. 7. (Color online) (a) Signal modes with respect to the
applied rectangular filter in Fig. 6. (b) Individual signal mode
functions multiplied by the filter.
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FIG. 8. (Color online) The EPR squeezing in the first five modes
after the filtering has been applied. The EPR squeezing in all modes
is significantly reduced.

as well, but the spectrally dependent losses also significantly
alter the spectral structure of the PDC state.

We visualized the effect of the filtering on the EPR-
squeezing amplitudes by using the original Schmidt basis in
Fig. 8. In comparison to the unfiltered EPR squeezing shown
in Fig. 4(b), all amplitudes are significantly reduced, which
represents the losses introduced by the filters. (The formulas to
calculate the filtered EPR squeezing are given in Appendix B.)

The impact of the filtering on the mode structure and the
vacuum added to the system are also directly visible in the
covariance matrix representation depicted in Fig. 9. Again we
plotted the absolute value of the individual elements and use
the broadband quadratures from Eq. (9). The exact formula for
the full covariance matrix of a filtered PDC state is given in
Appendix A.

FIG. 9. (Color online) Filtering a PDC state introduces losses,
which move the state towards vacuum and further leads to correlations
between the different optical modes.

In comparison with the unfiltered PDC state depicted in
Fig. 5, the individual amplitudes are significantly decreased,
with the central peaks moving toward the vacuum amplitude
of 0.5, i.e., the losses introduced by the filtering shifts the
state towards vacuum. In contrast to standard losses, however,
additional cross correlations between different optical modes
appear, which are clearly visible between the first and third
mode. These are a direct result of the reshaping of the spectral
properties by the filter function.

Note that, in this specific scenario, there are no correlations
with respect to the second mode, because the first and third
mode are symmetric and the second mode is antisymmetric
with respect to the origin. This property is not affected by
the applied filtering, and consequently no couplings between
these modes occur. This is, however, only true for this specific
scenario. Filters which are not centered perfectly will introduce
cross correlations between all modes. Also note that the applied
filter function leads to higher losses in the second mode than
in the third mode.

V. BASIS OPTIMIZATION AFTER FILTERING

From the discussion in Sec. IV it seems that the filtering
only has a detrimental impact on the PDC state. It introduces
additional losses and correlations between the different modes.
However, this filtering process enables us to create single-
mode quantum states featuring EPR entanglement. In Figs. 8
and 9 this effect is not visible due to the fact that we are still
regarding the state in the original broadband mode or Schmidt
basis, while the filtering reshaped and restructured the spectral
properties of the PDC state.

Similarly to the Schmidt basis, which reveals the EPR
squeezing in the original EPR state, we now require a new
effective Schmidt basis to reveal the suppression of higher-
order modes and the remaining EPR entanglement for the
filtered state, i.e., we have to move into a new reference frame
which unveils the EPR-squeezing properties of the remaining
photons and minimizes the correlations between the different
modes. From a physical point of view this means that we
observe or measure the state in a different set of modes, which
is adapted to the distortions introduced by the filters.

We developed two different approaches to obtain this
effective Schmidt basis via a basis optimization. In Sec. V A
we present a simple and straightforward method to find the
optimal modes labeled SVD basis optimization. This approach,
however, is based on heuristic arguments. To verify that it
indeed yields optimal results we present a rigorous optimiza-
tion method labeled Global basis optimization in Sec. V B.
This approach is extremely complicated and computationally
challenging but confirms that our straightforward model from
Sec. V A indeed delivers optimal results.

A. Singular-value decomposition basis optimization

Our goal is to find a simple and straightforward method to
obtain a new effective Schmidt basis which optimally describes
the optical modes of the PDC state after the filtering operations.
In Sec. III we elaborated that the original Schmidt basis
is obtained by performing a singular-value decomposition
(SVD) of the JSA. Intuitively, by simply decomposing the

023823-6



THEORY OF FILTERED TYPE-II PARAMETRIC DOWN- . . . PHYSICAL REVIEW A 90, 023823 (2014)

FIG. 10. (Color online) New basis set (a) obtained via the SVD
basis optimization and (b) the global basis optimization routine. (c)
Comparison of the obtained EPR-squeezing values. Both approaches
deliver virtually identical results.

JSA multiplied by the applied filter functions, we should obtain
mode shapes adapted to the filtering process. To be precise we
perform the following SVD [compare Eq. (2)]

Ta (ωs) Tb (ωi)

[
− i

�
Bf (ωs,ωi)

]
=

∑
k

r ′
kψ

′∗
k (ωs) φ′∗

k (ωi) ,

(19)

and we use the obtained mode functions ψ ′
k(ωs) and φ′

k(ωi) to
describe the filtered PDC state. Effectively, the only difference
to the standard decomposition is the additional multiplication
of the JSA by the filter functions, which renders this approach
extremely straightforward.

The obtained signal modes, for the considered scenario, are
depicted in Fig. 10(a). As expected they are much narrower
than the original modes and fully located inside the filter
bandwidth.

While there is no direct mathematical proof that this
approach is optimal, it intuitively makes sense and indeed
delivers very good results, as can be seen in Fig. 10(c).
In comparison to using the original basis to measure EPR
squeezing, as depicted in Fig. 8, by using the optimized basis
the main part of the EPR squeezing is contained in the very
first optical mode, i.e., filtering indeed effectively suppressed
higher-order modes.

The covariance matrix representation of the filtered PDC
state in the optimized basis set is given in Fig. 11. In
comparison to the covariance matrix of the filtered PDC state
in the original basis depicted in Fig. 9 it shows that using
an optimized basis enables us to suppress cross correlations
between different modes and, most importantly, it reveals that
filtering moves a multimode PDC state towards a single-mode
operation.

In total this SVD basis optimization routine reveals that it
is indeed possible to filter a multimode PDC state to suppress
all but one optical mode, given that we use the correct basis
representation of the state.

FIG. 11. (Color online) Covariance matrix of the filtered PDC
state from Fig. 9 using the SVD basis optimization. Performing this
basis optimization reveals that filtering effectively suppresses higher-
order frequency modes.

B. Global basis optimization

Although the intuitive approach presented in Sec. V A
delivers very good results, it is not clear if it is indeed optimal.
To investigate this we developed a second model optimizing
the EPR-squeezing values over all possible basis sets.

Our objective is to find a new orthonormal set of modes for
the signal and idler beams which maximize the EPR squeezing
after filtering. This should reveal its single-mode character and
minimize cross correlations. For the demonstration purposes
of this paper, we are able to simplify this procedure by only
optimizing a single set of modes {�k} for signal and idler.
This is possible due to the fact that, in our exemplary state,
the signal and idler modes are identical except for the fact that
the odd modes of idler have an additional factor of −1 [see
Fig. 4(c)]. Using only this one basis set to express and measure
the filtered state means that the EPR squeezing in the even
modes, where the original signal and idler modes are identical,
is located in the X̂k

(−) and Ŷ k
(+) quadratures. Correspondingly,

due to the additional factor of −1 in the odd idler modes, here
the X̂k

(+) and Ŷ k
(−) quadratures show squeezing when we use

the optimized basis set (see Appendix B). Elaboration on this
effect is given in Ref. [52].

Effectively we have to find a new set of real-valued
functions {�k} which maximize the EPR squeezing after the
filtering under the orthogonality constraint∫

dω�k (ω) �k′ (ω) = δkk′, (20)

where the �k take on the role of fk and gk and thus determine
the broadband operators Eqs. (15) and (16). In a discretized
formulation we are able to rewrite the basis in terms of a matrix

A = (�1 (ω) ,�2 (ω) , . . . ), (21)
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with orthonormal columns∑
l

AlmAln = δmn. (22)

If the ω sampling in frequency space of the basis functions
contains l points and only the first k modes are considered to
be relevant, A is a Rl×k matrix.

To find the optimal basis set A we use a genetic algorithm
(GA) [53]. We choose this algorithm because we require a
global maximum for the EPR squeezing.

The objective function S(A,k′) maps the basis A onto an EPR-
squeezing value of a certain mode k′. The complete method of
how to find the EPR squeezing is lengthy but straightforward
and is presented in Appendixes A and B. Conceptually, we
have to optimize a function

S(A,k′) : Rlk → R, (23)

i.e., the algorithm looks for a maximum in a (kl) parameter
space. Typical values in this paper are |k| = 5 modes repre-
sented on an |l| = 100 frequency grid, which are sufficient for
our demonstration purposes. It has been thoroughly analyzed
in [54] that the applied GA is well suited for problems of the
current dimension. A convenient way to take into account
the constraint Eq. (22) is to decompose A into its QR
factorization rather than to use A itself. Because Q ∈ Rlk

is orthonormal by construction, we can interpret it as basis
set, yet being parametrized by the original components of A.
This means that the components (Aij ) are used as genes in
the GA; however, the columns of the Q matrix determine the
basis set {�k}. R ∈ Rkk is an upper triangular matrix which
makes it possible to successively construct the modes. First
we manipulate only the first column in {Al1} and optimize the
EPR squeezing yielding the mode �1(ω) ≡ (Ql1) and R11. We
run the algorithm until the increase in the EPR squeezing of
the first mode converges to 0. Then, second, we keep {Al1}
(fixing also R11) and change the entries in the second column
{Al2}. This alters �2(ω) ≡ (Ql2) together with R12 and R22 and
enables us to optimize the EPR squeezing of the second mode
separately. We repeat this procedure with each column until
all modes have been obtained. The advantage of the successive
building strategy is that merely l parameters are changed in
each step instead of lk. This results in the following scheme
for the k′th mode:

{Alk′ } −→ QR −→ mode �k′ (ω) ≡ (Qlk′) ,
(24)

�k′ (ω) −→ calc squeezing.

We run the GA with a number of 28 individuals having
|{Alk′ }| = l genes for the k′th mode. We choose two parents
from this set randomly and procreate by one-point crossover.
A mutation can occur with a probability of 2%. The cycle
is repeated a couple of thousand times until the change in
squeezing is less than 10−4.

The successive procedure is displayed in Fig. 12. Starting
with random data, our algorithm is able to iteratively maximize
the EPR squeezing in each mode individually.

It should be noted that the successive maximization of the
squeezing of the modes is not the only practicable scheme.
In principle, it is desirable to have a large squeezing value
in the first mode. Considering only one mode, however, does

FIG. 12. (Color online) Evolution of five modes with maximum
squeezing obtained by the genetic algorithm. The genes are randomly
initialized and the modes 1–5 are found by evolution.

not provide any information of how much squeezing is left in
the higher modes. Maximizing the EPR squeezing in the other
modes as well enables us to accurately judge the amount of
mode suppression introduced by the filtering.

For the filtered PDC state discussed in Sec. IV we depicted
the resulting first three optimized modes in Fig. 10(b). The
corresponding squeezing values for the individual modes are
given by the red bars in Fig. 10(c).

The obtained mode shapes from the global basis opti-
mization, depicted in Fig. 10(b), are virtually identical to
the mode shapes obtained from our SVD basis optimization
earlier. Similarly, the obtained EPR-squeezing distributions in
Fig. 10(c) do not differ to any noticeable degree. This confirms
that our simple and straightforward model from Sec. V A
indeed delivers optimal results. The SVD basis optimization
thus provides us in fact with the effective Schmidt basis for the
filtered system. Some additional support on why the SVD basis
optimization approach works so well is given in Appendix D.

VI. ANALYSIS

The SVD basis optimization developed in Sec. V A finally
enables us to accurately quantify the impacts of filtering on
PDC in the continuous-variable domain. For this purpose we
used our exemplary PDC state from Fig. 4 and evaluated the
remaining EPR squeezing in the first mode, the suppression
of the higher-order modes, and the purity [48] of the filtered
state for various filter bandwidths and initial EPR-squeezing
values. Our results are depicted in Fig. 13.

For our analysis we used three different initial EPR-
squeezing distributions, as depicted in Fig. 13(a). We visu-
alized the remaining EPR squeezing in the first mode after
filtering as a function of the single-mode character of the
filtered state in Fig. 13(b). The three dotted lines correspond
to states with the initial EPR-squeezing values presented in
Fig. 13(a). The single-mode character is defined as the ratio
between the EPR squeezing in the first mode divided by the
EPR squeezing in all higher-order modes. This means a ratio
of 10 already corresponds to EPR squeezing in the first mode
which is ten times stronger then in all other optical modes.
The blue shaded area marks the values accessible using our
exemplary PDC spectrum. This figure shows that there is a

023823-8



THEORY OF FILTERED TYPE-II PARAMETRIC DOWN- . . . PHYSICAL REVIEW A 90, 023823 (2014)

FIG. 13. (Color online) Quantitative analysis of the impact of filtering on the exemplary PDC state presented in Fig. 4 using the three
different initial EPR-squeezing distributions given in panel (a). (b) Remaining EPR squeezing in the first mode as a function of the single-mode
character, for various filter bandwidths. (c) Purity of the filtered state as a function of the single-mode character. The blue shaded areas are the
accessible regions using our exemplary PDC state.

sharp tradeoff between the remaining EPR squeezing and the
achievable single-mode character, especially when high initial
EPR-squeezing values are present. Interestingly, the boundary
in Fig. 13(b) shows that this cannot be offset by higher initial
EPR-squeezing values.

The second important parameter of PDC is the remaining
purity after the filtering process. We visualized the purity of
the filtered states as a function of the single-mode character
in Fig. 13(c). Again we used the exemplary PDC state from
Fig. 4 and the three dotted lines correspond to various filters
applied to the initial EPR-squeezing values from Fig. 13(a).
It is evident that strongly EPR-squeezed PDC states feature a
much higher drop in purity than weakly squeezed states.

In total our analysis shows that filtering PDC enables us
to effectively suppress higher-order modes. For highly EPR-
squeezed input states the losses in purity and EPR squeezing
are, however, severe, whereas weakly EPR-squeezed states
only suffer minor losses.

Finally, note that our developed framework is not limited to
the symmetric PDC states and identical signal and idler filters,
as exemplary presented throughout this paper, but is applicable
to all kinds of PDC states and filter configurations.

VII. CONCLUSION

In conclusion, we developed a simple and straightforward
quantitative theoretical model for filtered type-II PDC in the
continuous-variable domain.

Our developed SVD basis optimization routine provides us
with the effective Schmidt basis of the filtered state, as verified
by our global basis optimization. It hence enables the precise
and straightforward engineering and evaluation of the resulting
filtered PDC states and consequently provides a quantitative

analysis tool for the design of experimental implementations.
While we found that the global optimization and the SVD
optimization yield virtually identical results, it remains an open
question to understand if and under what conditions the latter
provides the optimal effective Schmidt basis.

Our theoretical framework further enabled us to accurately
quantify the impact of narrowband optical filters on type-II
PDC. Our analysis shows that narrowband optical filtering of
pulsed type-II PDC effectively suppresses all but one optical
mode; however, at high EPR-squeezing values the losses in
purity and EPR squeezing are severe, whereas the purity
and EPR squeezing of weakly squeezed EPR-squeezed states
remains mostly unaffected.

This renders filtered PDC optimally suited for experiments
in the photon-pair regime, such as the heralding of single pho-
tons, the generation of entangled photon pairs, or experiments
where low squeezing values are sufficient. However, as soon
as high EPR-squeezing values in a single well-defined optical
mode are required, more complicated schemes such as source
engineering have to be applied.

Finally, it should be noted that our theoretical framework
is not only restricted to type-II PDC processes but can
straightforwardly be adapted to type-I PDC and four-wave-
mixing processes, due to their similar mathematical structure.
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APPENDIX A: COVARIANCE MATRIX

The covariance matrix of a two-mode quantum state
has 4 × 4 elements for all combinations of the quadratures
X̂a, Ŷa, X̂b, Ŷb, which, for example, can fully describe an
EPR state. In our case, we are working with a PDC source,

which initially emits N optical modes, each containing an EPR
state, i.e., the covariance matrix is of dimension 4N × 4N .
This matrix consists of N24 × 4 submatrices, which we label
akl . Each submatrix akl describes the correlations between an
optical mode k and another optical mode l. Explicitly written
down it is of the form

akl = 1

2

⎛
⎜⎜⎜⎝

〈
X̂k

aX̂
l
a + X̂l

aX̂
k
a

〉 〈
X̂k

aŶ
l
a + Ŷ l

aX̂
k
a

〉 〈
X̂k

aX̂
l
b + X̂l

bX̂
k
a

〉 〈
X̂k

aŶ
l
b + Ŷ l

bX̂
k
a

〉
〈
Ŷ k

a X̂l
a + X̂l

aŶ
k
a

〉 〈
Ŷ k

a Ŷ l
a + Ŷ l

aŶ
k
a

〉 〈
Ŷ k

a X̂l
b + X̂l

bŶ
k
a

〉 〈
Ŷ k

a Ŷ l
b + Ŷ l

bŶ
k
a

〉
〈
X̂k

bX̂
l
a + X̂l

aX̂
k
b

〉 〈
X̂k

bŶ
l
a + Ŷ l

aX̂
k
b

〉 〈
X̂k

bX̂
l
b + X̂l

bX̂
k
b

〉 〈
X̂k

bŶ
l
b + Ŷ l

bX̂
k
b

〉
〈
Ŷ k

b X̂l
a + X̂l

aŶ
k
b

〉 〈
Ŷ k

b Ŷ l
a + Ŷ l

aŶ
k
b

〉 〈
Ŷ k

b X̂l
b + X̂l

bŶ
k
b

〉 〈
Ŷ k

b Ŷ l
b + Ŷ l

bŶ
k
b

〉

⎞
⎟⎟⎟⎠, (A1)

where we dropped the displacements, since all quantum states considered in this paper are centered about zero in phase space.
The elements of the covariance matrix of a filtered type-II PDC state are governed by many symmetries. For our filtered PDC
state defined in Eq. (17), we are able to write the individual submatrices akl as

akl = 1

2

⎛
⎜⎝

a c e g

−c a g −e

f h b d

h −f −d b

⎞
⎟⎠, (A2)

with the individual elements defined as

a =1

2

(∫
dωUk

a (ω) Ul∗
a (ω) +

∫
dωRk

a (ω) Rl∗
a (ω) +

∫
dωV k∗

a (ω) V l
a (ω)

+
∫

dωUl
a (ω) Uk∗

a (ω) +
∫

dωRl
a (ω) Rk∗

a (ω) +
∫

dωV l∗
a (ω) V k

a (ω)

)
, (A3)

b =1

2

(∫
dωUk

b (ω) Ul∗
b (ω) +

∫
dωRk

b (ω) Rl∗
b (ω) +

∫
dωV k∗

b (ω) V l
b (ω)

+
∫

dωUl
b (ω) Uk∗

b (ω) +
∫

dωRl
b (ω) Rk∗

b (ω) +
∫

dωV l∗
b (ω) V k

b (ω)

)
, (A4)

c = 1

2i

(
−

∫
dωUk

a (ω) Ul∗
a (ω) −

∫
dωRk

a (ω) Rl∗
a (ω) +

∫
dωV k∗

a (ω) V l
a (ω)

+
∫

dωUl
a (ω) Uk∗

a (ω) +
∫

dωRl
a (ω) Rk∗

a (ω) −
∫

dωV l∗
a (ω) V k

a (ω)

)
, (A5)

d = 1

2i

(
−

∫
dωUk

b (ω) Ul∗
b (ω) −

∫
dωRk

b (ω) Rl∗
b (ω) +

∫
dωV k∗

b (ω) V l
b (ω)

+
∫

dωUl
b (ω) Uk∗

b (ω) +
∫

dωRl
b (ω) Rk∗

b (ω) −
∫

dωV l∗
b (ω) V k

b (ω)

)
, (A6)

e =1

2

(∫
dωUk

a (ω) V l
b (ω) +

∫
dωV k∗

a (ω) Ul∗
b (ω) +

∫
dωUl

b (ω) V k
a (ω) +

∫
dωV l∗

b (ω) Uk∗
a (ω)

)
, (A7)

f =1

2

(∫
dωUk

b (ω) V l
a (ω) +

∫
dωV k∗

b (ω) Ul∗
a (ω) +

∫
dωUl

a (ω) V k
b (ω) +

∫
dωV l∗

a (ω) Uk∗
b (ω)

)
, (A8)

g = 1

2i

(∫
dωUk

a (ω) V l
b (ω) −

∫
dωV k∗

a (ω) Ul∗
b (ω) +

∫
dωUl

b (ω) V k
a (ω) −

∫
dωV l∗

b (ω) Uk∗
a (ω)

)
, (A9)

h = 1

2i

(∫
dωUk

b (ω) V l
a (ω) −

∫
dωV k∗

b (ω) Ul∗
a (ω) +

∫
dωUl

a (ω) V k
b (ω) −

∫
dωV l∗

a (ω) Uk∗
b (ω)

)
. (A10)
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APPENDIX B: EINSTEIN–PODOLSKY–ROSEN
SQUEEZING AFTER FILTERING

Without filtering, the generated EPR squeezing and an-
tisqueezing can be directly calculated from the rk values.
However, when filtering is applied, the formalism becomes
more complicated. In this configuration we explicitly have to
consider the different variances between the signal and idler
beams. They are defined as

	2X̂k
(−) = 	2

(
X̂k

a − Xk
b

)
,

	2X̂k
(+) = 	2

(
X̂k

a + Xk
b

)
,

(B1)
	2Ŷ k

(−) = 	2
(
Ŷ k

a − Y k
b

)
,

	2Ŷ k
(+) = 	2(Ŷ k

a + Y k
b

)
.

We can directly extract these values from our filtered covari-
ance matrices detailed in Appendix A. The variances in mode k

can be calculated from the submatrix akk , defined in Eq. (A2),
via the relation

	2X̂k
(−) = 	2Ŷ k

(+) = a + b − e − f,
(B2)

	2X̂k
(+) = 	2Ŷ k

(−) = a + b + e + f.

These variances can be transformed to the EPR (anti-)
squeezing in dB by the formulas

(anti-) squeezing [dB] = −10 log10

[
	2X̂k

(+/−)

]
,

(B3)
(anti-) squeezing [dB] = −10 log10

[
	2Ŷ k

(+/−)

]
.

APPENDIX C: SIMULATED
PARAMETRIC-DOWN-CONVERSION STATE

In the scope of this paper we investigate the effects of
filtering on an exemplary anticorrelated type-II PDC state.
In order to simplify the discussion we developed a PDC toy
model. According to Sec. III we only require two sets of mode
functions {ψk(ωs)} and {φk(ωi)} for the signal and idler modes,
respectively, and a rk distribution to fully describe a type-II
PDC state.

In order to obtain the mode functions, we approximate the
JSA f (ωs,ωi) as a real two-dimensional normalized Gaussian
function—this corresponds to PDC pumped by a pulsed pump
laser—by using

f (ωs,ωi) = 1√
N

exp

[
− [ωs cos (θ ) + ωi sin (θ )]2

2σ 2
a

]

× exp

[
− [−ωs sin (θ ) + ωi cos (θ )]2

2σ 2
b

]
. (C1)

Here, σa and σb give the widths of the individual one-
dimensional (1D) Gaussians, θ gives the tilt in the ωs-ωi plane,
and 1√

N
is the normalization constant. For our simulations we

use σa = 6.0, σb = 2.0, and θ = −π
4 .

Via a Schmidt decomposition we decompose the JSA
as

f (ωs,ωi) =
∑

k

λkψk (ωs) φk (ωi) , (C2)

which yields the required signal and idler basis sets and a
normalized λk distribution (

∑
k λ2

k = 1). Finally, we trans-
form the λk distribution to the missing rk distribution via
the optical gain B (rk = Bλk), where B is real valued,
positive, and adjusted to yield the desired EPR-squeezing
values.

This simplified type-II PDC model is extremely flexible,
simple, and, most importantly, enables us to work with strictly
real-valued functions, which facilitate a straightforward dis-
play of our results throughout the paper.

APPENDIX D: PROPERTIES OF FILTERED TYPE-II
PARAMETRIC DOWN-CONVERSION

In the main part of the paper we state that the filtering, in
general, leads to correlations between the individual modes,
which, even performing a basis optimization, can only be
minimized. We also claim that, in accordance with the
literature [49–51] the resulting mixed quantum states do not,
in general, feature a Schmidt decomposition. In this section we
are going to perform some analysis concerning these properties
of filtered PDC.

In general we would like to find a broadband basis set in
which we are able to write the filtered PDC state similar to
Eq. (8), i.e., the individual modes are completely independent
from each other [55]. To illustrate the issues with this
transformation let us first revisit Eq. (6) by using the definitions
for the U and V matrices from Eq. (7):

â(out) (ω) =
∫

dω′ ∑
k

ψ∗
k (ω) cosh (rk) ψk(ω′)â(in)(ω′)

+
∫

dω′ ∑
k

ψ∗
k (ω) sinh (rk) φ∗

k (ω′)b̂(in)†(ω′),

b̂(out) (ω) =
∫

dω′ ∑
k

φ∗
k (ω) cosh (rk) φk(ω′)b̂(in)(ω′)

+
∫

dω′ ∑
k

φ∗
k (ω) sinh (rk) ψ∗

k (ω′)â(in)†(ω′). (D1)

To transform this equation into the broadband-mode picture
we replace the mode functions to the right of the cosh
and sinh terms, in conjunction with the photon creation
and destruction operators and the ω′ integrals, with the
broadband-mode operators defined in Eq. (3). To obtain
broadband modes on the left-hand side of Eq. (D1) we
multiply, in the case of the upper formula, both sides with∫

dωψk(ω). This yields broadband modes on the left-hand
side and δkl functions on the right-hand side, getting rid
of the summation. We arrive at Eq. (8), which nicely de-
picts the EPR properties of type-II PDC in the Heisenberg
picture.

Unfortunately, in the filtering case, this procedure is not
possible any more. If we let the filter from Eq. (13) act on
the PDC state in the Heisenberg picture from Eq. (6) and use
the Schmidt form of the U and V matrices from Eq. (7), we
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arrive at

â(out) (ω) = Ta (ω)

[∫
dω′ ∑

k

ψ∗
k (ω) cosh (rk) ψk(ω′)â(in)(ω′) +

∑
k

ψ∗
k (ω) sinh (rk) φ∗

k (ω′)b̂(in)†(ω′)

]
+ Ra (ω) v̂a (ω) , (D2)

b̂(out) (ω) = Tb (ω)

[∫
dω′ ∑

k

φ∗
k (ω) cosh (rk) φk(ω′)b̂(in)(ω′) +

∑
k

φ∗
k (ω) sinh (rk) ψ∗

k (ω′)â(in)†ω′)

]
+ Rb (ω) v̂b (ω) . (D3)

This formula clearly shows that the functions ψ∗
k (ω) and φ∗

k (ω), which form the detection modes, to the left of the sinh and cosh
terms are multiplied by the filter shapes. If we repeat the steps as for the unfiltered PDC state and multiply, in the upper formula,
both sides with

∫
dωψk(ω) the added filter functions lead to overlaps between several modes simultaneously. Consequently

couplings between the different modes occur. It is not possible to find a new broadband mode basis, where the different modes
are uncorrelated.

There is only a single exception: If we assume that the signal and idler modes are real and identical, all rk values share an
identical excitation and the filters in the signal and idler are are identical as well. In this specific case we can write the filtered
state as

â(out) (ω) =
∫

dω′ cosh (r)
∑

k

T (ω) ψk (ω) ψk(ω′)â(in)(ω′) + sinh (r)
∑

k

T (ω) ψk (ω) ψk(ω′)b̂(in)†(ω′) + R (ω) v̂a (ω) , (D4)

b̂(out) (ω) =
∫

dω′ cosh (r)
∑

k

T (ω) ψk (ω) ψk(ω′)b̂(in)(ω′) + sinh (r)
∑

k

T (ω) ψk (ω) ψk(ω′)â(in)†(ω′) + R (ω) v̂b (ω) . (D5)

In this simplification the same term appears four times, on
which we now perform the following Schmidt decomposition:

∑
k

T (ω) ψk (ω) ψk(ω′) =
∑

k

κkϕk (ω) ξk(ω′). (D6)

Further introducing the four new broadband-mode functions:

Ê
(out)
k =

∫
dωϕk (ω) â (ω),

F̂
(out)
k =

∫
dωϕk (ω) b̂ (ω),

(D7)

Ĝ
(in)
k =

∫
dωξk (ω) â (ω),

Ĥ
(in)
k =

∫
dωξk (ω) b̂ (ω),

we are, in fact, able to write Eq. (D5) in the
broadband-mode formalism and decouple the individual

modes

Ê
(out)
k = κk

[
cosh (r) Ĝ

(in)
k + sinh (r) Ĥ

(in)†
k

] + R (ω) v̂a (ω) ,

F̂
(out)
k = κk

[
cosh (r) Ĥ

(in)
k + sinh (r) Ĝ

(in)†
k

] + R (ω) v̂a (ω) .

(D8)

In this approximation it is consequently possible to find a
new broadband-mode basis, where all individual modes remain
orthonormal after the filtering and the filter, in fact, simply acts
as a standard loss which, however, affects the individual modes
differently.

For actual PDC sources it is, however, not possible to
actually implement all of the above mentioned simplifications,
with only the exception of a PDC process pumped by
a continuous-wave laser which can approximate these
requirements. Hence our conclusion from the main part of the
paper remains valid: Filtering, in general, leads to correlations
between different modes. Still, this analytic calculation
gives some insight into our SVD basis optimization routine,
presented in the main part of the paper. It is, in fact, almost
identical to the decomposition shown in Eq. (D6), which partly
explains why its performance is almost indistinguishable from
the global basis optimization routine.
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