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We introduce the concept of a driven quantum walk. This work is motivated by recent theoretical and
experimental progress that combines quantum walks and parametric down-conversion, leading to
fundamentally different phenomena. We compare these striking differences by relating the driven quantum
walks to the original quantum walk. Next, we illustrate typical dynamics of such systems and show that
these walks can be controlled by various pump configurations and phase matchings. Finally, we end by
proposing an application of this process based on a quantum search algorithm that performs faster than a
classical search.
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Quantum walks (QW) have become widely studied
theoretically [1–3] and experimentally in a variety of
different settings such as classical optics [4–7], photons
in waveguide arrays [8,9], and trapped atoms [10,11]. They
exhibit different behavior than classical random walks due
to the interference of the quantumwalker [12]. The quantum
walk paradigm has been used to demonstrate that they are
capable of universal quantum computing [13,14], including
search algorithms [15] and more general quantum transport
problems [16,17]. The quantumwalk comes in twovarieties,
the discrete time (DTQW) and continuous time (CTQW);
the latter case will be the focus of this Letter.
Recently, an array of coupled waveguide channels with a

down-conversion term was theoretically studied [18] and
experimentally demonstrated [19,20]. A classical pump
drives a process creating down-converted light that then
travels throughout the waveguide structure by evanescent
coupling (the pump beam does not couple to other
channels). This can be modeled by adding an extra term
to the original CTQW Hamiltonian that converts two
photons (walkers) from a single pump photon (the converse
operation is also possible). During the driven QW the
walkers are created and annihilated and this in turn leads to
very different dynamics when compared to the traditional
passive QW (PQW), which is restricted by a constant
number of walkers.
In this Letter we investigate driven quantum walks. We

connect the physical properties of the nonlinear waveguide
arrays with the traditional quantum walk formalism.
Based on the description of the system in the eigenmode
basis, we show that any driven QW can be decomposed into
a PQW and an intricate input state. Furthermore, we are
able to selectively pump spatial eigenmodes of the system,
allowing for in situ control of the QW properties. Finally,
we take advantage of this unique property of driven QW to
implement a search algorithm that demonstrates a quantum
speed-up over a classical walker.

The CTQW is defined by a graph of coupled modes,
such as a 2D lattice, and this graph topology can be
encoded into a matrix C which describes the connections
between the different modes of the system, as well as the
on-site terms. The CTQW has the generic Hamiltonian,

ĤC ¼
X
j;k

Cj;kâ
†
j âk þ H:c:; ð1Þ

where â†j ; âj are the bosonic creation and annihilation
operators, respectively, of the walker on the jth site of
the graph and the evolution of the walk is given simply by
the Schrödinger equation. Traditionally, the initial state is
localized on a single mode, e.g., jϕðt ¼ 0Þi ¼ â†nj0i. The
key to our subsequent analysis is to use the set of
eigenmodes that diagonalize the original Hamiltonian
(1), fÂkg. This will lead to Eq. (1) being written in the
form Ĥ ¼ P

kΩkÂ
†
kÂk, where the fΩkg are the eigenfre-

quencies, which in 1D lines and 2D lattices can be
considered as a dispersion curve. The transformation from
the original, physical basis fâkg to the eigenbasis is given
by the matrix T, A ¼ Ta. For the PQW, the number of
walkers in the eigenmodes of the system does not change.
During the propagation, the phases between the eigenm-
odes change, leading to the well-known QW properties.
We now add an extra term to this Hamiltonian that

creates and destroys photons; i.e., we change the number of
walkers during the QW. This term will take one of two
forms:

ĤL ¼
X
k

ΓL;kðtÞâ†k þ Γ�
L;kðtÞâk; ð2Þ

ĤS ¼
X
k

ΓS;kðtÞâ†2k þ Γ�
S;kðtÞâ2k: ð3Þ

We call these terms lasing and squeezing, respectively, as
they are the Hamiltonians used for the generation of
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coherent states (created by a laser above threshold) and
squeezed vacuum states [21]. The lasing term can be
realized in a DTQW with walkers added after each time
step (to be studied later), and the second term was recently
studied [18–20]. We only include one growth term at a time
in our Hamiltonian and assume that these processes take
place continually within the walk and are driven by an
undepleted classical pump (i.e., a large amplitude coherent
state) with a vacuum input state. The parameter Γ is the
spatial pump shape and its time dependence will depend on
only the pump frequency. The second term ĤS is a down-
conversion process of two photons from a single pump
photon. In the main text of the Letter we focus on the lasing
QW. Similar results for the squeezing QW may be found in
the Supplemental Material [22].
Using the transformation T, the complete Hamiltonian

ĤC þ ĤL in the eigenbasis is

Ĥ ¼
X
k

ΩkÂ
†
kÂk þ

X
k

SkðtÞÂ†
k þ H:c:; ð4Þ

where SL ¼ T−1ΓL (SS ¼ T−1ΓST for the squeezing
term as ΓS is a matrix). We now move to the interaction
picture of the dynamics using the transformation [21]
Û ¼ Q

k expðiΩkÂ
†
kÂktÞ, which allows us to rewrite

Eq. (4) as

Ĥint ¼
X
k

SkðtÞÂ†
ke

iΩkt þ H:c: ð5Þ

Integrating over time, z ¼ R
dt0Sðt0Þ, and using Ref. [23] to

disentangle the Schrödinger evolution operator, when we
convert back to the original operator basis fâkg, this yields
an output state of the form

jαL;outi ¼ exp

�
−it

X
k;k0

Ck;k0 â
†
kâk0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ÛPQW

exp

�
−i
X
k

z0kâ
†
k

�
j0i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jαL;ini

¼ ÛPQWjαL;ini; ð6Þ

where ÛPQW is the evolution operator of the PQW, jαL;ini is
the “initial state,” and z0k is the expression for z in the
physical basis. This result is illustrated in Fig. 1. We can
decompose any driven QW in Fig. 1(a) into a multimode
coherent state that is then launched into the original CTQW
with Hamiltonian evolution ÛPQW, as shown in Fig. 1(b),
leading to the same output state. A more detailed derivation
may be found in the Supplemental Material [22].
We can apply a similar theory to the other growth term

ĤS and arrive at an identically structured evolution of the
walk; i.e., first we create a multimode squeezed state, then
we evolve this state through the quantum walk. Note that
the state creation and walk are not independent; both are a
function of the overall time or length of the walk. We can

lift this restriction on the input states to a certain extent by
starting with a nonzero state at the beginning of the walk. If
we had started with a nonvacuum initial state, additional
terms would have to be taken into account, changing
Eq. (6) but retaining the same structure of state creation
followed by quantum walk.
The “initial” state in Eq. (6) is determined by two factors,

both contained within the matrix S. First, the pump shape,
which is simply the absolute value of the elements of S, jSkj
(or jSk;k0 j for ĤS) and determines which eigenmodes have a
nonzero growth. The second factor is the phase matching
that occurs due to the time dependence of S, typically of the
form e−iωpt, where ωp is the pump frequency. More
complicated time dependencies would not alter the inter-
pretation presented here. When we insert the pump shape
into the interaction Hamiltonian,

Ĥint ¼
X
k

Sk exp½iðΩk − ωpÞt�Â†
k þ H:c:; ð7Þ

it becomes clear that we have to fulfil the eigenmode phase-
matching conditionωp ¼ Ωk for ĤL (or ωp ¼ Ωk þ Ωk0 for
ĤS). When integrating over time, phase-matched eigenm-
odes grow linearly in time whereas non-phase-matched
modes oscillate depending on the size of the phase
mismatch. These two factors give some control over which
eigenmodes are created during the QW.
The main difference between the driven quantum walk

described here and the original CTQW can easily be seen in
the nature of the eigenmodes. In the CTQW the amplitudes
of the eigenmodes are fixed at the start of the walk and only
the phases change in time. In our driven QWwe can choose
the eigenmode(s) wewant to create by changing the pump’s
spatial shape and frequency to drive and phase-match
combinations of eigenmodes; thus, the amplitudes (and
phases) of the eigenmodes change. For longer walks, phase
matching is the more significant factor, where the majority
of walkers are created in eigenmodes which are phase
matched (or almost phase matched).

in

out

FIG. 1 (color online). Any driven QW (a) can be decomposed
into an intricate multimode state followed by a passive QW (b).
The output states of the two system will be the same.
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As an example, we look at the evolution and dynamics of
the driven quantum walk in a 1D array of N coupled
oscillator modes,

Ĥ ¼ ω
XN
k¼1

â†kâk þ C
XN−1

k¼1

â†kâkþ1 þ H:c:; ð8Þ

a topology which has been studied previously in CTQW.
The eigenmodes fÂjg in the finite-system case are given
by Âj ¼

ffiffiffiffiffiffiffiffiffi
2=N

p P
k sin âk and eigenfrequencies Ωj ¼ ωþ

2C cos½jπ=ðN þ 1Þ�. Here we use the lasing growth term
(2), with a waveguide array consisting of 51 modes
(−25 ≤ k ≤ 25) (the values we use are ω ¼ 1, C ¼ 0.5,
Γ0 ¼ 1, and we run for a time of t ¼ 20 in dimensionless
units) and we only pump a single physical mode k ¼ 0,
the middle mode in the chain, with the pump fre-
quency ωp ¼ Ω1.
Figure 2 shows the average photon number dynamics

during the walk in the physical basis [Fig. (2a)] and the
eigenmode basis [Fig. (2b)]. The nature of phase matching
can be seen in Fig 2(b) as the phase-matched mode (j ¼ 1)
will continue to grow indefinitely, while the non-phase-
matched modes (j ≠ 1) grow in number then decrease (and
will continue to oscillate). As the walk continues, the
phase-matched modes will drown out the other modes. The
total photon number grows quadratically in the lasing case
and exponentially in the squeezing case for the phase-
matched modes.
The distribution of the walkers’ positions will depend

upon the pump frequency, shown in Fig. 3. The output
distribution at the end of the walk changes as we change the
pump frequency, while keeping the walk length constant,
over the range of eigenfrequencies. We can see that the final
output distribution changes from a peaked structure to one
that spreads out as the frequency changes. We can see from
the plots above that the dynamics of the driven walks do not
resemble those of the traditional quantum walk. The
walkers tend to stay localized around the channel that
the pump beam is present in, especially in the case where
squeezing is present (shown in the Supplemental Material
[22]). Using our interpretation of the driven QW, Eq. (6),
our initial state will generally be extended over several
waveguide channels. As shown in Ref. [24], this leads to

very different dynamics when compared to an initial state
localized in a single mode, which usually has two lobes
traveling away from the input site at speeds� ffiffiffi

2
p

C. Similar
results for the squeezing growth term are included in the
Supplemental Material [22].
A typical measure of quantum walk dynamics is the

variance of the walkers’ position distribution as the walk
evolves in time ½σ2ðtÞ ¼ P

xx
2n̄xðtÞ�, as this is markedly

different from classical diffusion. In these type of walks,
here we have two sources of growth: from the actual
spreading of the walker’s position and from the change in
mean walker number [n̄xðtÞ]. In the example shown here,
the variance grows as t3, though when we rescale this
variance by the average photon number (so we always have
what can be considered the position distribution of a single
photon) which grows as t2, we instead see linear growth of
the spatial-only variance. This can be explained due to the
walkers being created in a single mode. Different pump
frequencies lead to similar regimes of variance growth.
One of the main applications of quantum walks are

search algorithms, such as the Grover search [15,25]. Here
a particular initial quantum state evolving under the DTQW
can find a marked vertex in a time t ∝

ffiffiffiffi
N

p
, where N is the

number of vertices. This represents a speed-up over
classical search algorithms. There are other QW search
algorithms that are closely related [26–29]. In a traditional
QW search algorithm, the walker starts in a spatially
extended state over all vertices and the dynamics cause
it to oscillate in and out of the target vertex, as illustrated in
Fig. 5(a), thus only being found there at certain times. Here
we present an alternative scheme based on the driven QW.
The strengths of this scheme are that we start from vacuum,
thus no complicated initial state, and we continually pump
walkers into the walk so the walker oscillation never
occurs; thus, the walker can be measured at any time (after
a minimum time to drown out other eigenmodes).
For our scheme, we consider a topology where there is a

“pump” or “entrance” mode âp and a marked “defect” or
“exit” vertex âd. Our aim is to find the defect vertex by
having a larger number of the walkers there than the other
vertices. The way we achieve this is by matching the pump
frequency ωp to that of an eigenmode ΩD that is predomi-
nantly a combination of the defect vertex and the pump
vertex, e.g., ÂD ≈ μD;pâp þ μD;dâd (where μD;. is the
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FIG. 2 (color online). (a) Photon number in the physical basis
and (b) eigenbasis during a lasing driven QW. The total number
of photons is equal in both bases.
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FIG. 3 (color online). Photon number in the physical basis at
the end of the lasing QW in each waveguide versus pump
frequency. Pump frequency is in the range ½0; 2�.
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weight of the physical modes in the composition of the
eigenmode) and have a very low weight of other modes,
i.e., μD;p ¼ μD;d ¼ 1=

ffiffiffi
2

p
. (These conditions are closely

related to centrosymmetric matrices [30], which have been
shown to help efficient quantum transport [31].)
With this, our scheme depends on three factors. First is

the shape of the eigenmode ÂD, which must comprise a
large proportion of the entrance and exit modes compared
to other system modes. Next, will be how these proportions
change with increasing system size. Finally, there is the
distance between two eigenfrequencies, determining the
minimum phase mismatch between eigenmodes, which
gives the minimum time one would have to wait before
measuring the system in order to drown out the other non-
phase-matched modes.
We illustrate this scheme with the glued-trees graph

(GTG) [32], which is characterized by its depth N (total
number of vertices 2Nþ2 − 2) whose topology of vertices
fâkg can be seen in Fig. 4(a) for N ¼ 3 (eigenmodes are
fÂkg). It has been shown for this particular graph that a
classical walker takes an exponential time to move from the
entrance vertex âp to the exit vertex âd, but a quantum
walker takes a polynomial time. Here we provide some
analytical and numerical evidence that our method can also
traverse in a time that scales polynomially. More details can
be found in the Supplemental Material [22].
To analyze this system we use the column representation

[the columns are highlighted by the dashed lines in
Fig. 4(a), which map the full set of vertices fâkg to a
linear chain of 2N þ 2 oscillator modes fb̂mg (eigenmodes
fB̂mg], as sketched in Fig. 4(a). The coupling coefficient
between modes is Cm;mþ1 ¼ 1 for all but the central two,
for which it is CN;Nþ1 ¼

ffiffiffi
2

p
. The linear chain modes,

b̂m ∝
P

k;âk∈colmâk, represent 2
m modes in column m of

the full graph for m ¼ 0;…; N and is mirrored for
m ¼ N þ 1;…; 2N þ 1. At the ends of the graph, b̂0 ¼
â1 and b̂2Nþ1 ¼ â2Nþ2−2. We will examine eigenvectors
B̂m that have a large weight at the ends.
Expressions for the eigenvectors of the linear chain

B̂m can be written down analytically [33] and are evaluated
at the eigenvalues of the system. These analytical
expressions are identical for the 1D chain with or without

the central-coupling difference, although the eigenvalues
are different for each system. The eigenvectors for
the 1D chain were stated above. By inspection, the
best performing eigenvector can be approximated by
B̂N ¼ 1=

ffiffiffiffi
N

p P
m sin½Nπm=ð2N þ 1Þ�b̂m ≈ 1=

ffiffiffiffi
N

p P
m×

sinðπm=2Þb̂m. Because of each column representing many
GTG vertex modes, we can renormalize b̂m according to
the number of âk it represents (e.g., 2m for m ¼ 0;…; N).
This gives a large weight at the ends of the linear chain, or
at the entrance and exit of the graph, and this behavior can
be seen in Fig. 4 in the Supplemental Material [22]. Also,
the weight scales as 1=

ffiffiffiffi
N

p
, which fulfils two of our criteria.

In the Supplemental Material [22] we also show additional
numerical evidence that the weights of the entrance or exit
modes decrease as 1=

ffiffiffiffi
N

p
for the full graph for depth up to

N ¼ 11 (total of 8190 vertices). Figure 4(b) shows the
shape of the eigenmode that we wish to create, with large
weights on both the entrance and the exit.
Finally, the eigenfrequencies of the system are approx-

imately satisfied by Ωj ¼ cos½jπ=ð2N þ 1Þ�, so the phase
mismatch between ωp ¼ ΩN and ΩN�1 decreases poly-
nomially, which only increases the time we have to wait
before measuring polynomially. The eigenmode with the
smallest phase mismatch Δ between the eigenfrequency
and pump frequency oscillates with a period 1=Δ, and thus
gives us the time we have to wait for this eigenmode be
drowned out relative to the phase-matched mode.
Figure 5 is a direct comparison between the traditional

QW [Fig. 5(a)], which shows the oscillation of the photon
between the entrance and exit modes, and the driven QW
[Fig. 5(b)], which shows the continuous growth of photons
in both the entrance and exit modes.
In conclusion, we have introduced and discussed a new

type of quantum walk, one where the walkers are created
and destroyed coherently during the walk. We have placed
the walk dynamics into a version more easily interpreted in
the traditional sense of quantum walks, which is state
creation followed by the quantum walk. This leads to a
quantum walk of multimode coherent states or squeezed
states depending upon the type of source Hamiltonian term
used. An experimental realization of this has already been
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carried out [19,20]. This type of walk is very different due
to the active process of choosing which modes are being
created, which can lead to interesting and novel transport
properties in such systems. Next, we have suggested a
search protocol that this process could perform. Here we
phase match a special eigenmode of a disordered system in
order to discover where the marked vertex is. This leads to a
growth of walkers in the defect mode, which allows it to be
identified. This has the advantages that there is no need for
a complicated initial state and that the walkers do not
oscillate away from the defect mode, as in the traditional
quantum search. We will study other aspects of these walks,
such as their performance with disorder, in future work.
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