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We report on the implementation of a time-multiplexed click detection scheme to probe quantum
correlations between different spatial optical modes. We demonstrate that such measurement setups can
uncover nonclassical correlations in multimode light fields even if the single mode reductions are purely
classical. The nonclassical character of correlated photon pairs, generated by a parametric down-
conversion, is immediately measurable employing the theory of click counting instead of low-intensity
approximations with photoelectric detection models. The analysis is based on second- and higher-order
moments, which are directly retrieved from the measured click statistics, for relatively high mean photon
numbers. No data postprocessing is required to demonstrate the effects of interest with high significance,
despite low efficiencies and experimental imperfections. Our approach shows that such novel detection
schemes are a reliable and robust way to characterize quantum-correlated light fields for practical

applications in quantum communications.
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Introduction.—Certifying quantum features of light is
one key requirement for optical implementations of quan-
tum-information technology [1,2]. This requires, on the one
hand, reliable sources for correlated quantum light and, on
the other hand, appropriate detection schemes [3.4]. Since
correlations between different degrees of freedom can have
different origins in quantum optics, they might be covered
by classical statistical optics, or they are genuine quantum
properties having no such classical counterpart. Using the
classical theory of coherence, one way to discern quantum
from classical effects has been introduced independently by
Glauber [5] and Sudarshan [6].

A quantum-state characterization is often based on the
photon number distribution, see, e.g., Refs. [7,8]. The
corresponding photoelectric  detection theory yields
Poissonian statistics for coherent light. However, detectors
that directly measure photon numbers are typically not
available or require advanced data postprocessing [9,10].
Today, quantum states with low mean photon number are
often detected with avalanche photodiodes (APDs) in the
Geiger mode, which basically produce a “click” if any
number of photons is absorbed, and remain silent other-
wise. A uniform splitting of a radiation field with many
photons into portions of lower intensities, each being
measured with an APD, can extent the knowledge about
the signal, for example, to discriminate single- and two-
photon events. Various kinds of such photon-number-
resolving detectors have been implemented to demonstrate
nonclassical features of radiation fields, e.g., in Refs.
[11-17], or for characterizing the non-Poissonian behavior
of the click statistics [18,19]. One particular realization

0031-9007/15/115(2)/023601(6)

023601-1

PACS numbers: 42.50.Ar, 03.65.Wj, 42.50.Dv, 42.50.Xa

of such a scheme that requires only a small number of
optical elements is so-called time-bin multiplexing
detectors (TMDs) [18,20,21], cf. Fig. 1. Based on these
TMDs, one can reconstruct nonclassical features of
quantum light fields [22,23] or higher-order correlation
functions [24].

The proper theoretical detection model for such devices
is a quantum version of the binomial statistics [25]. It was
also shown that approximating these statistics with a
Poissonian distribution and applying quantumness probes
of the photon statistics can yield fake signatures of
nonclassicality for classical fields—even if the number
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FIG. 1 (color online). The realization of two TMDs in a single
device is depicted. One part (upper, green input) of the correlated
signal field is delayed in an optical fiber before entering the
device. Within the TMD, any signal is split by a 50:50 beam
splitter followed by another delay line in one output. This
multiplexing is done three times yielding 23 separated time bins
for each (upper green and lower blue) input field, which are
measured with two APDs.
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of registered signal photons is 1 order of magnitude below
the number of time bins. To eliminate these errors, non-
classicality criteria in terms of moments of the click-
counting statistics have been proposed to directly uncover
quantum light with click counters without data postpro-
cessing [26]. For example, the notion of sub-binomial light
has been introduced [27] and experimentally demon-
strated [28,29].

In the present work, we report on the characterization
of a bipartite quantum-correlated light source using click
detectors only. We demonstrate that click detection is
capable of directly verifying nonclassicality even for
imperfect experimental settings. For our parametric
down-conversion (PDC) based light source, this approach
correctly shows classical single-mode correlations and,
at the same time, it uncovers quantum correlations
between the modes. We show that our simple treatment
to infer these quantum features works for a broad
range of pump powers. In particular, it works increasingly
well for increasing pump powers, where the often used
weak signal approximations with the photoelectric
detection theory completely break down, as we will
show later.

Nonclassical moments of the click statistics.—The prob-
ability to measure k, clicks within the N = 8 time bins
assigned to the signal A together with kp clicks from the
signal B, cf. Fig. 1, is described through the joint click-
counting statistics [25,26]:

with :---: denoting the normally ordering prescription
and i; = e T/N) for the modes i = A, B. In general, I’
can be an unknown detector response, being a function of
the photon number operators 71;. For example, a linear form
of the response function is I'(72;/N) = ni;/N + v, with 5
and v being the quantum efficiency and the dark count rate,
respectively.

In Ref. [26] it has been demonstrated that the matrix of
click moments M(K4-K5) is non-negative for any classical
light field,

0 < MK = (g g™ D), o) (2)
with s;,1; =0,...,K;/2 < N/2 for even K; and N. The

superscript (K4, Kp) defines the highest moment of each
subsystem within the matrix M; see also Ref. [30]. For
instance, the single-mode and bipartite, second-order
matrices of click moments are

1 (i, (:img:)
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respectively. The needed moments can be directly retrieved
from the measured click-counting statistics [26]
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One way to probe the character of nonclassical corre-
lations, i.e., violating inequality (2), can be done as follows.
We have nonclassical Kth-order click correlations if

ME&O >0, MOK) > 0, and MKEKF0.  (5)
This means that both Kth-order single-mode marginals are
classical and the bimodal, Kth-order correlation matrix is
nonclassical, i.e., it has at least one negative eigenvalue. In
order to genuinely certify such nonclassical correlations, it
is sufficient to consider the minimal eigenvalues of the
click-moment matrices. Say f,, fp, and f,p are the
normalized eigenvectors to the minimal eigenvalues e,
eg, and e z of MK MOK) and MK-K)| respectively.
Now, definition (5) is rewritten as

A= FAMEOF, >0,
ep = fsMOKFr >0, and
esp = fABM fAB <0. (6)

This method will serve as our approach to determine Kth-
order quantum correlations between the subsystems A and
B, see Ref. [30] for further details.

Implementation and model.—The states under study are
produced in a type II PDC in a periodically poled, 8§ mm
long KTP waveguide. The PDC process is pumped with
Ips long pulses at a repetition rate of 70 kHz and a
wavelength of 768 nm coming from a Ti:sapphire laser. The
states are generated in two orthogonally polarized signal
and idler modes at 1536 nm. In the regime of less than one
photon per pulse, the source has been characterized in
Ref. [31] with emphasis on the modal properties, and
genuine single-mode operation of the PDC has been
shown. Behind the waveguide, broadband spectral filters
are used to suppress the pump and unwanted background
outside of the PDC spectral region. Signal and idler modes
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are then split at a polarizing beam splitter and coupled into
a two-mode TMD consisting of a fiber network with 50:50
beam splitters and a pair of InGaAs APDs as depicted in
Fig. 1. For each pump setting, we record the full time
tagging data for 10 min and translate them into the click
statistics of all possible 8 x 8 click events. Experimental
imperfections are unbalanced beam splitters within our
TMD, i.e., splitting ratios that slightly deviate from 50:50,
or after-pulsing effects [32]. We minimized both effects
through a careful setup preparation.

The PDC may be formulated in terms of the effective
Hamiltonian A = ixya*h™ + H.c., where « is a coupling
constant, y is the coherent amplitude of the pump beam, and
a" (b") is the creation operator of the mode A (B). An
idealized, perfect unitary evolution for this process yields
the two-mode squeezed-vacuum state

TR =) h &)
&) = 5@ =) |vac) = Z% [n)aln)g. (7)

where £ > 0 is proportional to the square root of the pump
power P, since A « y and P 2. The noise suppression of
the squeezed quadrature X is ([AX]?) = e 2([AX]?), .
[7,30]. Because of the pairwise generation of photons, the
state (7) has perfect photon-number correlations. This means
that whenever a certain number of photons is present in one
mode, the same number of photons occurs in the other mode.
However, the click-counting statistics include off-diagonal
elements ¢y, # 0 for ky # kg, even for a perfect detection
without dark counts and unit efficiency, cf. Fig. 2. This
difference between click-counting and photoelectric detec-
tion is due to a finite probability that more than one photon
can end in the same time bin. It is worth mentioning that the
single-mode reduced states try|&)(£| and trg|é)(E| are
classical thermal states, and that the total number of photons
is i = (&|fiy + fp|E) = 2sinh?E.

Second-order correlations.—First, let us focus on sec-
ond-order click correlations, cf. Eq. (3), which include the
information about the mean values, the variances, and the

FIG. 2 (color online). The joint click-counting statistics (1) for
the state (7), £ = 1, and a perfect linear response I'(72/N) = ii/N.
The probability for no clicks is cut, ¢y oy = 0.42. Even though we
have perfect photon correlations, the click-counting distribution
includes off-diagonal terms.

covariance of the joint click-counting statistics [26]. In
Fig. 3, we plot the measurement results. Using the approach
in Eq. (6), the minimal eigenvalues e,p (top), e, (Fig. 3,
bottom, left), and ep (Fig. 3, bottom, right) are shown
in their dependence on the energy per pulse,
Epump = P/70 kHz. The energy can be experimentally
controlled. The single-mode matrices are non-negative,
es >0 and ep >0, whereas the cross correlations are
nonclassical, e, < 0. Thus, we have verified the quantum
nature of the second-order click correlations between the
spatial modes A and B.

In order to compare our measured results, a simple
theoretical model is used. We assume that the pure state (7)
is generated, and the detectors are described via a plain
linear response function: I'(i/N)=ni/N +v. As we
discussed above, the parameter £, characterizing the state
|€), depends on the pump power P: &= &/P. The
proportionality constant &;, the quantum efficiency #,
and the dark count rate have been fitted using the standard
method of least squares. They are = 9.6%, v = 0.51, and
& = 0.087 (uW)~!/2. With these values, we estimate the
total mean photon numbers to be 0.9—15 photons for the
pump powers 50-403uW or energies 0.7-5.8 nJ. Already
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FIG. 3. The upper plot shows the minimal eigenvalue e,p

(black bars) of the experimentally obtained matrix of moments
M©??) depending on the pump energy Eump- Error bars are given
as gray areas. The dashed curve is the theoretical prediction. The
inset depicts the continuation of the theoretical curve for higher
energies including saturation effects. The lower plots show the
minimal eigenvalues e, and ep of M (20) (left) and M(©-2) (right),
respectively, a 10 standard deviations error bar, and the theoreti-
cal prediction. Since the bimodal correlations are negative and the
single-mode reductions are non-negative, we successfully deter-
mined nonclassical correlations between the modes A and B.
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this simplified model yields a good agreement with the
measured results, which highlights the excellent perfor-
mance of the engineered PDC source, cf. the dashed lines
in Fig. 3.

The inset in the upper plot shows the extrapolation of the
quantum correlations, e,z < 0, for higher pump energies.
At some point, the mean photon number is so high that
these correlations saturate and eventually vanish. A high
squeezing level and a classical laser light with a large
coherent amplitude result in the same signal—all time bins
are occupied with a large number of photons. Therefore, at
high photon numbers, the signals of nonclassical and
classical states cannot be discriminated. Thus, the recorded
quantum correlations of the former state must decrease due
to the saturation of click-counting devices, which is
automatically included in the click-counting theory.
Imperfections are also studied [30].

Let us emphasize again that the states have been
generated for pump powers ranging over almost 1 order
of magnitude. Verifying nonclassical photon-photon cor-
relations in this comparably large domain is typically
considered a challenging task, but can easily be accom-
plished with our TMD click counters. In addition, since the
method of nonclassical click moments is independent of the
state, the verified quantum correlations can be certified
even if the pump power was completely unknown.

Higher-order correlations.—Let us study higher-order
quantum correlations. They become particularly mean-
ingful when second-order criteria fail to properly character-
ize the state [33]. For example, the third- and fourth-order
moment relate to the so-called skewness and the flatness (or
kurtosis), respectively. The highest possible order of
moments one can infer from N = § time bins per mode
is K = 8 in Egs. (2) and (6), which yields a full charac-
terization of the click-counting statistics.

The bound for a classical signal M&X) > 0 is given by
the eigenvalue e, = 0 [26]. Thus, the signed distance, in
units of standard deviations, of the experimentally obtained
minimal eigenvalue e = e 4+ Ae to this classical bound
leads to a signed significance

é—ecl e
= = —, 8
Ae Ae (8)

representing a signed relative error. A negative significance
¥ < 0 verifies the nonclassicality with a significance of |X|.
Typically, £ < -3 is a significant verification of the
negativity, whereas X~ (0 cannot be distinguished from
the classical bound O.

In Fig. 4, the significance levels of the full eighth-order
quantum correlation within M®®) are given. The single-
mode, signed significances for M3 and M%) can be
found in Ref. [30]. There are no significant eighth-order,
single-mode correlations M9 M(©8) > 0—the largest
single-mode negativities are of the order of ¥~ —1075.
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FIG. 4. The signed significances X of the largest negativities of
the full matrix of click moments M®#) are shown. The highest
significance levels of nonclassicality between the subsystems are
verified for our highest energy. In this region the impact of the
click-counting theory is most pronounced.

Additionally, the significance of negativities in M®3),

cf. Fig. 4, are in the range of 2.7-10.6 for the energies
0.7-5.8 nJ, respectively. Hence, for most of the energies, a
significant eighth-order nonclassical correlation between
the modes A and B is certified. Remarkably, the signifi-
cance even increases with the energy, which is due to an
improved signal-to-noise ratio with increasing mean photon
numbers, because the no-click event has a much lower
probability in this regime.

On the one hand, one would typically not use such
comparably high intensities in our measurement setup,
when analyzing the data with the inappropriate photo-
electric detection model. In this case, the single-mode
signed significances evaluate to —2.4 to —13, cf. Ref. [30],
suggesting fake nonclassicality, which worsens with
increasing pump power. On the other hand, our consistent
treatment in terms of the click statistics correctly identifies
higher-order bimodal correlations while showing, as
expected for our source, no nonclassicality in the single-
mode marginals.

Here, we studied photon-photon correlations in terms of
click-counting moments for high mean photon numbers.
Even though we have an incomplete knowledge about the
state—no phase information and only a finite number of
bins—we are able to uncover quantum correlations. The
lack of phase resolution compares to a fully phase ran-
domized version of the state (7), which has been shown to
include nonclassical correlations without entanglement
[34], being certified with the present method. The meas-
urement scheme may be complemented for phase-sensitive
measurements [35], to infer squeezing or entanglement.

Conclusions.—We set up a click correlation measure-
ment scheme using time-multiplexed detectors for probing
nonclassical correlations of a bipartite quantum light field.
We could directly infer nonclassical correlations from the
measured joint click-counting statistics with high signifi-
cances. This was possible despite a low detection effi-
ciency, estimated as 10%, and over 1 order of magnitude of
intensities. Note that the bare click data have been analyzed
without corrections for imperfections or related postpro-
cessing techniques. We compared our results with a
theoretical model and obtained a very good agreement.
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In particular, the expectation of this model—all orders of
single-mode correlations do not exhibit nonclassicality, but
the two-mode correlations do—is correctly demonstrated
with our method. This underlines the functionality of our
device for verifying genuine quantum correlations between
spatial optical modes.

Our proposed measurement together with the click-
detection analysis is a robust and efficient tool to character-
ize quantum light. We believe that this simplicity of click
detection—being solely a collection of probabilities of
coincidence clicks—paves the way towards real-live imple-
mentations of quantum communication protocols in optical
systems. The present approach may be further generalized
to handle more complex types of quantum-correlated,
multimode radiation fields.

J.S., M. B., and W. V. acknowledge financial support by
Deutsche Forschungsgemeinschaft through SFB 652 and
VO 501/22-1. G.H., B.B., V. A,, and C.S. acknowledge
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Note added.—We recently became aware of a related paper
in preparation by the group of I.A. Walmsley and
co-workers [36].
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