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Two photons can simultaneously share entanglement between several degrees of freedom such as polari-
zation, energy-time, spatial mode, and orbital angular momentum. This resource is known as hyperentan-
glement, and it has been shown to be an important tool for optical quantum information processing. Here
we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum
memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is
stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for
transmission in optical fiber. We measured violations of a Clauser–Horne–Shimony–Holt Bell inequality
for each degree of freedom, independently of the other one, which proves the successful storage and retrieval
of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quan-
tum communication in optical fiber, and is in particular suitable for linear-optical entanglement purifi-
cation for quantum repeaters. © 2015 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5565) Quantum communications; (270.5585) Quantum information and processing;

(160.5690) Rare-earth-doped materials.
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1. INTRODUCTION

Quantum entanglement is an essential resource for quantum
information processing, and in particular for quantum com-
munication and for quantum computing. There are many
ways in which quantum systems can be entangled. For exam-
ple, two photons can be entangled in their polarization, or in
their energy. They can also be entangled in more than one of
their degrees of freedom (DOFs), i.e., hyperentangled [1–3].

Two photons can thus share more entanglement bits (ebits)
than what a singly entangled pair allows.

Hyperentanglement is an important resource in optical
quantum information processing [4]. For example, complete
and deterministic Bell-state analysis in one of the DOFs of
a hyperentangled pair is possible with linear optics [5–7]. This
was used to perform quantum teleportation [8–10] and super-
dense coding [11]. Hyperentanglement also has applications in
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optical tests of nonlocality [12], as well as linear-optical quan-
tum computing [13,14] and the generation of multi-qubit en-
tangled states using a smaller number of photons [15]. In this
context, light–matter hyperentanglement was demonstrated
using spatial and polarization DOFs, and was used in a dem-
onstration of one-way quantum computing [16]. The optical
implementation of entanglement purification can be simplified
greatly using hyperentanglement [17]. This could play an im-
portant role in the context of long-distance quantum commu-
nication with quantum repeaters, where purification can be
used to increase the rate at which entanglement is distributed
[18,19]. However, this is possible only if the DOFs in which
the hyperentanglement is coded are suitable for long-distance
transmission, e.g., in optical fiber. Previous demonstrations of
entanglement purification were all based on polarization and
spatial modes [20,21], but the latter is not adequate for long-
distance transmission in fiber. Energy-time (or time-bin) and
polarization hyperentanglement is much better suited for this.
The requirements that then arise for quantum repeaters is to
have quantum memories that can efficiently store both DOFs,
combined with the possibility of efficiently distributing entan-
glement over long distances in optical fiber.

Here we report on the quantum storage of hyperentangle-
ment that is compatible for long-distance quantum communi-
cation in optical fiber. A source first generates photons
hyperentangled in polarization and energy-time. One photon
from the pair is then stored in a quantum memory based on
rare-earth-ion doped crystals that is designed to store both

DOFs. The other photon has a telecommunication wavelength
and can be distributed over long distances.

The paper is organized as follows. In Section 2 we describe
our experimental setup, including the source of hyperen-
tangled photons. Details on the quantum memory are given
in Section 3. Section 4 describes how the Clauser–Horne–
Shimony–Holt (CHSH) Bell inequalities on each DOF are
measured, and Section 5 presents the main results.

2. EXPERIMENTAL SETUP

A conceptual setup of our experiment is depicted in
Fig. 1(a). It consists of a source of pairs of entangled photons
(denoted as signal and idler photons) entangled in both polari-
zation and energy-time, a solid-state quantum memory based
on rare-earth-ion doped crystals, analyzers (denoted as τ) used
to reveal the energy-time entanglement, followed by analyzers
(denoted as π) used to reveal the polarization entanglement.

Figure 1(b) shows a detailed version of our setup. Photon
pairs entangled in both DOFs (hyperentangled photon pairs),
consisting of a signal photon at 883 nm and an idler photon at
1338 nm, are produced by spontaneous parametric downcon-
version (SPDC) in nonlinear waveguides. Energy-time entan-
glement is obtained by pumping the waveguides with a
continuous-wave laser at 532 nm with an average power of
2.5 mW. Photons from a given pair are created simultaneously
at a time that is uncertain within the coherence time of the
pump, which creates the entanglement. The polarization en-
tanglement is generated by sending diagonally polarized pump
light onto a polarizing beam splitter (PBS) that transmits

Fig. 1. Experimental setup. (a) Conceptual setup of hyperentanglement storage inside a solid-state quantum memory (QM). A pair of photons
entangled in polarization (jΨπi) and energy-time (jΨτi) are generated from SPDC. The signal photon is stored inside a quantum memory and released
after a predetermined time of 50 ns. The hyperentanglement is revealed using time-bin analyzers (τ) having short (S) and long (L) arms and adjustable
relative phases (ϕi and ϕs), followed by polarization analyzers (π). (b) Experimental setup (see text for details). Polarization-entangled photon pairs are
created by coherently pumping two nonlinear waveguides (PPLN and PPKTP) and recombining the optical paths. The pump is a CW laser at 532 nm,
which inherently produces pairs that are also energy-time entangled. A dichroic mirror (DM) separates signal and idler photons. The appropriate line-
width for storage of the signal photon in the QM is obtained with narrow filtering (NF), which consists of a cavity and a volume Bragg grating for the
signal (883 nm) and the idler (1338 nm). An optical switch is used to direct either the light necessary for the preparation of the QM, or the signal photons,
to the QM. The time-bin analyzers of the signal and idler photons are made with free-space and fiber components, respectively, using 50/50 beam splitters
(BSs), and are both actively locked. Piezo elements are used to control the phases ϕs and ϕi of the analyzers. They are followed by free-space polarization
analyzers composed of quarter-wave and half-wave plates (QWPs and HWPs) followed by polarizing beam splitters (PBSs). D�s�

1;2 are avalanche
photodiodes, and D�i�

1;2 are WSi superconducting nanowire single-photon detectors.
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horizontal polarization and reflects vertical. The horizontal
output of the PBS is followed by a periodically poled lithium
niobate waveguide (PPLN) oriented to ensure nondegenerate,
collinear type-0 phase matching generating horizontally
polarized photons. Similarly, the vertical output is sent to a
potassium titanyl phosphate waveguide (PPKTP) generating
vertically polarized photons. After each waveguide, the signal
and idler are separated by a dichroic mirror (DM), and the
modes are recombined at a PBS. A photon pair is then in a
coherent superposition of being emitted by the first (jHHi)
and second waveguides (jV V i), yielding a state close to the
maximally entangled Bell state

jΨπi �
1
ffiffiffi
2

p �jHH i � eiθjV V i�: (1)

Using the residual pump light collected at the unused out-
put port of the PBS, we derive a feedback signal that is used to
stabilize the phase θ. The polarization entanglement of this
source was described in detail in Ref. [22].

Storage of the photon in an atomic ensemble requires
reducing its spectral width from its initial ≈500 GHz line-
width down to a fraction of the storage bandwidth of the
memory, which is ∼600 MHz. The narrow filtering (NF)
for the signal and idler photons is done in two steps: in each
path, we combine a filtering cavity and a volume Bragg grating
(VBG) to select only a single longitudinal mode of the cavity.
The idler photon first passes through a Fabry–Perot cavity with
linewidth of 240 MHz and free spectral range (FSR) of
60 GHz. It is then followed by a VBG with a FWHM diffrac-
tion window of 27 GHz. The signal photon is first sent onto a
VBG with a spectral bandwidth of 54 GHz and then sent
through an air-spaced Fabry–Perot etalon with a linewidth
of 600 MHz and FSR of 50 GHz. Due to the strong energy
correlation between both photons, the heralded signal
photon’s linewidth is effectively filtered to ≈170 MHz, corre-
sponding to a coherence time τc ≈ 1.9 ns [22].

The signal photon is then sent for storage in a compact,
polarization-preserving, and multimode solid-state quantum
memory (QM), as described in Section 3. It is then retrieved
from the QM after a predetermined 50 ns storage time with an
efficiency of ≈5%.

To reveal energy-time entanglement of the photon retrieved
from the memory, a Franson interferometer [23] is used.
Specifically, each photon is then sent through unbalanced
interferometers with controllable phases and identical travel-
time differences between the short (S) and long (L) arms [these
interferometers are shown as all-fiber Mach–Zehnder interfer-
ometers in Fig. 1(a)]. In practice [Fig. 1(b)], the idler is sent
through an unbalanced all-fiber Michelson interferometer us-
ing Faraday mirrors, and the signal is sent through a free-space
Mach–Zehnder interferometer. The travel-time difference
between the short and long arms is 5.5 ns, which is greater
than the coherence time of the photons τc and eliminates
single-photon interference. However, due to the large uncer-
tainty in the creation time, a coincidence stemming from both
photons traveling the short arms is indistinguishable from one

in which both photons travel the long arms, leading to quan-
tum interference in the coincidence rate.

Hence, interference fringes can be observed by varying the
phase in each interferometer. These coincidences can be seen
as stemming from a time-bin entangled state that is close to the
maximally entangled Bell state

jΨτi �
1
ffiffiffi
2

p �jSSi � jLLi�: (2)

Coincidences between photons traveling different arms are
also observed, but they do not yield any kind of interference
and are discarded when analyzing the energy-time DOF. They
can, however, be kept when analyzing the polarization DOF.

When considering entanglement in both DOFs, the state of
a single pair can be written as

jΨτi ⊗ jΨπi: (3)

Both DOFs of a hyperentangled pair can in principle be
manipulated independently, and the quality of the entangle-
ment in one DOF should not depend on the basis in which
the other is measured. In our setup, this is possible only if
polarization rotations, due to birefringent optics, are the same
in both arms of the unbalanced interferometers. For the idler
photon, this is happening automatically, thanks to the Faraday
mirrors reflecting the light with a polarization that is orthogo-
nal to the one at the input of the 50/50 fiber beam splitter
(BS). For the signal photon, this is more challenging because
free-space mirrors affect the phase of the jH i and jV i polar-
izations in different ways. This effectively means that without
any kind of compensation the measurement basis of the time-
bin analyzer is not the same for an input jH i or an input jV i
polarization state. To eliminate this problem, we insert a wave
plate in the long arm. The fast axis is set to horizontal, and the
plate is tilted with respect the beam (see Fig. 1). The tilt con-
trols the relative phase between horizontal and vertical polar-
izations, and is adjusted to equalize the birefringence of both
arms and therefore eliminate the polarization-dependent
relative phase between the two arms.

To lock the phase of the idler’s time-bin analyzer, we use
highly coherent light at 1338 nm obtained from difference-
frequency generation (DFG) from 532 and 883 nm light com-
bined in the PPLN waveguide. A feedback mechanism locks
this DFG light on the idler’s cavity transmission peak [22].
The phase of the interferometer is controlled by coiling the
fiber of the long arm around a cylindrical piezo transducer,
and the interferometer is locked using a side-of-fringe tech-
nique. The phase of the signal photon’s time-bin analyzer is
controlled using a piezo-mounted mirror placed in the long
arm. The phase is probed using part of the CW laser at 883 nm
that is used to prepare the QM. The light is frequency shifted
using an acousto-optic modulator (AOM) and then sent
through the interferometer in a spatial mode that has no over-
lap with the signal photon. The phase of the interferometer is
modulated with a sinusoidal signal oscillating at 18 kHz. This
yields intensity fluctuations that can be demodulated using a
lock-in technique and allows us to obtain the derivative of the
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transmission of the interferometer. To scan the phase, we fix
the locking point to a maxima of the transmission (i.e., a zero
of its derivative) and sweep the frequency of the probe laser
using the AOM. The time difference of 5.5 ns between the
short and long arms yields a period that can be covered by
scanning the frequency over ≈180 MHz. One advantage of
this technique compared to a side-of-fringe lock is that it yields
a locking point that is unaffected by fluctuations of the inten-
sity of the laser that probes the phase.

After the interferometers, the polarization of each photon is
analyzed. Each output of the PBS is coupled into a single-
mode fiber and sent to single-photon detectors. The results
of the measurements made at different analyzers are compared
in order to reveal the nonlocal correlations in both DOFs.
Single-photon detectors with 30% (Si avalanche photodiode)
and 75% (WSi superconducting nanowire [24]) efficiencies are
used to detect the signal at 883 nm and the idler at 1338 nm,
respectively.

The heralding efficiency of signal photons up to the quan-
tum memory is ≈20%, while the overall detection efficiency of
idler photons is ≈10%. The average input pump power at
532 nm of 2.5 mW was used and corresponds to a photon pair
creation probability of ≈0.015 for the time window of τc �
1.9 ns [22]. The overall coincidence rates for the transmitted
and stored photons were ≈20 and 2 Hz, respectively.

3. MULTIMODE AND POLARIZATION-
PRESERVING BROADBAND QUANTUM MEMORY

In this section we describe our quantum memory and how it
can store both DOFs. The storage is implemented using the
atomic frequency comb (AFC) storage protocol in rare-earth-
ion doped crystals [25]. To realize this, the inhomogeneously
broadened absorption profile of the crystal is first shaped into a
comb-like structure in frequency using optical pumping.
When a photon is absorbed by the AFC, it creates an atomic
excitation delocalized over all atoms inside the comb. The col-
lective state then dephases and the excitation is stored. Thanks
to the periodic profile of the AFC, the atoms then collectively
interfere after a specific time, which can lead to reemission of
the signal photon into the same spatial mode it was absorbed
in. The storage time is predetermined and equal to 1∕Δ, where
Δ is the period of the frequency comb.

The temporal multimode capacity for this protocol is given
by the ratio of the storage time over the duration of the tem-
poral modes that are stored. For a given storage time, the
multimode capacity therefore increases with the storage band-
width. The large inhomogeneous broadening of rare-earth-ion
doped crystals makes them an excellent material to realize mul-
timode quantummemories at the single-photon level [26], and
they are well suited for the storage of energy-time and time-bin
entanglement, as demonstrated in [27,28].

We implement the AFC quantum memory protocol using
rare-earth-ion dopedNd3�:Y2SiO5 crystals with a dopant con-
centration of ≈75 ppm. Optical pumping is used to shape the
absorption profile of the QM in an AFC. This requires split-
ting the ground state 4I9∕2 into two Zeeman levels [Fig. 2(a)]
using a static magnetic field of 300 mT [26]. This is done to

spectrally resolve two optical transitions that are inhomogene-
ously broadened to 6 GHz and to perform optical pumping
from one ground Zeeman state to another. The Zeeman split-
ting of the excited state is not spectrally resolved in this con-
figuration. We measured a ground-state Zeeman lifetime of
43 ms using spectral hole burning measurements, which is
much greater than the 300 μs radiative lifetime of the optical
transition, as required for optical pumping. We note that this
lifetime is, however, shorter than the ∼100 ms measured in
30-ppm-doped crystals [26], which unavoidably affects the
quality of the AFC that we can prepare; see below.

The efficiency η of the AFC protocol [25] depends on the
optical depth d through η � d̃ 2e−d̃ e−d 0ηdeph, where d̃ � d

F is
the average optical depth of the comb, F is the finesse of the
comb, d 0 the residual optical depth, and ηdeph is the dephasing
term, which is maximized for square peak shapes [29]. The
storage of polarization qubits in rare-earth-ion doped crystals
is therefore hindered by their polarization-dependent optical
depth. It is, however, possible to mitigate this problem, as
demonstrated in [30–32]. Specifically, consider a crystal cut
such that its input face contains two principal axes of the di-
electric tensor; see Fig. 2(a). Let D1 and D2 be those axes,

Fig. 2. Scheme for storage of polarization qubits. (a) Energy level
structure of Nd3� ions inside a Y2SiO5 crystal with and without applied
external magnetic field B � 300 mT. External magnetic field lies in
D1–D2 plane with 30° angle with respect to D1 axis. (b) The compact
configuration of the quantum memory is obtained by placing a HWP
between two identical Nd3�:Y2SiO5 crystals. The fast axis of the HWP
is oriented at 45° with respect to the axesD1 andD2, which are the two of
the principal axes of the dielectric tensor. The 14-mm-long arrangement
is cooled to 2.7 K and placed in a static magnetic field to split the ground
into two Zeeman levels. (c) The optical depth of the two-crystal configu-
ration is shown as a function of the linear polarization angle of the input.
The green squares and blue circles correspond to transitions [(1) and (2)]
from each of the Zeeman-split ground states shown in (a). Lines are fits of
the model described in [33].
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which we assume coincident with the polarizations for which
the optical depth is minimum and maximum. This condition
is satisfied for a yttrium orthosilicate crystal doped with neo-
dymium ions [30], Nd3�:Y2SiO5, the material we use here.
Let d 1 and d 2 be the optical depth for light polarized along the
D1 and D2 axes. By placing two identical crystals on each sides
of a half-wave plate (HWP) oriented to rotate a D1-polarized
photon to D2 and vice versa, an absorbed single photon with
an arbitrary polarization will be in superposition of being
stored in both crystals with an effective optical depth equal
to d 1 � d 2, yielding a polarization-independent efficiency.

Here we realize this polarization-independent scheme in a
compact manner using two 5.8-mm-long Nd3�:Y2SiO5 crys-
tals placed on each side of a 2-mm-thick HWP, resulting in a
total length of about 14 mm [Fig. 2(b)]. This setup system is
cooled to a temperature of 2.7K using a closed-cycle cryocooler.
The Nd3� dopant concentration is higher than we used in a
previous demonstration of polarization-independent storage
of single photons [30]. The higher doping level allows us to use
shorter crystals for a more compact setup. All faces of the crys-
tals, HWP, and cryostat windows are coated with antireflective
films, and the overall transmission through the system is higher
than 95%, when factoring out the absorption of the crystals.

We achieve an average optical depth of 2.35� 0.10, aver-
aged over all linear polarization states, for the optical transition
starting from the higher-energy level of the Zeeman doublet.
The variations are smaller than 5% [Fig. 2(c)]. They may be
attributed to the imperfect alignment and retardation of the
HWP, as well as an imperfect optical alignment of the beam
with respect to the input face. The transition from the other
Zeeman level yields 2.85� 0.11 [see Fig. 2(c), blue circles].
This difference is consistent with thermalized populations,
which dictates that the ratio of the optical depths should be
exp�−ΔE∕kBT �, where ΔE � hΔν, Δν � 11 GHz, kB is
Boltzmann’s constant, and T is the temperature. For our tem-
perature of 2.7 K, the expected ratio is 0.82, which matches the
observed ratio of 2.35∕2.85 � 0.825. For our storage of hy-
perentangled photons, we could only use the optical transition
with the lowest optical depth due to the limited tuning
range of the Fabry–Perot etalon of the source. Using the other
optical transition could have led to a higher quantum memory
efficiency.

The AFC is prepared with an AOM that modulates the in-
tensity and frequency of the light from an external cavity diode
laser centered on the absorption line of the 4I9∕2 → 4F 3∕2
transition. In this way we create a 120 MHz absorption comb
with a spacing of Δ � 20 MHz between the peaks, which cor-
responds to 1∕Δ � 50 ns storage time [25]. To extend the
bandwidth of QM beyond the 120 MHz limit imposed by
the double-pass in the AOM, the light from the AOM is
coupled inside an electro-optical phase modulator that creates
first- and second-order sidebands separated by 120 MHz from
each other. This yields an overall comb width of 600 MHz,
larger than the 170 MHz spectrum of the heralded signal pho-
ton, as shown in Fig. 3. The contrast of the absorption profile
is reduced on the sides due to the smaller optical power
available in the second-order sidebands. The fact that the

maximum optical depth of the comb (1.8) is less than the
one of the transition itself (2.35) can be attributed to power
broadening, which can reduce the maximum optical depth
between the peaks. The remaining absorption of d 0 ≥ 0.25
also reduces the storage efficiency. The efficiency of the quan-
tum memory with this comb is ≈5% for a 50 ns storage time,
while the total absorption and the transmission of the memory
are both close to 50%. Imperfect rephasing and reabsorption
processes inside the memory lead to the decrease of the QM
efficiency [25]. The photons that were not absorbed could be
used to analyze storage process and calibrate the analyzers for
CHSH inequality violation.

4. BELL TESTS ON HYPERENTANGLEMENT

A quantum state is hyperentangled if one can certify entangle-
ment for each entangledDOF. Therefore, it is enough to violate
a Bell inequality in both polarization and time independently to
demonstrate hyperentanglement. Here we use the inequality
derived by Clauser et al. [34] (CHSH) to witness entanglement.
The Bell–CHSH inequality for a single DOF reads

S�jE�X;Y��E�X 0;Y��E�X;Y 0�−E�X 0;Y 0�j≤ 2; (4)

where X and X 0 (Y and Y 0) are two observables that are mea-
sured on the signal (idler) side. E is the correlator corresponding
to the expectation value of the correlation between measure-
ment results obtained on both photons of an entangled pair.
Those correlators are calculated from the number of coinciden-
ces between idler detectorD�i�

k and signal detectorD�s�
l , denoted

Rkl , where k; l ∈ f1; 2g are the possible outcomes for each
measurement. In terms of the coincidence rate, the correlation

Fig. 3. Spectrum of the AFC prepared by optical pumping inside the
absorption profile. The central 120-MHz-wide region is prepared by the
carrier frequency of the laser diode that is modulated in intensity and
frequency by an AOM. The subsequent 120-MHz-wide regions on both
sides are prepared by generating first- and second-order sidebands sep-
arated by 120 and 240 MHz from the carrier frequency, respectively,
using an electro-optic phase modulator placed after the AOM. The fi-
nesse of the comb is ≈2, and the width of the comb is ≈600 MHz.
For comparison, the dashed red line shows the power spectra of a
170 MHz Lorentzian, which is close to the spectral width of the heralded
signal photon. The values of d and d 0 used in equation of efficiency are
shown for the central part.
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function is written as E � �R11 � R22 − R12 − R21�∕RT , where
RT � P

k;l Rkl is the total rate of coincidences.
Let us first consider the polarization DOF only, and

suppose for now that the time-bin analyzers in the setup of
Fig. 1 are bypassed. Consider as well that the signal and idler
photons are measured in the set of linear polarizations. This is
done by setting the QWPs of the analyzers at 0° with respect to
horizontal, and the HWPs at θs and θi for the signal and idler,
respectively. Finally, let us assume the phase θ of state jΨπi is
equal to zero [Eq. (1)]. One can show that the coincidence
rates should be R�π�

11 � R�π�
22 ∼ �1� V π cos�4�θs − θi��� and

R�π�
12 � R�π�

21 ∼ �1 − V π cos�4�θs − θi���. In these expressions
we introduced the polarization entanglement visibility 0 ≤
V π ≤ 1 that arises by assuming the experimental imperfections
can be described by replacing jΨπi with a Werner state of
visibility V π [35].

Let us now consider the case in which the interferometers are
inserted before the polarization analyzers, as in Fig. 1. This
yields a Franson interferometer, and one can show that the ob-
served coincidence rate between D�s�

k and D�i�
l (when consider-

ing the appropriate time difference between detections; see
below) is given by

R�π;τ�
kl � R�π�

kl · R�τ�; (5)

where R�τ� ∼ �1� V τ cos�Δϕs � Δϕi��, and Δϕs (or Δϕi) is
the relative phase between the long and short arms of the signal
(or idler) interferometer. Like the polarization DOF, we
assumed the measurement is performed on a Werner state of
visibilityV τ instead of jΨτi. Note that in our setup, we use only
one of the output ports of the interferometers. This translates
into saying thatR�τ� corresponds to one of the four rates possible
R�τ�
mn (m; n ∈ f1; 2g� at a time.Which one is measured is decided

by an appropriate choice of the relative phases Δϕs;i. This limi-
tation can nevertheless be used to violate a Bell–CHSH inequal-
ity, assuming fair sampling of the outcomes.

When measuring the Bell–CHSH inequality on the polari-
zation DOF only, R�π�

kl is obtained from a measurement of

R�π;τ�
kl by considering R�τ� as a constant loss factor. Measure-

ment of R�τ� is obtained by summing all coincidences between
either D�s�

1 or D�s�
2 and D�i�

1 or D�i�
2 . Quantum mechanics pre-

dicts that Sπ ≤ 2
ffiffiffi
2

p
V π (or Sτ ≤ 2

ffiffiffi
2

p
V τ) for polarization (or

energy-time), where the inequality is saturated with an optimal
set of measurements. The local bound is Sπ;τ � 2.

5. RESULTS

Before characterizing quantum correlations, we first need to
determine the phase θ of the polarization-entangled state
jΨπi, as well as the sum Δϕs � Δϕi of the phases of the inter-
ferometers. Once they are known, we consider them as phase
offsets in R�π�

kl and R�τ�. For this, we use the signal photons that
are transmitted by the quantum memory (i.e., not stored). We
do so because the signal photons are more likely to be trans-
mitted than stored and retrieved, and this allows a faster char-
acterization of the phases. Figure 4(a) shows coincidence

histograms between the pair of detectors D�s�
1 and D�i�

1 (the
other histograms are similar). The coincidences are resolved
into two satellite peaks and a central peak. The rate estimated
from the central peak corresponds to R�π;τ�

11 . The rate in the
satellite peaks is proportional to R�π�

11 only since the timing be-
tween detections cannot lead to quantum interference due to
the energy-time entanglement. Hence, the satellite peaks are
included in the analysis of the polarization entanglement,
but not in that of the energy-time.

To extract Δϕs � Δϕi, we scan the free-space interferom-
eter as described in Section 2, while the polarization is mea-
sured in the basis fjHi; jV ig on both sides. In this way,
detectors D�s�

1 and D�i�
1 are revealing the energy-time entangle-

ment of the jHH i component of jΨπi, while D�s�
2 and D�i�

2 are
revealing that of the jV V i component. Figure 5(a) shows
coincident events in the central peak as a function of Δϕs,
while Δϕi is kept constant. The rates R�π;τ�

11 (solid line) and
R�π;τ�
22 (dashed line) overlap, as is required to measure both

DOFs independently. The visibility is V τ � 92�3�%.
To extract the value of θ, we set Δϕs � Δϕi � 0 and

Fig. 4. Example of measurements used to violate CHSH inequality for
time-bin qubits. The coincidence histograms between detectors D�s�

1 and
D�i�

1 show three peaks corresponding to different path combinations for
(a) transmitted signal photon, i.e., not absorbed by the QM, and
(b) stored signal photon. Each figure represents a histogram from one
measurement outcome, R�π;τ�

11 , of a correlator in the Bell–CHSH inequal-
ity [Eq. (4)]. The insets correspond to histograms with an additional π
phase shift between the two interferometers. Varying the angles of the
polarization analyzers leads to variations of the intensity of all three peaks
simultaneously.
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project the idler photon in the basis fj�i; j−ig, where
j�i � 1ffiffi

2
p �jHi � jV i�. This prepares the signal photon in

the state 1ffiffi
2

p �jH i � eiθjV i�. The QWP of the signal polariza-

tion analyzer is then set to transform that state into one with a
linear polarization. Figure 5(b) shows the rates R�π�

11 and R�π�
22 , as

a function of the HWP angle, from which the phase of the
polarization Bell state can be extracted from the horizontal
offset. The visibility V π � 96�2�%.

Once the phases are estimated, we measure correlations that
violate the Bell–CHSH inequality for each DOF using the
photons that are stored and retrieved from the quantum
memory. To illustrate the independence between the two
DOFs, each polarization measurement was performed using
two different projection bases for the energy-time DOF,
and vice versa. Specifically, the test on the energy-time
DOF was done using either the polarization basis π1 �
fjH i; jV ig for both photons, or π2 � fj�i; j−ig. The test
on the polarization DOF was done with either Δϕs � Δϕi �
ϕsi � 0 (denoted by τ1) or ϕsi � π

4 (denoted by τ2). The values
of the measured correlators are shown on Fig. 6. The corre-
sponding CHSH parameters are S�τ1�π � 2.59�4� and S�τ2�π �
2.64�4� for polarization entanglement, and S�π1�τ � 2.60�7�
and S�π2�τ � 2.49�4� for the energy-time. The violations ex-
ceed the local bound by more than eight standard deviations.
To see the effect of the storage process on the quality of
the hyperentanglement, we performed the same analysis using
the transmitted signal photons. Table 1 summarizes all the
results.

The values for Sπ and Sτ for stored photons are all lower
than for transmitted photons except the Sτ value for the π1
polarization basis (which we believe is higher due to a statistical
fluctuation). The lower values are most likely caused by acci-
dental coincidences between idler photon (from one photon
pair) and signal photon (from another photon pair) generated
within the time delay equal to the storage time of the memory.
This effect was studied in detail in a previous publication [36].
It limits the maximally achievable visibility and reduces the
CHSH inequality violation. The relative difference between
the transmitted and the stored cases is at most 5%, and hence
the storage in the QM has very little effect on the quality of the
hyperentanglement.

Fig. 5. Calibration of the analyzers using transmitted signal photons.
(a) Rates in the central coincidence peak of Fig. 4(a) are plotted as a
function of the sum of the phases of each interferometer, for both output
ports of the polarization analyzer. The small phase shift between the
curves appears due to a residual phase difference between jH i and
jV i components at the output of the interferometer on the signal side.
(b) Rates in the central coincidence peak of Fig. 4(a) as a function of
polarization analyzer’s HWP angle of the signal photon (with the
QWP at 45°), for two pairs of detectors, namely D�s�

1 and D�i�
1 (solid line)

or D�s�
2 and D�i�

2 (dashed line). Each curve represents a fit to data points
using a sinusoidal function, and the error bars are estimated assuming
Poisson statistics for the counts. The average visibilities for polarization
and energy-time entanglement are V τ � 92�3�% and V π � 96�2�%,
respectively.

Fig. 6. Correlators for stored photons. The four panels are different
sets of correlation measurements that violate the Bell–CHSH inequality
of Eq. (4) reported in Table 1. The top row shows the values for polari-
zation measurements with either (a) measurement on the energy-time
entanglement such that Δϕs � Δϕi � 0 or (b) Δϕs � Δϕi � π∕4.
In the bottom row we show the values for energy-time measurements
while projecting the polarization of both the signal and the idler in
(c) the fj�i; j−ig basis, or (d) the fjH i; jV ig basis (right).

Table 1. Summary of all Bell–CHSH Violationsa

S (Transmitted) S (Stored)

π τ π τ

π1:fjHi; jV ig – 2.555(13) – 2.60(7)
π2:fj�i; j−ig – 2.571(11) – 2.49(4)
τ1:ϕsi � 0 2.716(11) – 2.59(4) –
τ2:ϕsi � π

4 2.733(12) – 2.64(4) –
aMeasured S parameters obtained with transmitted or stored signal photons are

shown. For each case, tests on the energy-time (τ) DOF were done with either the
polarization basis π1 � fjHi; jV ig or π2 � fj�i; j−ig, and tests on the
polarization (π) DOF were done with Δϕs � Δϕi � ϕsi � 0 (τ1) or π

4 (τ2).
These results show clear violations of Bell–CHSH inequality and demonstrate
entanglement in all DOFs studied.
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6. CONCLUSIONS

We have shown the storage of energy-time and polarization
hyperentanglement in a solid-state quantum memory. This
choice of DOFs, combined with the fact that one of the pho-
tons of each pair is at a telecom wavelength, makes our source
and memory very attractive for the implementation of linear-
optical entanglement purification in quantum repeaters. This
would ultimately require the use of a quantum memory that
can retrieve photon on-demand using a complete AFC storage
scheme [25,37]. Alternatively, a scheme based on spectral
multiplexing [38] could be used. The storage of hyperentan-
glement demonstrated here is suitable with both of the ap-
proaches. Our experiment also shows that we can store two
ebits in a single quantum memory. Expanding on this idea,
our memory could be used to store other DOFs, and an even
larger number of ebits, by using frequency, orbital angular mo-
mentum, and spatial modes. The multimode capacity of rare-
earth-ion doped quantum memories goes beyond the temporal
DOF, and this might prove a useful tool for optical quantum
information processing.
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