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Abstract
We introduce the driven discrete time quantumwalk (QW), wherewalkers are added during thewalk
instead of only at the beginning. This leads to interference inwalker number and very different
dynamics when compared to the original QW.These dynamics have two regimes, whichwe illustrate
using the one-dimensional line. Then, we explore a search applicationwhich has certain advantages
over current search protocols, namely that it does not require a complicated initial state nor a specific
measurement time to observe themarked state. Finally, we describe a potential experimental
implementation using existing technology.

1. Introduction

Quantumwalks (QWs) are the quantum extension of the classical randomwalkwith a quantumwalker
replacing the classical walker [1, 2].When compared to the classical case they exhibit very different properties
due to the interference of thewalker with itself. This is ubiquitouslymanifested in the faster spreading of the
walker (ballistically) throughout a topology (i.e. 1D line, 2D lattice)when compared to a classical walker which
moves diffusely. AQWon the one-dimensional linewith thewalker initially localized at a central position
evolves in time to a probability distributionwith two lobesmoving ballistically away from the origin, whereas a
classical walker produces aGaussian probability distribution, which is characteristic of a diffusion process.

There has been various theoretical and experimental progress inQWs. Theoretically QWshave been shown
to be universal for quantum computation [3, 4], forming an implementation of theGrover search algorithm [5]
and other search algorithms [6]. They have also been used tomodel transport processes such as quantumheat
transport [7] and percolation [8]. Various experimental implementations have also been explored in optical
delay loops [9–11], trapped atoms [12], microwave scattering [13] andwaveguide arrays [14–17].

QWs come in two different forms; continuous-time and discrete-time quantumwalk (CTQWandDTQW)
[18, 19]. CTQWs are described by aHamiltonian, such as a collection of coupled oscillators, and evolve under
the Schrödinger equation. InDTQWs thewalkers have an internal state, called a coin state, and evolve iteratively
by the discrete application of two unitary operations, the coin operator and the step operator.We recently
described a new type of continuous time quantumwalkwherewalkers can be coherently created and destroyed
throughout thewalk [20], whichwe termed a drivenQW.This workwasmotivated by a new experimental
realisation ofQW inwaveguide arrayswith a nonlinear down-conversion process [21] and is similar to previous
workwherewalkers were incoherently added at each time step [22].

In this paperwe extend ourwork on drivenQWs and introduce a new type ofQW, the driven discrete-time
quantumwalk (DDTQW), where extra walkers are added during thewalk. This paper is structured as follows: In
the next sectionwe describe the theory ofDTQW. Following thatwe introduce the new type ofQW, called a
drivenQW, in the discrete-time formalism.Next we explore a drivenQWversion of theGrover search
algorithm and its advantages over the original algorithm. Finally we look at possible experimental
implementations of this idea.
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2. Theory ofDTQW

ADTQWtakes place on a topology of connected vertices, typically a 1D-line or a 2D lattice. Thewalker(s) that
moves on this topology, called the position space ñ{∣ }x , has an internal state, the coin space. Thewalker evolves
iteratively by applying the coin operator, Ĉ , (acting solely upon the coin space) that ‘flips’ the coin, and then a
step operator, Ŝ , thatmoves thewalker in a direction that depends upon the state of the coin. Thewalker’s
wavefunction at time t is described by fñ∣ t , which evolves according to

f fñ = ñ+∣ ˆ ˆ∣ ( )SC . 1t t1

and can bewritten as

åfñ = ñ Ä ñ∣ ∣ ∣ ( )a C x , 2t
c x

c x t
,

, ,

where ñ∣C is the coin space, ñ∣x is the position space and ac x t, , are complex coefficients.We term the basis that (2)
is written in the ‘physical basis’ and this is the basis inwhichmeasurements typically are performed. At the end of
thewalk (t=T) the probability distribution of thewalker’s position, å=( ) ∣ ∣P x a

c c x T, ,
2, is themain figure of

interest and shows different dynamics than the classical randomwalk [1, 2].
In this paperwewill also describe theQW in the eigenbasis of the operators, as this allows for easy analytical

calculations. This eigenbasis diagonalizes the above dynamics of the coin and position space, and the evolution
operator is now:

å= =
=

ˆ ˆ ˆ ˆ ˆ ˆ ( )†E E TSCT , 3
j

N

j
1

where { ˆ }Ej are the set of eigenoperators and T̂ is the transformation that takes the state from the physical basis
ñ ñ{∣ ∣ }C x to the eigenbasis ñ{∣ }Ej

åfF ñ = ñ = ñ∣ ˆ∣ ∣ ( )T b E . 4E t t
j

j t j,

The eigenvectors ñ∣Ej of ˆ ˆSC form the columns of T̂ with eigenvalues w{ }ei j , wj being termed the
eigenfrequencies. The eigenstates are combinations of the coin and position states

åñ = ñ Ä ñ∣ ∣ ∣ ( )E T C x , 5j
c x

j c x
,

, ,

where the number of eigenstates is = ´∣ ∣ ∣ ∣N C x (∣ ∣. is the size of that state space). The dynamics of the original
QWbecome straightforward to solve in the eigenmode basis

å å åF ñ = F ñ = ñ = ñ = ñw w
+

+∣ ˆ∣ ˆ ∣ ∣ ∣ ( )( )E E b E b E b Ee e . 6E t E t
j

j t j
j

j t j
j

j
t

j1 , ,
i

,0
i 1j j

3.DrivenDTQW

Nowwe extend theDTQW to include the possibility to create and destroywalkers during thewalk.We refer to
this case as drivenDTQW. In this descriptionwe do not have a definite number of walkers but use instead the
average number of walkers, i.e. walker intensity, as our alternativemeasure of walker number.We assume our
walkers to be indistinguishable bosons andwill use the bosonic annihilation and creation operators in describing
the systemdynamics. Here ˆ†ac x, is the creation operator for a photon (walker)with coin state ‘c’ at position ‘x’.
The action of the coin (Ĉ) on ˆ ˆ†a a, is

=ˆ ˆ
ˆ

ˆ ˆ
ˆ ( )†⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟C

a
a

C
C C
C C

a
a

, 7
R x

L x

R R L R

R L L L

R x

L x

,

,

, ,

, ,

,

,

where theCij are elements of the coin operator. The coin operator could also be position dependent (Ĉx), which
wewillmake use of later in the paper. The action of the step operator is

= =+ -
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † † † †S a S a S a S a; . 8R x R x L x L x, , 1 , , 1

These operators areGaussian operations and can be generated frommultimode beamsplitterHamiltonians [23]
that describe the original passiveDTQW. Eigenoperators for creation and annihilation of photons can also be
defined
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å=ˆ ˆ ( )† †A T a , 9j
c x

c x
j

c x
,

, ,

and the action of the operator Ê on them is given by

= wˆ ˆ ˆ ˆ ( )† † †
E A E A e . 10j j j j

i j

In order to generate ourwalker creation/destructionwewill use the displacement operator

a a a= -ˆ ( ) [ ˆ ˆ ] ( )† *D a aexp , 11c x c x c x c x c x, , , , ,

where ac x, is the amplitude of the displacement operator for a particularmode { }c x, . Formultiplemodes the
total displacement operator is simply the product of the individual operators. The dynamics of the original
DTQW (after t steps) in the physical basis can then bewrittenwith the inclusion of the displacement operator as

f añ = ñ =∣ ( ˆ ˆ ) ˆ ( ) ∣ ( )SC D 0 , 12t
t

j
j t 0

with = { }j c x, . In typical experiments the initial aˆ ( )D j is localized on a single position, i.e. x=0, with a certain
coin state i.e. = {[ ] [ ]}j R L, 0 , , 0 .

In this paperwe study the newwalk, whichwe term a drivenDTQW,wherewe now inject walkers at each
time-step of thewalk, instead of just at the start of thewalk. In this case thewavefunction evolves according to

f añ = ñ
= =

=∣ ˆ ˆ ˆ ( ) ∣ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟SC D 0 . 13t

k

t

j

N

j k t
1 1

, 0

The aj will determinewhich eigenmodes the pump couples to and the time dependence decideswhich
eigenmode is phase-matched, i.e. an eigenmodewhere thewalkers accumulates in time. At the end of thewalk
dynamics wewill be interested in the intensity of walker distribution, = á ñˆ ˆ†I a ac x c x c x, , , , as we no longer have a
single walker in our system. In subsequent sections wewill calculate the intensity of walkers in both the physical
basis and the eigenmode basis to demonstrate the dynamics of thewalk.

We now compare theDDTQW, (13), to the traditionalQWby the re-ordering of the operators ˆ ˆSC and D̂ to
resemble the original DTQW, (12), i.e. state creation followed by thewalk operators.

3.1. Comparison to original walk
Ourmethod to compare the twowalks relies on re-arranging the evolution operators of thewalk to order them
in such away that all the displacement operators, D̂, are to the right of thewalk operators, ˆ ˆSC . To do this we
analyze thewalk in the eigenbasis whichmakes solving the dynamics simple, as wewill discuss in the following
section.

The eigenoperator Êj can bewritten using the operators ˆ †
Aj and Âj as

w= -ˆ [ ˆ ˆ ] ( )†
E A Aexp i 14j j j j

The displacement operator aˆ ( )D c x, for the individual, physical sites { }c x, will be transformed to the
displacement operator for the eigenmodes, aˆ ( )DE j . A single step for the drivenQW in the eigenmode basis is
now

aF ñ = F ñ+
=

∣ ˆ ˆ ( ) ∣ ( )E D , 15E t
j

N

E j t E t1
1

,

where fF ñ = ñ∣ ˆ∣TE t t , the state in the eigenbasis. For t steps, starting from the initial vacuum state, this is

aF ñ = ñ
= =

=∣ ˆ ˆ ( ) ∣ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E D 0 . 16E t

k

t

j

N

j k t
1 1

, 0

Wenowwish to order expression (16) such that all the displacement operators are to the right of thewalk
operators, i.e.

fñ ¢ ñ = F ñ ñ= = = =( ˆ ˆ ) ∣ ˆ ˆ ∣ ˆ ∣ ( ˆ ˆ ) ∣ ( )ED E D E S C0 0 , 17t
t

t t
t

t
E t

t
t0 0 0 0

where fñ∣ 0 is the ‘initial’ state generated by the action of the displacement operators on the vacuum state (in the
physical basis). This now resembles the traditionalQWwith an initial state of walkers propagating under the
QWoperators ˆ ˆS C .

Using standard relations for the evolution of the annihilation/creation operator [24], we canwrite the
following for the displacement operator

a a=w w w- -ˆ ( ) ˆ ( ) ( )ˆ ˆ ˆ ˆ† †
D De e e , 18E j

A A A A
E j

i i ij j j j j j j
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i.e. the displacement operator acquires a phase as it is re-orderedwith the phase operator (different eigenmodes
commute, acquiring no extra phase). To illustrate

a a a a

a a a

a a a
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=

=

=
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w w
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= = =

= = =

= = =
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2 1
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where the product of the displacement operators will yield afinal (yet to be determined)displacement operator,
aˆ ( )D F .We have now re-ordered the expression so that it resembles (17), the original DTQW,where state

creation is followed by theQWdynamics. This ‘initial state’will in general be de-localized in physical space and
therefore using a drivenQWawider class of states can be created and utilized in thewalk dynamics.We are now
interested in the product of the displacement operators, aˆ ( )D F , as they determine the dynamics of thewalk. The
amplitude of the aˆ ( )DE j can be controlled by the pump shape in the physical basis, aˆ ( )D c x, . In general the aj t,
will have a step dependent phase that counter-acts the action of the phase operator and belowwewill showhow
this is crucial for the dynamics of the drivenQW.

3.2.Dynamics of theDDTQW
Wenow focus on the dynamics of products of displacement operators for a single eigenmode

a a=w

=

-

=

-
Dˆ ( ) ˆ (∣ ∣ ) ( )D De e , 20

t

N

j
t

t

N

j
t

0

1
i

0

1
ij j

wherewe assume a linear step dependent phase a a f= ∣ ∣ ( )texp ij t j, , andwe term f wD = -j j the phase-
mismatch. The phasemismatch is important as it determines the dynamics of the drivenQW.The intensity of
eigenmode that is phasematched (D = 0j )will grow quadratically in time, whereas phasemismatchedmodes
(D ¹ 0j )will oscillate between zero and amaximum intensity.We study these two situations below.

3.2.1. Dynamics of phase-matchedmodes
In this case the time-dependent phase added to the displacement operator would be equal to the eigenfrequency
wj of themode, yieldingD = 0. An example of phase-matched displacement operators is

a a a= =
=

-
ˆ ( ) ˆ ( ) ˆ ( ) ( )D D D t , 21

j

t
t

0

1

where the ‘in-phase’ displacement operators add constructively and the intensity of walkers, in that eigenmode,
grows quadratically, a= ∣ ∣I t 2 2, with the number of steps of the drivenQW.

3.2.2. Non-phasematchedmodes
Non-phase-matchedmodes, whereD ¹ 0, have different dynamics

a
=

-
Dˆ (∣ ∣ ) ( )D e . 22

t

t
t

0

1
i

Thefinal displacement operator after t steps is (for = ¹DP e 1i )

ååa a
-
-

D
=

-
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⎞
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exp i sin . 23

t

n

t

k

n
2

1

1

1

The intensity of themode oscillates in timewith a frequency that depends upon the phase-mismatch

a=
D
D

∣ ∣ ( )
( )

( )I
tsin 2

sin 2
. 242

2

2

In the next sectionwe demonstrate these two regimes by simulating the dynamics of the drivenDTQWon1D
topology.

4. Results on the 1D line

In this sectionwe illustrate theDDTQWby exploring the dynamics on a 1D line, wherewe plot the intensity of
walkers at each physical vertex, and also the intensity of thewalkers in the eigenbasis.

Thewalker has two coin states, R(ight) and L(left), with five vertices and reflecting coin operations at the two
ends of the chain. The reflecting coins at the boundary vertices are
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s = ( )ˆ ( )0 1
1 0

, 25x

and themiddle three vertices have theHadamard coin

=
-( )ˆ ( )H

1

2
1 1
1 1

. 26

We then addwalkers to the central vertex at every time step. Thewalkers that enter at the t th step are in a
coherent state, a w-∣ ∣e ti j (amplitude a∣ ∣ and time dependent phase w tj ), with a single coin state, ‘R’. It is this
frequency wj that we vary in our simulations, as it corresponds to the eigenfrequency of a particular eigenmode j
as described in the previous section. By varying the eigenfrequency different eigenmodes are phase-matched,
creating photons in those eigenmodes and thus different physicalmodes formeasurement.We plot the intensity
in both bases throughout thewalk.

Figure 1 shows the dynamics where thewalkers are added to the central positionwith a phase that
corresponds to a particular eigenfrequency, namely j=1. Figure 1(a) shows thewalker dynamics at each
physical site (after tracing over the coin states), while figure 1(b) shows the dynamics in the eigenmode basis. It
can be seen clearly that only the phase-matchedmode contributes to the dynamics, where, as expected, the
intensity grows quadratically in time and thefinal photon number»6 photons.

For figure 2we use the samewalk topologywith identical coin operations as before andwe add thewalkers in
the same position. This time, however, we do not phasematch to any eigenfrequency but at a frequency between
the 1st and 3rd eigenfrequencies. The oscillations of the non-phase-matched dynamics can be clearly seen in
both bases. Themaximum intensity of photons in this regime,»0.3 photons , ismuch lower than in the
previous, phase-matched case.

These plots showhow the dynamics of thewalk depend upon the time-dependent phase of thewalkers
entering thewalk. Different phases lead to thewalkers accumulating in different eigenmodes of the system and in
turn different physicalmodes of the system. In the next sectionwe discuss an application of these phase-matched
dynamics, a search protocol based on theGrover search algorithm. Following thatwe propose an experimental

Figure 1.Dynamics of the system in the position basis (coin space traced over) (a) and eigenmode basis (b)when the 1st eigenmode is
phase-matched.

Figure 2.Dynamics of the system in the position basis (coin space traced over) (a) and eigenmode basis (b)when no eigenmode is
phase-matched.
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implementation of this one-dimensional line and a two-dimensional lattice using an existing optical time-delay
loop architecture.

5.DrivenDTQWsearch

In this sectionwe apply theDDTQWidea to theQWversion of theGrover search algorithm and construct a
driven search algorithm.Wewill start with theQW-scheme for Grover’s search developed byAmbainis, Kempe
andRivosh (AKR) [5]. TheAKR scheme performsGrover’s search on aDTQWwith periodic boundary
conditions, with theGrovermatrix as the coin operator

=

-
-

-
-

ˆ ( )
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

C
1

2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, 27G

at every vertex except for themarked vertex, which has the identity coin-Î4, and the step operator has an
additional sx term after it (called theflip-flop step operator byAKR). The initial state is a coherent, uniform
distribution over all vertex and coin states which then evolves under the operator =ˆ ˆ ˆU SC . This evolves the
extended state into one localized on themarked vertex in a time proportional to N ( N Nln for a 2D lattice),
whereN is the total number of vertices of the lattice.

Here we use an extension of the AKR scheme introduced byHein andTanner [25, 26] to propose a driven
search algorithm for theQWGrover search.Hein andTanner introduceM positions on the d-dimensional
latticemarkedwith the same coin (-I4) and analyzed the eigenvectors and eigenvalues of this lattice. They show
that the dynamics of this system can be reduced to a (M+1)-level system comprising a single extended state
over all vertices andM states that are localized on themarked vertices. TheHamiltonian of this reduced
(M+1)-level system is given by an ‘arrowhead’matrix, which represents the topology of a star graph (a
graphwith a single central hub andM ‘leaves’ connected to this hub only) and its eigenvectors and eigenvalues
can be given analytically. There is such an eigenvector that only has support on the leaves of the graph, has an
eigenvalue of unity (an eigenfrequency w = 0) and is independent of the position of themarked vertices. The
other eigenvectors of interest in the systemhave frequencies that scale as N Nln (for a 2D lattice) and N for
higher dimensions [25, 26] and are also independent of themarked vertices position.

Wenow apply the drivenDTQWto the above scheme by examining a two-dimensional ( = ´N 11 11)
lattice with two verticesmarkedwith the same coin, onewhose position is known (at x=y=6), called the
central vertex. Another vertex, called the target vertex, is randomly positioned on the lattice (herewe use
x=y=10 for clarity, but other positions yield similar results).Wewill then pumpwalkers into the central
vertexwith a uniformdistribution over all coin states (left, right, up, down) andwith a time-dependent phase
that corresponds to the correct eigenfrequency (w = 0) added at each time step.We then need to run the driven
QW for aminimumnumber of steps that depends upon the spectral gap between our eigenmode of interest and
the closest eigenmode in frequency. For a 2D lattice this number of steps is = »( )N Nln 11 2ln 11 24.

Infigure 3we plot the distribution of the eigenvector of interest in the physical basis (tracing over the coin
states), which is seen to be localized at the twomarked vertices. Figure 4 shows the dynamics of thewalker
intensity during theDDTQW, in both the eigenbasis (dotted lines) and the physical basis (solid lines). The
eigenvector of interest (dotted, red line) is phase-matched and the closest eigenvectors in frequency (dotted, blue
line) are non-phase-matched. Thewalker intensity at the central vertexwhere thewalkers enter is the solid red
line and the intensity at the targetmode is the solid blue line. Figure 5 shows the intensity distribution of walkers
after 24 steps, where it can be seen that the twomarked vertices have significantly different weight than other
vertices, apart from the immediately surrounding ones. Aftermore steps thewalkers continue to accumulate in
themarked vertices and the intensity distributionwill tend to the eigenvector distribution. The advantages of
this scheme is that it requires no extended initial state and also thewalkers do not oscillate in-and-out of the
marked vertex, thuswe canmeasure at any time, after the initial waiting period.However, like another
experimental scheme [13], we have no reduction in the number of vertices needed so there is no resource
advantage over theGrover search.

In the next sectionwe describe an experimental implementation of the drivenQWon the one-dimensional
line and the two-dimensional lattice.

6
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6. Proposal of experimental implementation

Wewill discuss an experimental setup that could be used to test the predictions of thesemodels, giving a detailed
explanation for a possible realisation in one dimension. This is followed by a brief description of the necessary
modifications for a two-dimensional extension of thewalkwith emphasis on the search algorithm.

6.1. 1D implementation
The implementationmakes use of the timemultiplexing-scheme of Schreiber etal [9] in an optical time-delay
loop, see figure 6 for a simple diagram. The principle of timemultiplexing is based onfibre loop delays used for
mapping the position information of thewalker onto the time domain.Here aweak coherent pulse plays the role
of thewalkerwhose polarization acts as the internal degree of freedom for the coin space. The initial pulse whose
polarization can be set by standard linear elements (HWP0) in front of the setup enters the loop at a partially
reflectivemirror, the incoupler. The coin operation is then realized by awave plate inside the loop (HWP1) or an
electro-opticmodulator (EOM) fast enough to address each position separately. The EOMwas previously used
to introduce coin noise [9] and to remove edges in the underlying graph to realise percolated [8] andfinite walks
[27]. For theGrover search scheme the EOMwill be used to generate the special coins for themarked vertices.

Figure 3.Distribution of the eigenvector of interest in the physical basis. Coin states have been traced over.

Figure 4. Intensity of walkers versus time in the eigenmodes of interest and in the two physical sites of interest. Dotted lines: (red)
phase-matched eigenmode that encodes the twomarked vertices (shown infigure 3) (blue) two closest eigenmodes in eigenfrequency
to zero. Solid lines: (red)walker intensity at central vertex (blue)walker intensity at target vertex.
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After the polarization rotation the pulse is split at a polarizing beam splitter (PBS1) and routed through fibres of
different length such that the horizontal component obtains a delay of tD compared to the vertical component
which realises the step operation according to (1). Before the pulses are fed back in theQW-loop a small portion
of the light is coupled out to the detectors tomeasure the time evolution of thewalkerʼs wave function. For
detection another PBS and two avalanche photo diodes with a high dynamic range are used offering polarization
resolvedmeasurements and reliable intensity information. In this scheme only pulses that have travelled exactly
the same path result in the same time bin and accordingly will interfere with each other. This proves the setup to
possess a high robustness against dephasing, a homogeneity over high step numbers and to be very resource
efficient at the same time.

In a drivenDTQWanewpulsewill be added to the loop at every second time step (seemarked positions in
figure 7(a)) such that it interferes with the pulses already in the setup (pulses entering on odd or even step
number have different parity andwill not interfere with one another). To achieve this wewould use an additional
external loop to produce the pulse train of thewalkers with the desired phase and intensity properties (see
figure 7(b)). The critical aspects to this setup are the timing of newpulses entering the system, the relative phase
and amplitude of each newpulse.

Figure 5. Intensity distribution (in the physical basis, coin space traced over) after 24 steps »( )N Nln of the drivenQW.

Figure 6.Experimental setup of theDTQWas used in [9]with half wave plateHWP1 and EOMrealizing the (dynamic) coin operation,
fibres of different lengths defining the round trip time tRT and the position separation tD . For details see text.

8
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First, the separation time tsep of the newwalkersmust be adapted to the round trip times tRT of the setup, i.e.
t t t= + D2sep RT for starting the newwalkers always at position 0 (see figure 7(a))using appropriatefibres and
potentially a delay stage for thefine tunings.

Next, we have to add a relative phase which the pulses in the external loop (and thus the newly added pulses)
will gain after each round trip compared to the pulses of light in theQW-loop. A Soleil–Babinet-compensator
(SBC) adds afixed phaseΦ to the remaining pulse in each round trip necessary for the phase-matching as
described in section 3.2 and the experimental phase fexp which the pulses in theQW-loop acquire during two
steps. Only then the essential coherence between the new and old pulses is given to ensure their interference
capability.

Third, the intensity of the newpulses has to be considered: when a horizontally polarized laser pulse enters
the external loop itfirst passes an EOM,which represents the operator qˆ ( )U (for details see [8])

q
q q
q q

=ˆ ( ) ( ) ( )
( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟U

cos i sin
i sin cos

. 28

This rotates a part of the horizontally (H) polarized light into vertically (V) polarized light and at the second PBS
the remainingH-light leaves the preparation loopwhereas theV-light stayswithin. The angle θ of the EOM
defines the splitting ratio and thereby the intensity of the newwalkers. The pulses in the setup experience a loss
per round trip (typically »l 50%)which reduces their intensity. Accordingly, each time awalker encounters Û ,
θhas to be adapted to regulate its intensitymatching to those pulses which have already suffered from the losses
in theQW-loop.Of course the initial intensity of the laser pulsemust be high enough to contain sufficient energy
for the desired number of walkers.

By thismeanswe have nowprepared a coherent pulse train to drive theQW,which can now—after setting its
initial polarization (with e.gHWP0 infigure 6)—be fed into theQW-loop.

6.2. Two-dimensional QWand search
TheQW loop described above can be extended to a second dimension as demonstrated in [10]with adjustable
position-dependent coin operations. A driven 2DQWbased on this experimental setup is realisable by adapting
the timings and splitting ratios in the preparation loop accordingly. However, when implementing a search
algorithmperiodic boundary conditions are essential, which is typically hard to realise in an experiment. For

Figure 7. (a)Principle of time-multiplexing, i.e. themapping of positions into the time domain (not to scale) using two different time-
scales tRT and tD . The timings of the newwalkers to drive the walk at position 0 aremarked by arrows. (b)The external loop to drive
theQW: from an intense initial pulse a pulse trainwith a certain phase relation between pulses,matching intensities and a time
separation of t t t= + D2sep RT is produced. For details see text.
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walks of lengthN it is possible to imitate periodic boundary conditions by placing copies of the original lattice
(including themarked vertex and the central, driven vertex) around it, see figure 8. Thatmeans that the pulses
which leave themain region (dark green) at one side have a copywhich enters from the opposite side at the same
time.Now theQWmust be driven at several positions of the extended lattice (red dots infigure 8) at each step.
This can be achieved by including a second loop in the preparation setup. It introduces a second time scale which
can bematched to the position separation of the initial positions.

7. Conclusions

In this paper we have extended our recent, experimentallymotivated, work in the area of continuous-timeQW’s
withmultiple walkers to the discrete-time case, describing whatwe term a drivenDTQW. In this process the
walkers, which are pulses of light, are coherently added at each time step of thewalk, interfering withwalkers
already present.We analyzed the dynamics in the eigenmode picture, as it was straight-forward to arrange the
operators in a form that resembled the traditionalQWdynamics. These dynamics relied on the product of
displacement operators of the eigenmodes andwe illustrated how eigenmodes of the system can either be phase-
matched or not. Next, we demonstrated these dynamics with a numerical simulation of such a drivenwalk on a
finite one-dimensional linewith reflecting boundary conditions. Following this, we introduced a driven search
algorithmbased on theQWversion ofGrover’s search.When thewalkers enter with the correct phase, one that
corresponds to an eigenmode that is predominantly located on the twomarked vertices, the location of the
unknown vertex can be determined. This new type of search has some advantages over the traditional Grover
search as the dynamics do not let thewalkers oscillate in-and-out of themarked vertices and no complex initial
state is required. Finally, we have proposed how existing experimental implementations ofQW’s using optical
time-delay loops could be used to simulate the driven scheme presented here, both for a one-dimensional line
topology and a two-dimensional lattice setupwith periodic boundary conditions.
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Figure 8. Implementing periodic boundary conditions using copies of the original lattice (dark green region). The copies include the
driving position (red dots) aswell as themarked vertex (black crosses). The arrows indicate a pulse that leaves the original lattice to the
right, when at the same time its copy enters it from the left imitating periodic boundaries.
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