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Abstract
The physical nature of any quantum source guarantees the existence of an effectiveHilbert space of
finite dimension, the physical sector, inwhich its state is completely characterizedwith arbitrarily high
accuracy. The extraction of this sector is essential for state tomography.We show that the physical
sector of a state, defined in some pre-chosen basis, can be systematically retrievedwith a procedure
using only data collected from a set of commuting quantummeasurement outcomes, with no other
assumptions about the source.We demonstrate the versatility and efficiency of the physical-sector
extraction by applying it to simulated and experimental data for quantum light sources, as well as
quantum systems offinite dimensions.

1. Introduction

The physical laws of quantummechanics ensure that all experimental observations can be described in an
effectiveHilbert space offinite dimension, towhichwe shall refer as the physical sector of the state. The systematic
extraction of this physical sector is crucial for reliable quantum state tomography.

Photonic sources constitute an archetypical example where such an extraction is indispensable.
Theoretically, the states describing these sources reside in an infinite-dimensional Hilbert space. Nonetheless,
the elements of the associated densitymatrices decay to zero for sufficiently large photon numbers, so that there
always exists afinite-dimensional physical sector that contains the state with sufficient accuracy. Reliable state
tomography can thus be performed once this physical sector is correctly extracted.

Experiments on estimates of the correct physical sector have been carried out [1, 2].One common strategy is
tomake an educated guess about the state (such asGaussianity [3] or rank-deficiency for compressed sensing
[4–10]), which defines a truncated reconstruction subspace. For instance, in compressed sensing the rank of the
state is assumed to be no larger than a certain value r, so that specialized rank-r compressed-sensing
measurements can be employed to uniquely characterize the state withmuch fewermeasurement settings. Very
generally, educated guesses of certain properties of the state requires additional physical verifications.
Algorithms for statisticalmodel selection, such as the Akaike [11–13] or Schwarz criteria [14, 15] or the
likelihood sieve [16, 17], have also been developed to estimate the physical sector. These algorithms provide
another practical solution to reducing the complexity of the tomography problem. In the presence of the
positivity constraint [18, 19], their application to quantum states becomesmore sophisticated, as the procedures
for deriving stopping criteria that supplies the final appropriatemodel subspace for the unknown state are
intricate.

On the other hand,finite-dimensional systems represent another example for which a systematic physical-
sector extraction becomes important. In the context of quantum information, ongoing developments in
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dimension-witness testing [20–24] offer some solutions tofinding theminimal dimension of a black box
required to justify the given set ofmeasurement data in a device-independent way. Searching for dimension
witnesses of arbitrary dimensions is still challenging [23].

In [25], we showed that, when themeasurement device is calibrated, one can systematically extract the
physical sector (that is, both theHilbert-space support and dimension) and simultaneously reconstruct any
unknown state directly from themeasurement datawithout any assumption about the state. In this paper, we
introduce an evenmore efficient procedure that extracts the physical sector of any state from the datawithout
state reconstruction and provide the pseudocode. This procedure requires nothingmore than data obtained
froma set of commutingmeasurements. As in [25], the extraction of the physical sector does not depend on any
other assumptions or calibration details about the source. By construction, this procedure has a linear
complexity in the dimension of the physical sector. To showcase its versatility, we apply it to simulated and
experimental data for photonic sources and systems offinite dimensions. In this way, we offer a deterministic
solution to the problemof extracting the correct physical sector for any quantum state inmeasurement-
calibrated situations.

2. Physical sectors and commutingmeasurements

2.1.What are physical sectors?
The concept of physical sectors and their relations to commutingmeasurements is probably best understood
with a concrete example. Let us consider, in the Fock basis, a quantum state of light described by the density
operator
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where ∗ denotes elements of its densitymatrix that are so tiny that treating them to be zero incurs very small
truncation errors. If all * = 0, ρ is the pure state ñá∣ ∣described by a añ µ ñ + - ñ∣ ∣ ∣ , with the coherent state
of amplitude a = 0.3536. The densitymatrix elements drops to zero for sufficiently large photon numbers as
those of any physical state.

Some statistical reasoning for understanding the truncation error is in order. For now,we note that since all
other ∗ elements are tiny, the state ρ is essentially fully characterized by a three-dimensional sector, such that
elements beyond this sector supply almost no contribution to ρ. This forms a truncatedHilbert subspacewhere
tomography can be carried out reliably. This subspace is given by = ñ ñ ñ{∣ ∣ ∣ }span 0 , 1 , 2sub . However, from
(2.1), we realize that this subspace is not the smallest one that supports ρ. The smallest subspace
 = ñ ñ{∣ ∣ }span 0 , 2phys is in fact spanned by only two basis kets. This defines the two-dimensional physical sector.

In general, the physical sector phys is defined to be the smallest Hilbert subspace that fully supports a given
state with a truncation error smaller than some tiny e in some basis. Evidently, the choice of basis affects the
description of phys. If one already knows that ρ is close to ñá∣ ∣, then choosing ñ∣ as part of a basis gives a one-
dimensional phys. Such knowledge is of course absentwhen ρ is unknown. In such a practical scenario in
quantumoptics, wemay adopt themost common Fock basis for representing ρ and phys.When dealingwith
general quantum systems, the basis that ismost natural in typical experimentsmay be chosen, such as the Pauli
computational basis for qubit systems.

2.2.How are physical sectors related to commutingmeasurements?
Let us revisit the example in (2.1). Because of the positivity constraint imposed on ρ, whenever a diagonal
element is ∗, then elements in the row and column that intersect this element are all ∗. Also, if a diagonal element
is not ∗, then it is obvious that phys is spanned by the basis ket for this diagonal element. For this example, the
two-dimensional phys completely characterizes ρwith the =2 42 elements ρ00, ρ22, r( )Re 02 and r( )Im 02 .

It follows that knowing the location of significant diagonal elements are all we need to ascertain phys. For
this purpose the only necessary tool is a set of commutingmeasurement outcomeswith their common eigenbasis
being the pre-chosen basis for phys. After themeasurement data are performedwith these commuting
outcomes, all one needs to do is perform an extraction procedure on the data to obtain phys. This procedure
would proceed to test a growing set of basis kets until it informs that the current set spans phys that fully
supports the data.We note here that the extractionworks for any other sort of generalizedmeasurements in
principle, althoughwe shall consider commutingmeasurements in subsequent discussions since they are the
simplest kind necessary for extracting physical sectors in largeHilbert-space dimensions.
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3. The extraction of the physical sector

In some pre-chosen basis, the physical-sector extraction procedure (PSEP) iteratively checkswhether its data are
supported by the cumulative sequence of sub with truncation error smaller than some tiny e. PSEP starts
decidingwhether, say, = ñ ñ{∣ ∣ }n nspan ,sub 1 2 of the smallest dimension d=2 adequately supports the data. If
yes, it takes this as the two-dimensional phys. Otherwise, PSEP continues and decides if
 = ñ ñ ñ{∣ ∣ ∣ }n n nspan , ,sub 1 2 3 adequately supports the data, and so on untilfinally PSEP assigns a
dphys-dimensional  =sub phys with some statistical reliability. In each iterative step, there are three objectives
to bemet:

(i) PSEPmust decide if the data are supportedwith sub spanned by some set of basis kets or not.

(ii) PSEPmust report the reliability of the statement ‘ sub supports ρwith truncation error less than ò’.

(iii) PSEPmust ensure that thefinal accepted set of basis kets span phys, the smallest sub that supports ρ.

Inwhat follows, we show that all these objectives can be fulfilledwith only the information encoded in the
measurement data.

3.1.Decidingwhether the data are supportedwith some subspace
Weproceed by first listing a fewnotations. In an experiment, a set ofmeasured commuting outcomes are
described by positive operators å P = 1j j . They givemeasurement probabilities r= P( )p trj j according to the

Born rule. Each commuting outcome, in the common eigenstates ñá∣ ∣n n that are also used to represent the
physical sector, can bewritten as

åP = ñá∣ ∣ ( )c l l 3.1j
l

jl

with positive weights cjl that characterize the outcome.
To decide whether the pjs are supportedwith someHilbert subspace sub, the easiest way is to introduce

Hermitian decision observables

å= P ( )W y 3.2
j

j jsub

for real parameters yj. The decision observable for testing sub, alongwith its yjs, satisfies the defining property,
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This property automatically ensures that if ρ is completely supported in sub, then the expectation value
á ñ = å =W y p 0j j jsub with zero truncation error and PSEP takes this to be the physical sector (  =sub phys).
Quantum systems offinite dimensions possess states of this kind. In quantumoptics however, ρ is not
completely supported in any subspace, but possesses decaying density-matrix elementswith increasing photon
numbers (such as the example in (2.1)). A laser source, for instance, cannot produce light of an infinite intensity.
Furthermore, the Born probabilities pj are nevermeasured. Instead, the data consist of relative frequencies fj that
estimate the probabilities with statisticalfluctuation. Therefore, if we define the decision randomvariable (RV)

å= ( )w y f 3.4
j

j jsub

that estimates á ñWsub , then PSEPmay assign  =sub phys with a truncation error defined by ∣ ∣wsub that is smaller
than ò.

3.2.Quantifying the reliability of the truncation error report
The decisionRVwsub is an unbiased RV in that the data average ofwsub is the true value á ñWsub that PSEP achieves
to estimate (� = á ñ[ ]w Wsub sub ). Thismeans that in the limit of large number ofmeasured detection eventsN for
the data { }f j ,wsub approaches its expected value �[ ]wsub , which in turn tends to zero in the limit  sub phys.
This limiting behavior invites us to understand the truncation error ∣ ∣wsub using thewell-knownHoeffding
inequality [26], which states that
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This concentration inequality directly bounds the probabilityα of having a truncation error greater than or
equal to e, which is the significance level of the hypothesis that �= [ ]w wsub sub for all conceivable future data
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we are assuredwithα significance that themain factor for a non-zero ∣ ∣wsub comes from insufficient support
from sub since statistical fluctuation is heavily suppressed.

One can obtain themore experimentally friendly inequality [26]
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in terms of the varianceD2 ofwsub, wherewe take e » ∣ ∣wsub as a sensible guide to the truncation error threshold.
For �N 1, the N1 scaling ofD2 allows the quantityBsub to provide an indication on the reliability of the
statement ‘ sub supports ρwith truncation error less than e’with a reasonable statistical estimate forD2 from
the data. If (3.7)holds for sub and some pre-chosenα, then the assignment  =phys sub ismade.Quite
generally,wsub andD2 reveal the influence of both statistical and systematic errors [28]. Therefore, by
construction, for sufficiently largeN, sub eventually converges to the unique phys atα significancewith
increasing size of the basis set for properly chosen sub. The choice of sub at each iterative step of PSEPmust be
made so that the final extracted support is indeed phys, the smallest support for ρ.

3.3. Ensuring that the physical sector is extracted, not another larger support
To ensure that phys is really extracted, and not some other larger sub that also supports the data, we oncemore
return to the example in (2.1). For that pure state, in the Fock basis, the sub that supports the state is effectively
three-dimensional, whereas phys is effectively two-dimensional.With sufficiently large number of detection
eventsN, if one naively carries out PSEP starting from = ñ{∣ }span 0sub , PSEPwould recognize that sub

cannot support the data, continue to test the next larger subspace = ñ ñ{∣ ∣ }span 0 , 1sub , where it would again
conclude insufficient support. Only after the third stepwill PSEP accept = ñ ñ ñ{∣ ∣ ∣ }span 0 , 1 , 2sub as the
support at somefixedα significance.However,  ¹sub phys.

In order to efficiently extract phys, we need only one additional clue from the data, that is the relative size of
the diagonal elements of ρ.We emphasize here that we are not interested in the precise values of the diagonal
elements, but only a very rough estimate of their relative ratios to guide PSEP.With this clue, we can then apply
PSEPusing the appropriately ordered sequence of basis kets tomost efficiently terminate PSEP and obtain the
smallest possible support for the data. For the pure state example, the decreasingmagnitude of the diagonal
elements gives the order ñ ñ{∣ ∣ }0 , 2 . For any arbitrary set of commuting Pj s, given themeasurementmatrix C of
coefficients cjl, sorting the column -C f , defined by theMoore–Penrose pseudoinverse -C of C , in descending
order suffices to guide PSEP9. This sorting permits the efficient completion of PSEP in ( )O dphys stepswithout
doing quantum tomography. Other sorting algorithms are, of course, possible without any information about
the diagonal element estimates. One can performother tests on different permutations of basis kets within the
extractedHilbert subspace support, although the number of steps required to complete PSEPwould be larger
than ( )O dphys .

3.4. An important afterword onphysical-sector extraction
An astute readerwould have already noticed that it is the phys within the field-of-view (FOV) of the data that
can be reliably extracted. The FOV is affected by three factors: the degree of linear independence of themeasured
outcomes, the choice of some very large subspace to apply PSEPwhose dimension does not exceed this degree of
linear independence, and the accuracy of the data (the value ofN). In real experiments, the number of linearly
independent outcomesmeasured is always finite.With the corresponding finite data set, there exists a large
subspace for extracting phys, inwhich the decision observables Wsub always satisfy (3.3) for any sub. For
sufficiently largeN, the collected datawill capture all significant features of phys within this data FOV.

Indeed, if the source is truly a black box, then defining the data FOV can be tricky. True black boxes are,
however, atypical in a practical tomography experiment since it is usually the observer who prepares the state of
the source and can therefore be confident that the state prepared should not deviate too far from the target state
as long as the setup is reasonably well-controlled. The data FOV should therefore be guided by this common
sense. On the other hand, the extraction of phys in device-independent cryptography, where both the source
andmeasurement are completely untrusted for arbitrary quantum systems, is still an open problem.

Wenote here that themeasurement in (3.1)may incorporate realistic imperfections, such as noise,finite
detection efficiency, that are faced in a number of realistic schemes. For instance, the commuting diagonal
outcomesmay represent on/off detectors of varying efficiencies, or incorporate thermal noise [29, 30]. All such

9
This is not tomography for the photon number distribution, butmerely a very rough estimate on the relative ratios of diagonal elements,

since -C f is not positive.
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measurements are presumed to be calibratable, as non-calibratedmeasurements require othermethods to
probe the source. As an example, suppose that themeasurement is inefficient but still trustworthy enough for the
observer to describe its outcomes by the set h P{ }j j with unknown inefficiencies h < 1j that are simple functions
of a few practical parameters of the setup such as transmissivities, losses and so forth. In other words, we have
h h= ¼( )T T, ,j j l1 for l that is typicallymuch less than the total number of outcomes in practical experiments.
Then the straightforward practice is tofirst calibrate allTjs before using them to subsequently carry out PSEP for
other sources. Onemay also choose to calibrateTj already during the sorting stage by ‘solving’ the linear system
= ¢-t C f , where h¢ =f fj j j is now linear in the data fj and nonlinear inTj. The estimation ofTj falls under

parameter tomography that is beyond the scope of this discussion, which focuses on the idea of locating physical
sectors and not the exact values of densitymatrices.

4. The pseudocode for physical-sector extraction

Supposewe have a set of commutingmeasurement data { }f j that form the column f , as well as the associated
outcomes Pj of some eigenbasis ñ ñ ñ ¼{∣ ∣ ∣ }0 , 1 , 2 , that is adopted to represent phys. For some pre-chosen basis
andα significance, the pseudocode for PSEP is presented as follows:

step 1. Compute themeasurementmatrix C and sort -C f in descending order to obtain the ordered index i.
Then, define the ordered sequence of basis kets ñ ñ ñ ¼{∣ ∣ ∣ }n n n, , ,i i i1 2 3 .

step 2. Set k=0 and = ñ{∣ }nspan isub 1 .

step 3. ConstructWsub by solving the linear systemof equations in equation (3.3) for the yjs.

step 4. Computewsub,D2 and henceBsub. For typicalmultinomial data, dD = å -( )y y p p p Njk j k j k j j k
2

, .

step 5. Increase k by one and include ñ∣nik in sub.

step 6. Repeat STEP3 through 5 until . aBsub . Finally, report  =phys sub andα and proceed to perform
quantum-state tomography in phys.

5. Results

5.1.Quantum light sources
To illustrate PSEP,we consider the state in (2.1) and r = ñ á + ñ á + ñ á∣ ∣ ∣ ∣ ∣ ∣4 4 9 9 23 231

4

1

2

1

4
. Simulated data are

generatedwith a random set of commutingmeasurement outcomes. The extracted physical sectors are shown in
figure 1.

Data statistical fluctuationmay be furtherminimized by averaging Bsub overmany different sets of
commuting outcomes.Moreover, one can detect additional systematic errors that are not attributed to
truncation artifacts by inspecting the corresponding histograms for errors larger than the statistical fluctuation.

Figure 1.Physical sectors extractedwith PSEP from simulated data of =N 109 detection events for (a)the pure state in (2.1) (black
solid curve represents its photon number distribution) and (b)themixed state r = ñ á + ñ á + ñ á∣ ∣ ∣ ∣ ∣ ∣4 4 9 9 23 231

4

1

2

1

4
. 2000 random

sets of 40 commutingmeasurement outcomeswere used to calculate the average Bsub in every iterative step k. The (blue) histogram
plots Bsub for the default ordering of the basis kets labeledwith = ¼n 0, 1, 2 . The physical sector  phys (yellow region) is revealed
after completing PSEPwith respect to a 5% significance level (a = 0.05) (red solid line).
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Wenext proceed to experimentally validate PSEP bymeasuring photon-click events of a time-multiplexed
detector (TMD).We use afiber-integrated setup to generate andmeasure amixture of coherent states, as
depicted infigure 2(a). Coherent states are produced by a pulsed diode laser with 35ps pulses at 200kHz and a
wavelength of 1550nm. These pulses are thenmodulatedwith a telecomMach–Zehnder amplitudemodulator,
drivenwith a square-wave signal at 230kHz. This produces pseudorandompulse patterns with twofixed
amplitudes. After passing through fiber-attenuators, the state ismeasuredwith an eight-bin TMD [31, 32]with a
bin separation of 125ns and two superconducting nanowire detectors.We record statistics of all possible 28 bin
configurations, which corresponds to a total of 256 TMDoutcomes.

To characterize the TMDoutcomes for themeasurement, we perform standard detector tomography, using
well calibrated coherent probe states [33, 34]. The setup is similar to the previous one, butwe replace the
modulator by a controllable variable attenuator.We calibrate the attenuationwith respect to a powermeter at
the laser output. This allows us to produce a set of 150 probe states with a power separation of 0.2dB.

TMDdata of a statisticalmixture of two coherent states are collected andPSEP is subsequently performed on
these data. The accuracy of the extracted physical sector is ultimately sensitive to experimental imperfections. In
this case, these imperfections areminimized owing to the state-of-the-art superconductor technology, the fruit
of which is a histogram that is as clean as it gets in an experimental setting. Figure 2(b) provides convincing
evidence of the feasibility and practical performance of the technique, where real data statistical fluctuation is
present. This physical sectormay subsequently be taken as the objective starting point for amore detailed
investigation of the quantum signal with tools for tomography and diagnostics.

5.2. Finite-dimensional quantum systems
To analyze another aspect of PSEP, in this section, we apply it to quantum systems offinite dimensionswith
discrete-variable commutingmeasurement outcomes. As a specific example, we consider the arrangement in
[22], which uses single photons to encode the information simultaneously in horizontal (H) and vertical (V )
polarizations, and in two spatialmodes (a and b).We define four basis states: ñ º ñ∣ ∣H a0 , , ñ º ñ∣ ∣V a1 , ,
ñ º ñ∣ ∣H b2 , , and ñ º ñ∣ ∣V b3 , . On passing through three suitably oriented half-wave plates at angles q1, q2, and

q3, the state of such hybrid systems can be converted to the pure state r q q q q q q= ñá∣ ∣, , , ,1 2 3 1 2 3 , defined by

q q q q q q q
q q q q

ñ = ñ - ñ
+ ñ + ñ

∣ ( ) ( ) ∣ ( ) ( ) ∣
( ) ( ) ∣ ( ) ( ) ∣ ( )

, , sin 2 sin 2 0 sin 2 cos 2 1

cos 2 cos 2 2 cos 2 sin 2 3 . 5.1
1 2 3 1 3 1 3

1 2 1 2

Thus, by adjusting the orientation angles of thewave plates, one could produce qubits, qutrits or ququarts
from such a hybrid source.Here, we show that PSEP can rapidly extract phys by inspecting only the data
measured from a set of commuting quantummeasurements. Figure 3 presents the plots for a qubit, qutrit and
ququart system characterized by the different (q q q, ,1 2 3) configurations.

We have thus shown that in the typical experimental scenarios where themeasurement setup is reasonably
well calibrated, and hence trusted, phys can be systematically extractedwithin the subspace spanned by the
measurement outcomes. This allows an observer to later probe the details of the unknown but trusted quantum

Figure 2. Schematic diagramof (a) the experimental setup tomeasure amixture of coherent states and (b) the result of PSEP on the
data for amixture of two coherent states ofmean photon numbers 9.043 and 36. Panel(a) describes coherent states from apulsed laser
pass through an amplitudemodulator (AM), which switches between two values of attenuation. Neutral density (ND)filters further
attenuate the light to the single photon level. The timemultiplexing detector (TMD) consists of threefiber couplers, delay lines and
superconducting nanowire single photon detectors (SPD). The physical sector in panel (b) is extracted fromdata of = ´N 9.6 106

detection events. 5000 different sets of 60 outcomes out of themeasured 256were used to calculate the average Bsub in every iterative
step. Otherfigure specifications follow those of figure 1.
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source using only the data at hand.Notice that the relevant basis states, labeled by n, form a basis for the
commutingmeasurement on the black box. As such, this procedure is not a bootstrapping instruction. Rather, it
systematically identifies the correct phys without any other ad hoc assertions about the source. In this way, we
turn PSEP into an efficient deterministic dimension tester with complexity ( )O dphys , as we have already learnt
from section 3.3.

6. Conclusions

Wehave formulated a systematic procedure to extract the physical sector, the smallest Hilbert subspace support,
of an unknown quantum state using only themeasurement data and nothing else. This is possible because
information about the physical sector is always entirely encoded in the data. This extraction requires only few
efficient iterative steps of the order of the physical-sector dimension.

We demonstrated the validity and versatility of the procedure with simulated and experimental data from
quantum light sources, as well asfinite-dimensional quantum systems. The results support the clearmessage
that, for well calibratedmeasurement devices, the physical sector can always be systematically extracted and
verifiedwith statistical tools, inwhich quantum-state tomography can be performed accurately. No a priori
assumptions about the source, which require additional testing, are necessary. The proposedmethod should
serve as the reliable solution for realistic tomography experiments in quantum systems of complex degrees of
freedom.
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[25] TeoY S,MogilevtsevD,MikhalychevA, Řeháček J andHradil Z 2016Crystallizing highly-likely subspaces that contain an unknown

quantum state of light Sci. Rep. 6 38123
[26] HoeffdingW1963 Probability inequalities for sums of bounded randomvariables J. Am. Stat. Assoc. 58 13
[27] Mecatti F et al 2014Contributions to Sampling Statistics (Cham: Springer)
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