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Limits of the time-multiplexed photon-counting method
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The progress in building large quantum states and networks requires sophisticated detection techniques to verify
the desired operation. To achieve this aim, a cost- and resource-efficient detection method is the time multiplexing
of photonic states. This design is assumed to be efficiently scalable; however, it is restricted by inevitable losses
and limited detection efficiencies. Here, we investigate the scalability of time-multiplexed detectors under the
effects of fiber dispersion and losses. We use the distinguishability of Fock states up to n = 20 after passing
the time-multiplexed detector as our figure of merit and find that, for realistic setup efficiencies of η = 0.85, the
optimal size for time-multiplexed detectors is 256 bins.
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I. INTRODUCTION

In recent years, the progress in both quantum source [1–10]
and detector [11,12] engineering has placed the implementa-
tion of large photonic network structures into reach. However,
in order to verify the intended operation of the networks,
reliable multiphoton measurements are necessary to both
check the state generation and measure the output distribution.

One method to measure the photon-number properties of
a quantum state is true photon-number-resolving detectors,
such as superconducting transition-edge detectors (TESs) [11].
However, while they offer intrinsic photon-number resolution,
they are also resource demanding and require very low
operating temperatures in the mK regime to work properly.
Furthermore, their photon-number resolution is limited to a
few tens of photons as the superconducting circuit breaks off at
some critical energy [13–15]. Since intrinsic photon-number-
resolving detectors have been around for only a short while
and require a lot of resources, quasiphoton-number-resolving
detectors have been proposed as a resource-efficient and
cheap alternative. They use conventional on-off detectors
(e.g., avalanche photodiodes) with either a spatial or temporal
multiplexing scheme [16–22]. In general, time multiplexing
can be seen as the more resource-efficient technique, as the
scheme allows us to use the same detectors again and again at
the cost of increased measurement time, instead of using each
detector only once.

The time-multiplexing network [16,17,19] consists of
several (generally fiber-integrated) beam splitters that are
connected by different fiber lengths (see Fig. 1). While passing
the network, one part of the input pulse is partially delayed in
each beam-splitter stage, such that pulses with 2b different
timings (time bins) arrive at the detector.

This method is scalable in principle, as the connection of
fiber-integrated components does not pose an unsurmountable
problem. In this context, Sperling et al. [23] have considered
the minimum size of a multiplexed detector to distinguish
between different states in loss-free implementations. How-
ever, up to this point no investigation of the scalability has
considered realistic, i.e., lossy and dispersive, fiber-integrated
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components and their effect on the detected photon-number
statistics.

In this paper, we answer how scalable the time-multiplexing
photon-counting detection method really is. We approach this
question from an experimental point of view by simulating the
photon-number statistics after passing the time-multiplexing
detector (TMD) and compare the quality of the TMD measure-
ment by attempting to differentiate and reconstruct different
Fock state inputs. As a figure of merit, we use the overlap
of the simulated photon statistics after the TMD between
neighboring Fock states and find the optimal size of the
network.

This paper is structured as follows: in Sec. II, we give a
preliminary limitation of the network size, as determined by the
fiber dispersion and the input pulse length. Section III contains
a discussion of the optimal network size considering state-
of-the-art fiber-integrated components. We discuss the effects
of distributing photon-number states onto a final set of time
bins and losses in the beam-splitter network. Taking these two
effects into account, we arrive at a practical limitation of the
network size which gives the most reliable experimental data.
Finally, in Sec. IV, we summarize our findings and conclude
this paper.

II. LIMITATION VIA DISPERSION

In this section, we consider the geometrical limitations
of the TMD, as given by the dispersion of the utilized
fibers. To do this, we assume no-loss fibers and detectors
with unit detection efficiency and vanishing dead time. In
this (admittedly unrealistic) scenario the maximum number
of available bins is reached when neighboring pulses start
to overlap significantly at the output. This means that we
determine this number by calculating how many output pulses
fit in the time between consecutive experiments. Expressing
the duration of a single shot in terms of the repetition rate of the
experiment Rrep = (�τexp)−1, we define the maximal number
of time bins as

Nmax, disp = �τexp

�τdisp
= (Rrep�τdisp)−1 , (1)

where �τdisp is the pulse width (FWHM) at the output after
experiencing fiber dispersion. This effect is taken into account
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FIG. 1. Schematic of a time-multiplexed detection network.

by the group-velocity dispersion [24]

�τdisp = �τin

√
1 +

(
4 ln(2)

�τ 2
in

λ2

2πc
DλLexp

)2

. (2)

Here, �τin (ps) is the FWHM pulse length of the input photons,
λ = 1550 nm is the operating wavelength, Dλ is the dispersion
coefficient, and �τdisp (ps) is the output pulse length after
passing a fiber of length Lexp = c�τexp (km), with c being the
speed of light in the fiber. The dispersion coefficient Dλ for
standard SMF28 fibers is specified as Dλ � 18.0 ps

nm km [25] at
1550 nm.

As Eq. (2) applies to the FWHM of the output pulses,
we have artificially halved the number of available time bins
from Eq. (1) to guarantee that the different time bins can be
resolved in the experiment. The results are given in Fig. 2. In
Fig. 2(a), we plot the maximum number of available time bins
depending on the repetition rate of the experiment, as well as
on the input pulse duration which undergoes fiber dispersion.
We consider only repetition rates below 1 MHz, as they give
sufficient time between two experiments while still allowing
for sufficient data rates. Even for low repetition rates (long time
between two consecutive experiments) and long input pulses
(low dispersion effect) we find that the maximum number
of time bins is bounded by approximately 2.5 × 105 bins.
Figure 2(b) examines the effect of dispersion in more detail. We
cut through Fig. 2(a) at specified input pulse lengths of 250 fs
with the long-dashed pink line, 1 ps with the dotted orange line,
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FIG. 2. Maximum number of bins as limited by fiber dispersion.
In (a) we consider the maximum time bin number depending on the
repetition rate RRep and the input pulse duration. We find that even
for low repetition rates and long pulse duration the number of time
bins is bound by ≈ 2.5 × 105 bins. In (b) we cut (a) at fixed input
pulse lengths (long-dashed pink line: 250 fs, dotted orange line: 1 ps,
short-dashed green line: 5 ps, and solid black line: 9 ps). For short
pulse durations the decrease in the repetition rate is compensated by
the increased fiber dispersion, keeping the overall number of time
bins constant. For long pulses the dispersion is less pronounced, and
decreasing the repetition rate helps to increase the bin number.

5 ps with the short-dashed green line, and 9 ps with the solid
black line. It becomes clear that for short pulse durations the
longer time scale between experiments at low repetition rates
is fully compensated by the increased fiber dispersion and the
number of available time bins remains approximately constant.

For longer input pulses, the dispersion plays a smaller role,
which is why we cut the plot at τin,max = 10 ps. The number
of available time bins is accordingly higher and increases even
for smaller repetition rates, as the fiber dispersion is not strong
enough to eliminate the advantage of longer times between
experiments.

From this result, we can conclude the hard limit of available
time bins in fiber-integrated TMD systems due to dispersion.
For short input pulses, the available number of bins is rather
limited, while longer pulses allow for a quite high photon-
number resolution. However, up to this point we have not con-
sidered losses in the system which will deteriorate the detected
photon-number statistics (click statistics) of the input state.

III. LIMITATION VIA LOSS

In the previous section, we considered an ideal fiber-
integrated system without loss and perfect detectors. Now,
we consider a system including losses and finite setup
transmission and detection efficiency. We investigate the
ability to discriminate between different Fock states from
their measured photon number statistics and also comment
on the reconstruction limitations of Fock states by scanning
the overlap of the adjacent Fock states and using the width of
this curve as a measure for the reconstruction error.

A. Model and parameters

The action of the TMD on photon-number statistics is
governed by two mechanisms: the convolution matrix that
describes the distribution of n photons on a finite number of N

bins [19] and losses that directly deteriorate the photon-number
statistics.

For this work, we use the photon-counting formula pro-
posed by Sperling et al. [23]. As their model accounts for
only perfect 50:50 beam splitters in the TMD (i.e., perfectly
even photon distribution among the bins), this formula is a
good approximation of the expected photon-number statistics
in an experiment, even for slightly different beam-splitter
ratios. With the photon-counting formula, we can formulate
the convolution matrix C,

Cn′,k =
⎧⎨
⎩

1
Nn′

(
N

k

)∑k
j=0(−1)j

(
k

j

)
(k − j )n

′
, if n′ � k,

0, otherwise,
(3)

which gives the probability of measuring k clicks when n′
photons impinge on N detectors (in our case N = 2b time
bins). For more details see [23].

The second mechanism is the impact of loss on the photon-
number statistics. The expression for the loss matrix is well
known and is given by, e.g., [19]

Ln,n′ =
(

n

n′

)
ηn′

(1 − η)n−n′
. (4)

It describes the probability of retaining n′ photons out of n

with a finite efficiency η. In our case, the losses are defined by
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the number of beam splitters, the longest fiber length that the
photons have to pass, and nonunit detection efficiencies.

Finally, the resulting click distribution after passing the
TMD is given by [19]

p
(out)
k = Cn′,kLn,n′ρ(in)

n . (5)

To simplify our investigation, we consider loss and convolution
as separate processes. We assume that the convolution is
governed by perfect 50:50 beam splitters in the TMD, while
loss affects the click statistics separately. This assumption will
provide only an approximation of the realistic click statistics
as losses inside the fiber network or nonperfect detection
efficiencies modify the splitting ratio of the beam-splitter
network [19].

For experimental parameters, we consider freely available,
state-of-the-art fiber-integrated components. We assume that
our detectors offer a dead time of 10 ns, which might be achiev-
able for superconducting nanowire detectors in the future [26].
Furthermore, we assume fiber losses of 0.2 dB/km [25] and a
minimal loss of 0.05 dB per beam splitter [27]. We will neglect
the losses of the fiber splices, as they are very low compared to
the splitter and fiber loss. If not otherwise specified, we assume
perfect setup transmission (prior to the TMD) and detection
efficiency ηex. While we assume perfect splitting ratios for the
used beam splitters, strong imperfections may be accounted
for. Bohmann et al. [28] have proposed an averaging method
which allows us to absorb imperfect splittings in the overall
setup transmission and detection efficiency ηex. As such, our
results for finite detection efficiency are also suitable to cover
the case of imbalanced splitting ratios.

B. Photon-number discrimination

In the following, we consider pure Fock states as test cases
for our TMD investigation. They have the advantage that they
are orthonormal in the input and that the effect of modified
click statistics is most pronounced.

To quantify the effect of TMD measurements on the input
statistics, we first consider the effects of the convolution and
loss separately in Fig. 3(a). In black (dashed line), we plot the
overlap of the click statistics of the two Fock states 〈15| 20〉 as
an example. As expected [23], the overlap decreases to higher
bin numbers as the effect of the convolution decreases and the
click statistics approximate the true photon-number statistics.
The opposite is true for the losses, as shown in blue (dotted
line). As the number of beam splitters and fiber length increase,
so do the losses for more bins. Accordingly, the click statistics
are washed out, and the overlap increases. Therefore, when
considering both convolution and loss effects (plotted in red,
solid line), we find an optimal bin number where the overlap
between the two Fock states after passing the TMD is minimal.

In Figs. 3(b)–3(d), we extracted the optimal TMD param-
eters for different input Fock states and detection efficiencies.
We consider neighboring (black tilted crosses) Fock states,
next-nearest neighbors (blue crosses), and states with with
four numbers in between (green pluses). We find that even
for the ideal case of perfect setup transmission and detection
efficiency in Fig. 3(b), the optimal bin number for all three
cases at high photon numbers does not exceed 256 bins. The
associated overlap for the optimal bin numbers (plotted as

FIG. 3. Overlap of the click statistics between different Fock
states after passing a TMD. In (a) we consider the different
contributions to the final overlap separately for the example 〈15| 20〉.
For small bin numbers, the overlap is governed by the convolution
matrix (dashed line, black pluses); for high bin numbers it is governed
by the losses (dotted line, blue pluses). The minimum of the curve
that considers both effects (solid line, red pluses) gives the optimal
parameters for minimal overlap, marked in gray. In (b)–(d), we extract
the optimal bin number and overlap (curves in the insets) for different
detection and setup efficiencies η. The additional losses deteriorate
the click statistics quite severely, such that for realistic setup and
detection efficiencies (η = 0.8) it holds no advantage to implement
TMDs larger than 256 bins. The faint lines hold no physical meaning
and are provided as a guide to the eye.

insets) is a monotonically increasing function of the photon
number and reaches 1 asymptotically. Realistically, this curve
will have to be truncated at a critical overlap value that
depends on the application, the robustness of the reconstruction
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algorithm of choice, and also the tolerable measurement time
and statistical errors in the experiment.

Adding loss that accounts for imperfect setup transmission
and detection efficiency in Figs. 3(c) and 3(d) deteriorates the
click statistics quite drastically. In this case, the optimum bin
numbers are lower than for the ideal case, while the overlap
curves approach 1 faster. In the case of a realistic overall
experiment efficiency of ηex = 0.85, it becomes clear that for
our figure of merit the optimal TMD size does not exceed
256 = 28 bins.

C. Photon-number reconstruction

In the last section, we saw that there is no advantage to
build TMDs bigger than 256 time bins when using the setup
to discriminate between Fock states. However, this might not
be the only aim of a quasiphoton-number-resolved detection.
Another significant task is to reconstruct the impinging states
on the TMD. To this aim a lot of reconstruction algorithms
have been proposed and implemented (e.g., see [29–31]). In
this paper, we do not want to comment on the advantages
or disadvantages of the particular reconstruction methods and
only want to infer an error bar from the measured statistics
that will affect the precision of the reconstruction.

To this aim, we regard a pure Fock state |n〉 impinging
on our detector without excess loss (ηex = 1) and calculate the
overlap of the click statistics after the TMD for the 20 adjacent
Fock states 〈n − 10| n〉 to 〈n| n + 10〉. The results for different
input states |n〉 and different bin numbers are depicted in Fig. 4.

As an example, let us consider Fig. 4(a). We encoded the
overlap of the click statistics after passing TMDs of different
sizes both in color and line style. Consider the red dashed curve
for passing a 256-bin TMD. The curve peaks at �n = 0, as we
send the same state into the TMD. It is slightly asymmetric with
respect to �n = 0, as the binomial coefficients that govern the
overlap of the click statistics are different for the higher- and
lower-photon-number cases. This effect evens out to higher
input Fock states [see Fig. 4(d)] as the relative difference in
the input photon number decreases.

As we increase the photon number of the input Fock states,
the overlap curve between the click statistics becomes broader
for all considered TMD sizes. This is expected due to the
increased impact of the convolution matrix for higher photon
numbers. However, it also becomes clear that the improvement
of larger TMDs for large input states is not very pronounced.
Especially for Fig. 4(d), the improvement in the width of the
overlap curve between 256 and 1024 bins does not really justify
the experimental effort it takes to fabricate a high-quality TMD
of that size. Furthermore, one has to consider the impact of
finite detection efficiencies and setup transmission. We saw in
the previous section that the increased losses only deteriorate
the statistics further and cause building large TMDs to have
no real advantage.
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FIG. 4. For different, but fixed, Fock state inputs |n〉, we calculate
the overlap to the adjacent ±10 Fock states in the click statistics after
passing TMDs of different size. The width of the overlap curve gives
a measure with which precision a Fock state can be measured and is
therefore a criterion for the resolution of the measurement method.
Even for very small input Fock states [n = 5 in (a)] large TMDs
(210 bins in green, dotted line) do not perfectly resolve the input
state. For larger states [e.g., n = 50 in (d)], the resolution goes down
drastically. From this we conclude that TMDs are not sufficient to
verify large quantum states directly. The faint lines in the plots hold
no physical meaning and are provided as a guide to the eye.

IV. CONCLUSION

In conclusion we investigated the limitations of photon-
number-resolved measurements by time-multiplexed detec-
tion. We discussed the fundamental limit of the device as
given by its dispersive fiber-integrated design. Furthermore,
we considered the combined effect of losses and convolution
in the context of photon-number-discrimination tasks, as well
as for photon-number-state reconstruction. Both cases show
that building large TMDs is not advantageous since losses
deteriorate the photon-number statistics faster than the effect
of the convolution matrix diminishes. As a recommendation
based on realistic experimental figures of merit, we suggest
using 256 bin devices, as they provide both moderate losses
and moderate photon-number resolution.
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