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Second-harmonic-enhanced feedforward laser-intensity-noise stabilization
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Quantum nondemolition theory has been well understood for a number of decades, however, applications of
such techniques remain limited owing to the increased complexity that these techniques require. In this paper,
quantum nondemolition theory is used to investigate the performance of a real-world device, an electro-optic
feedforward intensity-noise eater. It is shown that by replacing the typical beam splitter in such a device with a
single-pass second-harmonic generation followed by a dichroic mirror the performance of the noise eater can be
significantly improved, even with low conversion efficiencies.
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I. INTRODUCTION

Quantum nondemolition (QND) measurements were first
introduced as a method of extracting the most amount of
information from a given system, without adding additional
noise to following measurements [1,2]. An ideal QND
measurement can only be made when the observable in
question Â, commutes with itself at different moments in
time, [Â(t0),Â(t1)] = 0. QND measurement theory, however,
provides a way of quantifying nonideal systems by evaluating
the disturbance made by a measurement and the amount of
information gained through the measurement.

Although QND theory is well established, there are still
few situations in which QND devices are routinely used. This
is in part due to the fact that QND measurements typically
require complex setups in order to provide the desired benefits.
Shapiro et al. [3] showed that squeezing of the meter field
in a simple beam-splitter setup is enough to provide QND
enhancement. Also, more recently it has been shown that
measurement-induced QND can be used to produce more
versatile devices, such as a quantum nondemolition sum gate
[4,5]. These devices, already as uncomplicated as possible,
unfortunately still require the (nontrivial) production of at
least one optical squeezer (and possibly more) in order to
produce the required squeezed vacuum fields. Furthermore,
these methods require phase stabilization of the squeezed
vacuum fields and in the case of measurement-induced QND,
also stabilization of the measurement quadrature.

Another method that has been investigated, and that is
generally easier to experimentally implement than a squeezer,
is second-harmonic generation (SHG) [6,7]. Investigation of
the noise properties of the SHG process reveals very interesting
behavior; the phase noise of both the fundamental driving
field and the generated SHG field increases rapidly while the
intensity noise of both fields decreases [8]. In fact, a linearized
treatment shows that the fundamental field approaches ideal
squeezing in the limit of full conversion [8]. The problem with
using SHG as a QND device is that reaching the regime where
the process fulfills QND criteria requires extremely large
conversion efficiencies that are, at the very least, difficult to
achieve in experimental setups. Additionally, high conversion
SHG removes the majority of the power from the original field,
an undesirable effect in many applications.

However, although second-harmonic generation does not
fulfill all the QND criteria at low conversion efficiencies, the

properties of the output fields are still strongly affected by the
nonlinear interaction [8]. Weak levels of optical squeezing
still occur, and the correlations between the various fields
are much stronger than those seen in the case of a beam
splitter. The question that then arises is whether these effects
can be exploited in order to improve the performance of an
optical system without the large levels of phase noise leading
to detrimental effects.

In this paper we investigate the suitability of using an SHG
process for achieving QND enhancement of a feedforward
scheme, the intensity-noise eater. The role of feedforward in
QND schemes has been investigated previously, providing
a framework with which to investigate the problem [9–11].
Using this framework, we show that by simply replacing the
beam-splitter component of a standard feedforward noise eater
scheme with a second-harmonic generation stage we gain a
substantial improvement in system performance, even in low
conversion regimes where the typical QND measures are not
met.

II. THE FEEDFORWARD INTENSITY-NOISE EATER

We begin by clearly defining the goal of the intensity-
noise eater. The aim of an intensity-noise eater is typically
considered to be reduction of the amplitude quadrature noise
on an initial noisy laser beam, which we label the input signal
field. However, one also has to consider the power in the initial
beam as a resource for most applications. Therefore the aim
of the device that will be used throughout this paper is to
reduce the noise on the input field to some desired level, while
retaining as much of the initial power as possible.

In the standard feedforward noise eater setup, which we
shall call the beam-splitter (BS) noise eater, some percentage
of the laser field power is split from the input (signal) field
using a beam splitter and is then detected. We refer to this
process as the tap-off and the tap-off field as the meter
field. The information on the detected field is then used, via
feedforward through an electro-optic modulator, to reduce the
noise in the transmitted field. The basic setup is shown in Fig. 1.

In order to improve upon the BS noise eater design, one
might consider a device that shows stronger correlations
between the meter and output fields, without introducing
additional noise. Perhaps the first most obvious process for
examination is second-harmonic generation. It is known that
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FIG. 1. The standard BS noise eater. A bright, noisy, initial field is
incident on a beam splitter. The reflected portion of the light, the meter
field, is detected and the information on this field is used to reduce
the noise on the remaining field through the use of an electro-optic
intensity modulator.

SHG can produce squeezed states of light, thereby reducing
the output noise before even applying any feedforward, and
the correlations between the various fields have been shown to
be much stronger than those present after beam splitting [8].
In addition, it is experimentally simple to replace the beam
splitter in a noise eater setup with second-harmonic generation
in single pass followed by a dichroic mirror for separation of
the output signal and meter fields. Furthermore, the increase
in loss involved in such a transition can be very minor.

The new setup, which we shall call the second-harmonic
intensity-noise eater (SH noise eater), is shown in Fig. 2. In
the following sections we compare this system, the SH noise
eater, and the standard noise eater setup.

III. THEORY

The system is investigated using standard QND theory
techniques [2,12,13]. We use linearized operators in the
frequency domain, denoted through the use of a tilde, and
assume that all noise sources are Gaussian [14]. The validity
of the results presented here will therefore reduce toward very
high conversion efficiencies (above 99%) [6]. However, this
is not a concern because we are primarily interested in the
performance at low conversion efficiencies.

The setup that describes the transfer of amplitude quadra-
ture fluctuations δX̃ = δX̃(ω), is shown in Fig. 3. A bright
input signal field with fluctuations δX̃

in
s , and a vacuum

input meter field δX̃in
m, which has a spectral variance
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FIG. 2. The SH noise eater. A bright, noisy, initial field is incident
on a second-harmonic generation device, here assumed to be single
pass. A dichroic mirror is placed after the SH stage such that the SH
field, acting as the meter field, and the input signal field are separated.
As before, the information on the meter field is used to reduce the
noise on the output signal field.

FIG. 3. The relevant fields in the general feedforward intensity-
noise eater scheme. Variables described in text.

V = δ(ω − ω′)V (ω) = 〈δX̃(ω)δX̃∗(ω′)〉, equal to unity V in
m =

1, undergo some tap-off process that maps the power of
the input signal field and the fluctuations from both input
fields to the two outputs. The quadrature fluctuations on
the output meter and signal fields are given as δX̃out

m , and
δX̃out

s , respectively. The meter field is then measured on a
photodetector with efficiency ηm. This measured signal is then
amplified with a variable gain of G and fed forward to the
output signal field via an electro-optic intensity modulator.
Other vacuum fluctuations can enter via losses in the tap-off
process (due to imperfect coatings or absorption) δX̃v, the
meter arm due to imperfect detection δX̃vm, and the signal arm
due to losses introduced by the intensity modulator, δX̃vs.

The final parameter is the tap-off ratio η, given by the ratio
of the power in the output meter field to the power in the input
signal field,

η = P out

P in
. (1)

For a beam splitter, this value is simply equal to the beam-
splitter transmission T = η, but for the SHG process we use
the solution for SH field growth in SHG [15],

η = P2ω

P in
ω

= tanh2(ξ ), (2)

where P2ω is the amount of power generated in the SH field,
P in

ω is the power of the input fundamental field, and ξ is
the normalized interaction strength, which is proportional
to the nonlinear interaction strength, the fundamental field
magnitude, and the length of the nonlinear medium [8].
Changing the tap-off ratio is then experimentally equivalent
to changing the length of the nonlinear medium but is also a
function of the power in the signal field.

We first define the transfer matrix of the tap-off process.
We can write(

δX̃to
s

δX̃to
m

)
=

(
a b c

d e f

)⎛
⎜⎝

δX̃in
s

δX̃in
m

δX̃in
vl

⎞
⎟⎠, (3)

where the terms δX̃to
s and δX̃to

s describe the amplitude quadra-
ture fluctuations of the signal and meter fields immediately
after the tap-off process.
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For the lossless beam splitter the process transfer matrix is
well known and is given by(

a b c

d e f

)
BS

=
( √

η −√
1 − η 0√

1 − η
√

η 0

)
. (4)

Note here that we have assumed that the beam splitter is
lossless. This assumption is valid because the losses in the
beam splitter are small.

Likewise, the terms for the second-harmonic process can
be found from the lossless squeezer Hamiltonian [8,15]. Here
we model a single-pass experiment, allowing us to assume a
lossless SH process. Were a resonant SH process to instead
be used, then the coupling terms, c and f , would have to be
included [16]. The second-harmonic transfer matrix is then
given by(

a b c

d e f

)
SH

=
(

(1 − ξ tanh ξ )sech ξ −√
2 tanh ξ sech ξ 0(

tanh ξ + ξ sech2 ξ
)
/
√

2 sech2 ξ 0

)
,

(5)

where ξ is the normalized interaction strength, which is pro-
portional to the nonlinear interaction strength, the fundamental
field magnitude, and the length of the nonlinear medium.

Now that the transfer matrices for the idealized tap-off
process are known, the effect of the feedforward and losses can
be added to complete the theoretical description. We follow
the same method described by Buchler et al. [17] to arrive at

(
δX̃out

s

δX̃out
m

)
=

(√
ηs G

√
ηsηm

0
√

ηm

)(
a b c

d e f

)⎛
⎜⎝

δX̃in
s

δX̃in
m

δX̃in
vl

⎞
⎟⎠

+
(√

1 − ηs G
√

ηs(1 − ηm)

0
√

1 − ηm

)(
δX̃vs

δX̃vm

)
, (6)

where G is the feedforward gain, which we can assume is
real [17]. The two loss terms, ηs and ηm, represent the losses
in the signal output and meter fields, respectively. For the
meter arm ηm is equivalent to the quantum efficiency of the
photodetector and for the signal arm ηs is the transmission of
the loss equivalent beam splitter that includes losses due to the
modulator and the tap-off process.

IV. TAP-OFF PROCESS

Before looking at the results for the full feedforward
configuration, it is informative to first directly compare the
performance of the two idealized tap-off processes. We set
the feedforward gain to zero (G = 0) and ignore losses from
the modulator and meter detection (ηm = ηs = 1). We then
compare the BS and SH processes as the tap-off ratio η is
varied.

Different QND measures can be used to characterize
the fields after the tap-off process. The measures we will
use here are the output variance, the information transfer
coefficients, the conditional variance, and the correlations.
Each of these are explored in the following sections before

Vm
out(SH)

Vs
out(SH)

Vm
out(BS)

Vs
out(BS)

FIG. 4. Variance of output signal fields as the amount of power
in the tap-off is increased for the SH and BS processes on noisy input
fields. The gray region indicates squeezing. Parameters are V in

s = 10,
G = 0, ηm = 1, ηs = 1.

reintroducing the feedforward and directly comparing the
performance of the two systems as a noise eater.

A. Output variances

The first measure that we investigate is the spectral variance
V = δ(ω − ω′)V (ω) = 〈δX̃(ω)δX̃∗(ω′)〉, of the two output
fields. It has been shown many times that the output of a
second-harmonic process is capable of squeezing the output
modes [6,8,15]. We assume that the input state has noise that
is ten times above the shot noise, V in

s = 10. Figure 4 shows
the output variances of the fields as the tap-off ratio is varied.
We see that in contrast to the BS setup, the SH setup has more
information on the meter field, and less noise on the output
signal field. This is exactly the desired behavior provided that
the correlations between the meter and the signal are high
(which will be shown in Sec. IV D).

B. Information transfer coefficients

The next measure that we define is the information transfer
coefficient. We define the meter field signal transfer coefficient
Tm, the signal field information transfer coefficient Ts, and a
total information transfer coefficient Ts+m, for the BS setup

Ts = SNRout
s

SNRin
s

, (7)

Tm = SNRout
m

SNRin
m

, (8)

Ts+m = Ts + Tm, (9)

where the signal-to-noise ratio (SNR) of the fields is the
ratio between the measured signal strength, S, with the noise
component subtracted, to the noise level (in this case shot
noise) N ,

SNR = S − N

N
, (10)
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FIG. 5. Information transfer for BS and SH tap-off processes as
the amount of power in the tap-off is increased. The gray region
indicates parameters where the total information transfer coefficient
indicates nonclassical (quantum-optical tap) behavior. Parameters are
V in

s = 10, G = 0, ηm = 1, ηs = 1.

where N is the noise due to the quantum limit and S is the
measured variance. For values of 1 < Ts+m < 2 the system is
said to be operating as a quantum-optical tap [3,18].

Figure 5 shows the information transfer coefficients for the
BS and SH setups. Once again it appears as though the SH
setup is advantageous. The transfer coefficient for the meter
field is always higher in the SH setup than in the BS and the
transfer coefficient on the output signal field is lower than for
the BS until very high tap-off ratios are reached.

C. Conditional variance

The conditional variance is another measure used to classify
the performance of a QND measurement. The conditional
variance, Vs|m, is a measure of how much information one
gains about the output signal field by measuring the meter
field. A conditional variance of less than 1, Vs|m < 1, indicates
nonclassical behavior and the process is regarded as achieving
quantum state preparation [16,18]. Assuming only Gaussian
noise sources, the conditional variance between the output
signal field and the meter field is given by

Vs|m = V out
s −

〈∣∣δX̃
out
s δX̃

out
m

∣∣2〉
V out

m

. (11)

Figure 6 shows the conditional variance between the output
signal field and the meter field. We see that the conditional
variance of the SHG process is less than that for the beam
splitter at all splitting ratios η, as desired. We also note that
for some tap-off ratios, the process fulfills quantum state
preparation requirements.

D. Correlations

The final measure is the correlations between the fields.
The noise eater requires strong correlations between the meter
field and the output signal field to operate effectively. The

FIG. 6. Conditional variance for BS and SH processes as the
amount of power in the tap-off is increased. The gray region indicates
quantum state preparation. Parameters are V in

s = 10, G = 0, ηm = 1,
ηs = 1.

correlations between two fields, 1 and 2, can be written

C1,2 =
√

〈|δX̃1δX̃2|2〉
V1V2

. (12)

The correlations between the fields are illustrated in Fig. 7.
We see that the correlations between the output signal and
the output meter fields for the SH process are greater than for
the beam splitter up until some point where the two values
cross (for this case at around 1 − η = 0.3). This indicates that
feedforward will provide the largest reduction in the output
noise at lower tap-off percentages.

Cs ,m
out (SH)out

Cm ,s
out (SH)in

Cs ,s
out (SH)in

Cs ,m
out (BS)out

Cm ,s
out (BS)in

Cs ,s
out (BS)in

in

FIG. 7. Correlation functions for BS and SH tap-off processes as
the amount of power in the meter field is increased. Parameters are
V in

s = 10, G = 0, ηm = 1, ηs = 1.
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FIG. 8. Variances of relevant output fields in dB relative to shot
noise for the SH and BS noise eaters, as the feedforward gain is
varied. Parameters are η = 0.9, V in

s = 10, ηm = 0.9, ηs = 0.95.

V. NOISE EATER

Now that the two tap-off processes are well understood, we
turn our attention to the full noise eater system. To model the
noise eater we simply switch on the feedforward gain, G. We
choose a tap-off value of 10% (η = 0.9) and look at the output
variance of the fields as the gain (assumed to be real) is varied
in both the SH and BS setups. In order to make the comparison
clearer, we assume that both the second-harmonic process and
the beam splitter introduce the same loss of 5% (ηs = 0.95)
and that the modulator also has a loss of 5% (ηs = 0.9). The
detector in the meter arm has an assumed quantum efficiency
of 90% (ηm = 0.9). The variance of the output signal field and
the measured meter field are plotted for both the SH and BS
noise eater systems in Fig. 8. We immediately see that the
minimum noise of the SH noise eater is approximately 2 dB
below the minimum noise level reached by the BS noise eater,
and therefore the SH noise eater is clearly outperforming the
BS noise eater.

Finally, we investigate how the SHG noise eater compares
for all values of the splitting between the meter and signal
output fields. In Fig. 9, a search over the (real) feedforward gain
is performed for each value of the tap-off ratio. The minimum
output variance of the output signal field found through each
of these searches is plotted. It is immediately apparent that the
SH noise eater clearly outperforms the BS noise eater, even in
regions where the device does not fulfill any of the standard
quantum nondemolition criteria.

Further interesting behavior from this system can be
found when investigating the output variances of the ideal,
lossless system (ηs = ηm = 1). Under these conditions one
finds that the output variances from Fig. 9 are in fact equal
to the conditional variances illustrated in Fig. 6. This can
be understood by considering that the conditional variance is

V

FIG. 9. The variances of the output signal fields for SH noise
eater and BS noise eater for optimum gain with varying tap-off
ratio. The light-gray shaded region indicates operating parameters
for which the device fufills the “quantum state preparation” criterion,
and the dark-shaded region indicates the region where the device
fulfills the “QND measurement” criterion. The black (solid) trace
illustrates the difference, in dB, between the BS and SH noise eaters.
Parameters are V in

s = 10, ηm = 0.9, ηs = 0.95.

essentially a statement about how much information one can
gain about the signal field, given measurements on the meter
field. It then follows that if one were to optimally apply this
information to the signal field, for example via feedforward,
then one should be able to reduce the variance of the signal field
to the conditional variance, and this is what is observed. This
behavior is also presented and exploited in previous work [4].

VI. CONCLUSION

We have shown that a noise eater setup in which the standard
beam splitter is replaced with a second-harmonic process is
capable of substantially outperforming the original device.
This is true even at low conversion efficiencies, where the SHG
process does not fulfill any of the standard QND measurement
criteria. Although the benefits gained will depend on many
factors such as operational powers, losses, and specific laser
systems used, the results show that consideration of the SH
enhanced noise eater may lead to a device with much improved
performance for very little increase in complexity.
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