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Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to
be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both
the number of input photons and the size of the network. We propose driven boson sampling, in which
photons are input within the network itself, as a means to approach this goal. We show that the mean number
of photons entering a boson sampling experiment can exceed one photon per input mode, while maintaining
the required complexity, potentially leading to less stringent requirements on the input states for such
experiments. When using heralded single-photon sources based on parametric down-conversion, this
approach offers an ∼e-fold enhancement in the input state generation rate over scattershot boson sampling,
reaching the scaling limit for such sources. This approach also offers a dramatic increase in the signal-to-noise
ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need
for photon number resolution during the heralding process as the size of the system increases.
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Boson sampling [1] is strongly conjectured to be a
computationally hard problem. It describes the sampling
from the output distribution of indistinguishable bosons
evolving through a sufficiently large random unitary, as
depicted in Fig. 1(a). While not a universal quantum
computation problem, such as linear optics quantum
computing [2], boson sampling has attracted considerable
attention due to its experimental feasibility with quantum
optics. Different photonic platforms have demonstrated
inputting up to 4 single photons in networks of up to 13
input modes [3–11]. However, it remains a challenge to
scale up the devices to 20–30 photons [1] traversing a
correspondingly large network, a regime in which a
quantum boson sampling machine is expected to outper-
form classical computers.
In the first boson sampling experiments [3–6], para-

metric down-conversion (PDC) sources were employed and
thus the photons were generated in a probabilistic fashion.
With this scheme, measurement time scales exponentially
with photon number. To improve this performance, two
complementary approaches have been developed. Recently,
source hardware has been improved by implementing
quasi-on-demand single-photon sources as inputs to a
boson sampling circuit [10,11], resulting in a significant
reduction in measurement time. In parallel, algorithmic
(“software”) developments have also improved the scaling
when using probabilistic sources. Scattershot boson sam-
pling (SBS) [8,12,13] increases the number of possible
inputs to the linear network, as shown in Fig. 1(b), by a
binomial factor, which reduces the measurement time by a
corresponding amount. However, probabilistic PDC sources
typically suffer from the additional limitation of high-order

photon contributions. In general, as the required number of
photons increases, the chance of higher-order terms also
increases.
If the number of possible inputs can be increased com-

pared to the number of photons, the rate is increased while
the effect of higher-order terms arising from PDC can be
reduced. This is because the pump power of each source is
reduced without lowering the overall generation probability.
In SBS, the number of input modes defines one dimension of
the network, which in turn determines the required depth
of the network. Therefore, arbitrarily increasing the number
of possible inputs necessarily increases the network size in
both width and depth, which squares the number of required
components. Thus the question arises: can the number of
possible inputs be decoupled from the width, such that
sufficiently many possible inputs can be constructed without
blowing up the network size?
To answer this question, we propose driven boson

sampling (DBS) as a means to increase the number of
possible inputs when using heralded PDC photon sources,
independent of the size of the network. This approach
increases the input state generation rate and significantly
reduces the effect of higher-order photon contributions,
overcoming the need for high-efficiency photon-number
resolving herald detectors [14]. In our scheme, we consider
a stack of SBS-type experiments as shown in Fig. 1(c), in
which the output of one SBS experiment becomes the input
to the next. Additional photons can be injected in any of
the k input layers, and undergo evolution through a series of

independentm ×m Haar-random unitaries UðkÞ
H . In general,

the requirements on size imply m ≫ n2 in order to reduce
the chance of multiple photons in the output modes
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(overcoming the so-called birthday problem [1]). It has
been shown that, in the case of exact boson sampling, the

depth of each unitary networkUðkÞ
H need not exceed 4 layers

of beam splitters to be classically hard [15]. However, for
the case of approximate boson sampling, the minimum
depth bounds are Oðn logmÞ [1] and Oðm logmÞ [13] for
standard and scattershot boson sampling, respectively. This
depth requirement also arises from the number of beam
splitters required to implement an arbitrary unitary [16,17],
of which a Haar-random unitary is just one example.
It may appear that by injecting bosons within a network

we move away from the fundamental constraint of unitary
dynamics to the nonlinear regime, which is not covered
under existing hardness conjectures of boson sampling.
However, this scheme can in fact be mapped to a valid
boson sampling problem. To illustrate, we begin with the
abstraction shown in Fig. 2. The input modes of each unit
can be extended to the top of the network [as shown in
Fig. 2(b)], creating an input state vector of length k ·m at
the top of the network, similar to the SBS case. We then
write the evolution of the whole system as a transformation
of an input state of length k ·m to an output state of length
m, via the k ·m ×m scattering matrix G.
The input state is

jSini ¼ ⊗
k·m

i¼1
ða†i Þsi j0ii ¼ js1;…; sk·mi; ð1Þ

where a†i is a bosonic creation operator in mode i and si ∈
f0; 1g describes single photons in n of the k ·m modes
and vacuum otherwise. After the evolution governed by G
and projective measurement, the measurement outcome
jSouti ¼ jt1;…; tmi with ti ∈ f0; 1g is related to the per-
manent of an n × n submatrix ½G�ðSoutjSinÞ (the elements of
which are visualized by the intersection of the orange rows
and the blue columns in Fig 3), following the procedure in,
e.g., Ref. [18], such that the probability of a particular
outcome jSouti given an input state jSini is related to the
permanent by

PðSoutjSinÞ ∝ jPerð½G�ðSoutjSinÞÞj2: ð2Þ

While it is long understood that calculating permanents of
matrices is hard [19], the insight from Aaronson and
Arkhipov was to show that efficient sampling from dis-
tributions governed by the permanents of n × n Gaussian
matrices contained within an n ×m scattering matrix
would have profound implications for the hierarchy of
computational complexity. It is therefore strongly conjec-
tured to be a #P-hard problem (the permanent-of-Gaussians
conjecture [1]), even in the approximate case where we
allow for errors. SBS [12] extends the size of the scattering
matrix to m ×m, and samples an ensemble average of n
photons in all possible m inputs, which yields an ðmnÞ
increase in the input state generation rate. In DBS, the
scattering matrix G is now of size k ·m ×m, yielding an
enhancement input state generation proportional to ðk·mn Þ.

FIG. 2. (a) State generation in driven boson sampling.
(b) Equivalent system with an adapted graph (green dashed
lines) and single-photon input state. Green stars indicate all
possible modes for injecting photons, the yellow star marks an
equivalent input position.

FIG. 1. Boson sampling networks for (a) boson sampling,
(b) scattershot boson sampling, and (c) driven boson sampling
with the state generation governed by a stack of k input layers

each followed by an m ×m Haar-random unitary matrix UðkÞ
H .

Green stars indicate all possible modes for injecting photons,
yellow stars mark one possible (n ¼ 3) input state.

FIG. 3. Pictorial relationship of the input state to a particular
measurement outcome jSouti due to matrix G built from k blocks
Bi of size m ×m [18].
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To provide strong evidence for the complexity of this
problem, we show that the n × n submatrices which govern
the evolution of a single instance of this DBS machine
remain close in variation distance to a matrix of indepen-
dent and identically distributed (i.i.d.) Gaussians, in line
with Theorem 3 of the original hardness conjecture [1].
This states that a sufficiently small sample of elements from
a Haar-random matrix contains insufficient structure to
efficiently compute the permanent, i.e., that those elements
are close in variation distance to a matrix of i.i.d. Gaussian
elements [1]. The submatrix ½G�ðSoutjSinÞ sampled by our
photons comprises elements from different, independent
Haar-random blocks (see gray blocks in Fig. 3); therefore,
the elements of this matrix are at least as independent as
elements sampled from a single m ×m Haar-random
unitary.
To illustrate, we consider the block B1, which describes

the evolution after the final photon generation layer. This is

built from products ofm ×m unitary coupling matricesCð1Þ
i

(see Supplemental Material for the exact form of the Ci
matrices [20]), the elements ofwhich are chosen such that the

blockB1 is Haar random, i.e., B1 ¼
Q

m
i¼1 C

ð1Þ
i ¼ Uð1Þ

H . The
preceding block B2 is constructed from coupling matrices

Cð2Þ
i in a similar manner, but it is also multiplied by the first

block, i.e., B2 ¼ ðQm
i¼1 C

ð2Þ
i ÞB1 ¼ Uð2Þ

H Uð1Þ
H ¼ Uð2Þ

H
0. Thus,

the qth block is Bq ¼ ðQq
i¼1U

ðiÞ
H Þ · ðQm

j¼1 C
ðqÞ
j Þ ¼ UðqÞ

H
0.

This continues up to k input layers, such that the
evolution of photons generated in each layer is governed
by an independent random matrix. Thus, sampling the
probability distribution arising from the submatrices gov-
erned by elements from these independent random blocks
retains at least the level of complexity as the original boson
sampling problem. Moreover, the complexity proofs for
sampling from an ensemble of these matrices (i.e., SBS)
must also apply in this case.
One important consequence of our result is that it allows

input states with more than one photon on average. If one
considers the case where n − 1 photons are generated in the
penultimate layer, there are ðn − 1Þ=m photons, on average,
at each input mode in the final layer; the photons that have
been generated are distributed across all the modes. In the
final generation layer, one of these modes picks up the final
photon, such that the final unitary has as an input state
1þ ðn − 1Þ=m photons in one mode [and ðn − 1Þ=m in the
others]. This is still a valid input state, despite being a state
of noninteger photon number. An intuitive explanation for
this surprising result is that the first n − 1 photons have lost
any potential information following propagation through
the first random unitary; therefore, they can yield no extra
information about evolution through the next unitary.
Furthermore, while we have demonstrated the complexity

of this scheme for m layers of beam splitters between input
layers (required to implement the Haar-random unitary), it
remains an open questionwhether this depth requirement can

be reduced. We note further that each instance of a DBS
experiment in which photons are generated in the same layer
of the generation network corresponds to a SBS problem.
However, these SBS instances are an exponentially small
subset of the DBS problem.
To demonstrate the benefits of our scheme,we consider an

experimental approach which is readily implemented using
heralded parametric down-conversion, as shown in Fig. 4(b).
Measuring a single photon heralds the presence of a new
photon within the network [20]. Adding photons in this
manner increases the total number of input modes in G to
k ·m. It is necessary that each source can be heralded, such
that it is known within each trial how many sources fire.
In the original boson sampling scheme, single photons

are input in predetermined positions, specifying a single
configuration of modes with and without photons. If one
uses n heralded single-photon sources at the input, for
example, arising from PDC, one must wait for all n heralds
before a boson sampling experiment can commence.
This occurs with probability PBS

s ðnÞ ¼ Pn
1, where P1 is

the single-photon generation probability for each source. In
SBS, all m input modes are coupled to heralded single-
photon sources. However, all possible configurations of
exactly n of the m sources firing is a valid input state;
therefore, one gains an m choose n speed-up in the number
of valid trials, whereby PSBS

s ðnÞ ¼ ðmnÞPn
1P

m−n
0 . Here, P0 is

the probability of no photons (vacuum) being generated.
In DBS, a valid generation event of n single photons occurs
with success probability PDBS

s ðnÞ ¼ ðk·mn ÞPn
1P

k·m−n
0 , where

k ·m is the number of possible input positions.
The advantage offered by DBS is demonstrated by

optimizing the single-photon generation probability for a
desired photon number n. For PDC states of the form
jψPDCi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p P∞
i¼0 λ

iji; ii, with i the photon number,
the probability of generating a photon is P1 ¼ ð1 − λ2Þλ2,
and vacuum P0 ¼ ð1 − λ2Þ, where λ is the squeezing
parameter. For fixed photon number n, and number of
possible inputs k ·m, we can find the optimal λ to maximize
success probability PsðnÞ:

λopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
k ·mþ n

r

: ð3Þ

FIG. 4. Fundamental unit of the network (a) photon creation at
a link b and no photon created at link a. (b) Experimental
implementation using heralded parametric down-conversion.
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In DBS we are free to choose the number of layers k under
the constraint k ·m ≥ n2. Note that k ¼ 1 is the case for SBS.
Following the Supplemental Material of Ref. [12], in the
asymptotic limit for the number of possible sources
k ·m ≥ n2, the scaling of optimal generation probability is
Pmax ∼ ð1=b ffiffiffiffiffiffi

2π
p Þð1= ffiffiffi

n
p Þ, where, for m ¼ n2, the factor

b → e1=k in the limit of n → ∞. Thus, for large k, the
geometry of DBS allows the success probability PsðnÞ to
approach a factor of e higher compared to SBS [Fig. 5(a)],
enabling more than twice the data rate of scattershot boson
sampling for fixed laser repetition rate (or, equivalently,more
than twice the acquired data for a fixed experiment time).
Perhaps more significantly than a constant factor

speed-up is the dramatic reduction in the optimal

squeezing parameter λ to achieve this improvement
[Fig. 5(b)]. By choosing, for example, k ¼ ffiffiffiffi

m
p ¼ n, the

optimal λ reduces by ≲ 2 orders of magnitude. Not only
does this reduce pump power requirements for the k ·m
sources, but also the probability of generating higher-order
terms which act as noise sources on the signal, from which
we calculate the signal-to-noise ratio (SNR). In order to
achieve a SNR > 1, we find that the minimum number
of layers when m ¼ n2 is k ≥ ⌈1=nð ffiffiffi

n
p

2 − 1Þ⌉ (see
Supplemental Material [20]). In fact, the SNR exceeds
unity for all k ≥ 2, independent of n. This means that large
numbers of heralded single photons can be generated
while higher-order contributions are almost completely
suppressed, thus overcoming the need for photon-number-
resolving detectors. Indeed, the SNR for DBS actually
increases with photon number [Fig. 5(c)], which makes
PDC sources used in this manner a promising candidate for
scaling up boson sampling experiments.
Although DBS significantly improves the measurement

rate of a boson sampling experiment, this is at a cost of
increased input sources s (from originally s ¼ n sources to
s ¼ m sources in SBS, to s ¼ k ·m sources in DBS).
The operation of many sources of indistinguishable pho-
tons is a challenging task and the timing of the additional
inputs is crucial such that all photons may interact,
independent of the position where they are generated.
Furthermore, the additional depth of the network increases
from m to k ·m layers of beam splitters. However, employ-
ing techniques from time-multiplexed quantum networks
[21] inherits all the benefits of photon indistinguishability
and homogeneity while simultaneously reducing the physi-
cal overhead to a single set of components. Indeed, within
the context of boson sampling, such a loop architecture has
been proposed [22] and experimentally demonstrated [11].
DBS is easily adapted to this approach by placing a

down-conversion source within the loop structure, as
shown in Fig. 6. The timings of the sources can easily
be determined by lengths of the fiber loop which corre-
spond to the repetition rate of a mode-locked pump laser.
The optimal number of source layers k will depend on the
overall transmission through the network, although k > 2 is
sufficient to improve upon SBS.

FIG. 5. Comparison of DBS (orange) and SBS (blue) as a
function of photon number. (a) Success probabilities PsðnÞ for
optimal generation efficiencies λ (solid lines) as well as two
example distributions of PsðnÞ for optimized for n ¼ 20 (dotted
line) and n ¼ 50 (dashed line). (b) Optimal generation efficiency
λ for an n photon event. (c) Signal-to-noise ratio (SNR) of
heralding and generating single-photon events divided by the
probability of higher-order contributions (see Supplemental
Material [20]). In this particular example, the DBS case corre-
sponds to k ¼ n, and the SBS corresponds to k ¼ 1. In both cases
we assume m ¼ n2.

FIG. 6. Scheme of the time-multiplexing setup with a PDC
source within the loop, adapting the scheme by Ref. [22]. The
variable beam splitter VBSðtÞ implements all nodes in the
network.
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In conclusion, we propose driven boson sampling to
improve the generation rate of valid input states while
reducing the necessary pump powers per source signifi-
cantly. The reduction of pump power drastically decreases
the impact of higher-order photon contributions and
improves the SNR, demonstrating our approach as a
promising candidate to scale up boson sampling machines.
Furthermore, the concept of placing sources of quantum
light within a quantum network remains a largely unex-
plored area. We have demonstrated the benefits of this
technique to the specific example of boson sampling, but
elements of this approach may well find applications in a
range of quantum optics protocols.
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