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Boson sampling has emerged as a tool to explore the advantages of quantum over classical computers as
it does not require universal control over the quantum system, which favors current photonic experimental
platforms. Here, we introduce Gaussian Boson sampling, a classically hard-to-solve problem that uses
squeezed states as a nonclassical resource. We relate the probability to measure specific photon patterns
from a general Gaussian state in the Fock basis to a matrix function called the Hafnian, which answers the
last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson
sampling, a #P hard problem, using squeezed states. This demonstrates that Boson sampling from Gaussian
states is possible, with significant advantages in the photon generation probability, compared to existing
protocols.
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Boson sampling has sparked the imagination of theorists
and experimentalists since it was introduced byAaronson and
Arkhipov [1]. It demonstrates the power of quantum over
classical computation and provides evidence against the
extended Church-Turing theorem, without the need for the
full power of a universal quantum computer. In photonic
Boson sampling, N single photon Fock states are launched
into anN2-mode interferometer.Because of bosonic statistics,
the probability to measure a specific photon pattern at the
output depends upon the permanent of a submatrix of the
interferometer unitary. The permanent is in the #P complexity
class [2]; therefore, this distribution is difficult to sample
from, unless certain computational complexity classes are
equivalent, which would have serious consequences for
complexity theory.
After this theoretical advance, several experimental

groups performed the first demonstrations [3–6].
However, since perfectly deterministic sources of single
photons are not available (although recently proof-of-
principle Boson sampling experiments with quasidetermin-
istic sources have been demonstrated [7–9]), they made use
of postselected photon-pair states from probabilistic pho-
ton-pair sources (such as two-mode squeezed states) to
emulate the single photon input states. This postselected
Fock Boson sampling (PFBS), heralding N single photons
from N probabilistic sources, has an intrinsic exponential
cost when scaling to high photon numbers and so cannot
efficiently solve the Boson sampling problem. Lund et al.
[10] improve the scaling of the generation probability by
placing a probabilistic source in each of the N2 input
modes, a protocol known as scattershot Boson sampling
(SBS), which is in the same complexity class as Aaronson-
Arkhipov Boson sampling (AABS). Recently, another way
to improve the generation probability for high photon
numbers was proposed by Ref. [11].

All of these schemes make use of Gaussian states but
discard their Gaussian nature, as only a specific number of
(postselected or heralded) single photons are retained from
the complete distribution and the squeezers are driven in a low
gain regime (mean photonnumber hni ≪ 1). Therefore, from
an experimental perspective, it is valuable to investigate the
Boson sampling scheme with Gaussian states, appreciating
the full Gaussian nature of the input states, which has also
applications for the simulation of molecular vibronic spectra
[12]. This means lifting the constraint on pure single photon
input states and considering squeezed states with a higher
gain (hni ≈ 1). In addition to an experimental interest, the
appreciation of the full Gaussian nature also implies a strong
theoretical relevance. Is a Boson sampling problem with
Gaussian states without the need for heralding in the same
complexity class as sampling from single photon input states?
This question has not yet been answered in general. Only for
the special cases of sampling from a nonlinear-continuous
variable quantum state [13] or sampling from a multimode
thermal state [14,15] has this question been answered.
In this Letter we answer this question of sampling photons

from a general Gaussian state and develop a new protocol we
call Gaussian Boson sampling (GBS). Here, we utilize single
mode squeezed states (SMSS) as our nonclassical resource,
which then enter a linear interferometer and sample the
output patterns in the photon number basis. We first derive a
new theoretical result that shows the probability to measure a
specific photon output distribution from a general Gaussian
state can be written in terms of a matrix function, the
Hafnian. As the Hafnian is in the #P complexity class, we
show that our exact GBS protocol is in #P and argue that an
approximate sampling problem with errors is also in the
same complexity class. Contrary to the existing protocols,
where the sampling matrix is directly given by the unitary of
the interferometer, here the sampling matrix absorbs both
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the action of the interferometer and the overall shape of the
Gaussian input state. We use a coherent superposition of all
N-photon patterns from the Gaussian input and we do not
herald an exact input pattern, as opposed to the other
protocols where both input and output patterns determine
the sampling problem. These two observations loosen the
requirement on having single photon Fock states at the input
and we are able to retain higher order photon number
contributions from the same input mode.
Photocounts from a Gaussian state.—Photonic Boson

sampling involves sending single photon Fock states into
a linear interferometer, described by a matrix T, which
transforms M input modes into M output modes. The
probability of measuring a certain pattern of photons
ˆ̄n ¼⊗M

j jnjihnjj (nj photons in output mode j) from M
modes of a quantum state ρ̂ is Prðn̄Þ ¼ Tr½ρ̂ ˆ̄n�. For Boson
sampling from Fock states Prðn̄Þ depends upon the per-
manent of a matrix [16]

Prðn̄Þ ¼ jPermðTSÞj2
n̄!m̄!

; ð1Þ
where m̄ is the input photon pattern, n̄! ¼ n1!n2! � � � nM!,
and TS is a submatrix of the linear transformation that
depends upon where the photons enter and exit the inter-
ferometer. Here, we derive a new expression for Prðn̄Þ from a
Gaussian state after passing an M-dimensional linear inter-
ferometer. This state is characterized solely by a 2M × 2M
covariance matrix σ and a displacement vector d [17],

σij ¼
1

2
hfξ̂i; ξ̂†jgi − did�j ; dj ¼ hâji;

where ξ̂j run over all âj, â†j (annihilation and creation
operators for a photon in mode j) and we assume dj ¼ 0∀ j.
The details of this derivation are given in Ref. [18]. Using
phase space methods (similar to Refs. [14,19,20]), Prðn̄Þ
becomes the integral of the Q and P functions of the state
and operator,

Prðn̄Þ ¼ πM
Z

d2MαQρ̂ðαÞPn̄ðαÞ; ð2Þ

where d2Mα ¼QM
j¼1 dαjdα

�
j , Qρ̂ is the Q function of the

state and Pn̄ is the P function corresponding to the
operator ˆ̄n. This analysis leads to

Prðn̄Þ ¼ 1

n̄!
ffiffiffiffiffiffiffiffijσQj

p YM
j¼1

� ∂2

∂αj∂α�j
�

nj
e
1
2
αtvAαv

�����
αv¼0

; ð3Þ

where σQ ¼ σ þ I2M=2, αv ¼ ½α1;…; αM; α�1;…;α�M�t and

A ¼
�

0 IM
IM 0

�
½I2M − σ−1Q �: ð4Þ

Note that σ contains only the modes that are observed (i.e.,
measured). Any modes that are not observed are traced over
to get a reduced covariance matrix. The sampling matrix A
can be divided into four block matrices, shown in Fig. 1,
which is a consequence of the initial structure of σ. For
simplicity we now focus on nj ¼ f0; 1g (we deal with
nj ≥ 2 in Ref. [18]) for a total of N photons and 2N
derivatives (for ∂αj, ∂α�j ). The N indices of the photons’
mode position are written in a vector μ of length 2N with
entries j and jþM per photon. The 2N derivatives select
the rows or columns of A where the photons were measured;
the other rows or columns will be discarded. This is
illustrated in Fig. 1, where the intersection of the rows
and columns where a photon was detected (highlighted in
blue) form the entries of the submatrix AS. The expansion
of the 2N derivatives leads to a summation over all perfect
matching permutations (PMP) [21,22] of the vector μ.
For a general matrix AS this is

Prðn̄Þ ¼ 1

n̄!
ffiffiffiffiffiffiffiffijσQj

p X
μ0∈PMP

YN
j¼1

ASμ0ð2j−1Þ;μ0ð2jÞ : ð5Þ

The sum over all PMP is exactly the Hafnian of AS, as
defined by Caianiello [23,24]. Finally, we arrive at

Prðn̄Þ ¼ jσQj−1=2HafðASÞ=n̄! ð6Þ
This new result relates the probability of a photon pattern
n̄ from a general Gaussian state to the Hafnian of a matrix
that characterizes that state. This formula applies for any
Gaussian state (i.e., any covariance matrix), even if we lift
the constraint of nj ¼ f0; 1g. In this case, we repeat rows
and columns in AS, analogously to Ref. [25]. However,
multiple photons in the same mode do not contribute to the
complexity of calculating Prðn̄Þ [26]. We discuss the case
of multiple photons in the same output mode in more detail
in Ref. [18]. We now use this result to develop a Boson
sampling protocol for Gaussian states, with squeezing
contributions only (B ≠ 0, C ¼ 0 in Fig. 1).
Gaussian Boson sampling with squeezed states.—As the

Hafnian is in the #P-complete complexity class [2], we can
use Eq. (6) to devise a quantum sampling problem akin
to AABS. Whereas the permanent counts the (weighted)
number of perfect matchings in a bipartite graph, the
Hafnian counts the number of perfect matchings in a
general graph (not necessarily bipartite) [27]. Thus, the
Hafnian is a more general function than the permanent,
which is encapsulated in the formula

(a) (b)

FIG. 1. (a) Construction of submatrix AS from A, where
highlighted rows or columns remain. Also shown is the structure
of AðASÞ, which can be divided into four block matrices. (b) K
SMSS enter a linear interferometer T and at the output we
measure the multimode squeezed state in the Fock state basis
(K ≈ N ≪ N2 ¼ M). The probability of a given pattern n̄ is given
by Eq. (11).
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PermðGÞ ¼ Haf

�
0 G

Gt 0

�
; ð7Þ

where G is the graph’s adjacency matrix. This means that
any algorithm or black box that can accurately calculate
the Hafnian could also calculate the permanent, which is
known to be #P-hard, even to approximate [1]. Currently,
there is no known algorithm to efficiently approximate
the Hafnian [28,29]. We illustrate GBS with the scenario
shown in Fig. 1(b). K × SMSS (K ≤ M) enter an M-mode
linear interferometer, described by a Haar random unitary
T, with all modes being measured at the output. The
squeezing transformation is described by

S ¼
 
⨁M

j¼1 cosh rj ⨁M
j¼1 sinh rj

⨁M
j¼1 sinh rj ⨁M

j¼1 cosh rj

!
ð8Þ

(four block diagonal matrices [30]) and rj is the squeezing
parameter of the jth mode, where at least K of them are
nonzero. The covariance matrix at the output of the
interferometer is [31]

σ ¼ 1

2

�
T 0

0 T�

�
SS†
�
T† 0

0 Tt

�
; ð9Þ

and we arrive at A ¼ B ⊕ B� with

B ¼ Tð⊕M
j¼1 tanh rjÞTt: ð10Þ

The shape of the input squeezed states is encoded in
Γ ¼⊕M

j¼1 tanh rj. Using Eq. (6), the probability to measure
n̄ (zero or one photon per mode) is then

Prðn̄Þ ¼ jσQj−1=2jHafðBSÞj2; ð11Þ
where BS is the N × N submatrix that comprises only the
rows and columns where a photon was detected, i.e., the
sampled output pattern. Note, that contrary to the sampling
schemes from Fock states, we absorb the shape of the
Gaussian input state into our sampling matrix B. Therefore,
our scheme is independent of the exact location of the input
photons and allows us to retain more than one photon per
input mode. Also, note that, due to the nature of squeezed
light, we always obtain an even number of photons and
for N odd, Prðn̄Þ ¼ 0.
Nevertheless, we have to ensure the complexity of the

protocol, i.e., making B complex enough. If we pump
K (≤ M) modes this means that B in Eq. (10) is a rank K
matrix. It is known that the matrix rank determines the
complexity of calculating the permanent [32] and the
Hafnian [26]. Therefore, we place a minimal requirement
of K ¼ N SMSS at the input of our interferometer.
Additionally, we have to ensure that our set of output
patterns must be distinguishable from the uniform distri-
bution with less than exponentially many samples. In
Ref. [33], Aaronson and Arkhipov generalized their proof
for AABS to input states with coherent superpositions of
photons, which include our Gaussian input states.

Approximate GBS.—Since a realistic Boson sampler
suffers from unavoidable error sources, we have to consider
the problem of approximate sampling. In AABS this
problem corresponds to approximating the permanent up
to an additive error of matrices with random numbers from
the complex normal distribution (jGPEj2�) [1]. Aaronson and
Arkhipov show that this is in BPPNPO

, whereO is an oracle
for the AABS. Thus, a fast classical algorithm for O would
have severe consequences for the polynomial hierarchy.
After this main result, Aaronson and Arkhipov introduce the
permanent-of-Gaussians conjecture that expects approxi-
mate sampling with a multiplicative error GPE× in #P,
and the permanent-anticoncentration conjecture that surmi-
ses a polynomial-time equivalence of jGPEj2� and GPE×.
Provided that these two conjectures hold, then
P#P ¼ BPPNP, meaning that approximate AABS has to
be in #P or the polynomial hierarchy collapses. Since the
experimental implementations of AABS and GBS are
similar they will suffer from the same error sources.
Using the main elements of Aaronson and Arkhipov’s

hardness proof [1], we give heuristic arguments on how to
apply them to the GBS problem, but leave the full proof
for future work. Analogously to jGPEj2� in Ref. [1] one
should be able to formulate an equivalent statement for the
Hafnian, i.e., jGHEj2�. A key result from Ref. [1] is that a
matrix of independent and identically distributed complex
normal entries, X, can be hidden inside a larger Haar
unitary matrix T. In GBS, we sample the matrix TΓT†,
Eq. (10). We can choose Γ, the input squeezed states, such
that the matrix we are interested in becomes XXt (which
can be hidden in T). Based on this and given an approxi-
mate GBS oracle O, a combination of Stockmeyer’s
algorithm and Markov’s inequality should yield that
jGHEj2� is in BPPNPO

. As in Ref. [1], we leave open if
approximate GBS is in #P. However, we give two con-
jectures for the Hafnian that place approximate GBS into
this complexity class. First, we formulate a Hafnian-of-
Gaussians conjecture, i.e., approximating the Hafnian up to
multiplicative error GHE× is in #P. This is similar to
Aaronson and Arkhipov’s permanent-of-Gaussians conjec-
ture. As the Hafnian is a more general function than the
permanent [see Eq. (7)], a Hafnian approximation algo-
rithm up to a multiplicative error would also approximate
the permanent up to a multiplicative error, justifying our
conjecture. Furthermore, we conjecture that the two
approximations jGHEj2� and GHE× are polynomial-time
equivalent, which we believe is justified due to the similar
structure of the permanent and the Hafnian. Provided the
above conjectures hold and assuming approximate GBS
is efficiently solvable by a classical algorithm, then
P#P ¼ BPPNP and the polynomial hierarchy collapses.
GBS sampling patterns and generation probability.—

Because of the nature of Gaussian states the total number of
output photons is not fixed. This means that we have to
sample all sets of output patterns containing N photons in
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M modes fN ∈ ½0;∞Þ of size CN ¼ ðMNÞ, assuming only
zero or one photon per output mode g
ffp¼jσQjg0;fp1;p2;::;pC1

g1;…;fp1;p2;…;pCN
gN;…g

¼ffP0g;fP1g;fP2g;…;fPNg;…g;
where pj ¼ Prðn̄Þ is the probability of a certain output
pattern, given by Eq. (11), and fPNg is the set of all output
patterns with N photons.
Although we can retain more than one photon at the

input of our interferometer, the restriction to either zero or
one photon per output mode means that we have to exclude
multiple photon events at the output. As in the original
protocol by Aaronson and Arkhipov, this is satisfied by
the size and the nature of the interferometer. The Haar-
random transformation distributes the average photon
number into all modes equally (on average), making the
mean number of photons per mode Khni=M. When this is
≈1=N, and we consider the photon number distribution
in a single output mode, tracing over all other modes, we
are left with a thermal state where the ratio between the
single- and two-photon components is ½Prðtwo photonsÞ=
Prðone photonÞ� ≈ 0.1. Thus, due to the small probability
of higher order contributions, it is sufficient to use a low-
resolution photon number resolving detector to reduce this
error. Note that SBS also has to use photon number
resolving detectors to exclude the higher order photon
number contributions in the input state preparation. Since
there exists no complexity proof for N >

ffiffiffiffiffi
M

p
, we have to

adapt the photon number generation of the SMSS to the
dimension M of the network to ensure the computational
hardness of the problem. The probability to generate a total
of N photon pair events (2N photons) from K SMSS is
given by the negative binomial distribution [34],

PKðNÞ ¼
� K

2
þ N − 1

N

�
sechKðrÞtanh2NðrÞ: ð12Þ

The mean photon number of this distribution is nmean ¼
K sinh2ðrÞ and the modal number (photon number with
highest probability) is nmodal ¼ 2⌊ðK=2 − 1Þ sinh2ðrÞ⌋. We
can either operate in a regime where we focus on the
probability of a specific photon number N and thus choose
nmodal ¼ N, or we consider a range of photon numbers
[N − c, N] (where c is a small integer) and set the mean
photon number to nmean ≈ N. Recalling our results from
the previous section, we need at least K ≥ N SMSS at the
input and an interferometer size of M ≥ N2 to saturate the
complexity of an N-photon GBS experiment. In an exper-
imental implementation we can choose one of these two
regimes by fixing K and adjusting the squeezing parameter
r accordingly.
Advantages of GBS.—To demonstrate the advantage of

GBS in terms of the photon pair generation probability, we
first compare it to existing protocols, which rely on N
probabilistic, postselected photon pair events from K two-
mode squeezed states. Previous protocols are restricted to

one photon pair per squeezer and the probability to obtain
N single photon pair events from K two-mode squeezed
states follows a binomial distribution,

PPFBSðNÞ ¼
�
K
N

�
sech2KðrÞtanh2NðrÞ: ð13Þ

Comparing Eqs. (12) and (13) for 2N photons,K two-mode
squeezed states, and the same squeezing parameter r, we
find that the ratio of these is

PPFBSðNÞ=PGBSðNÞ ¼
�
K
N

�
=

�
K þ N − 1

N

�

≈ lim
N→∞;K>N

�
K − N
K − 1

�
N
: ð14Þ

In this regime, GBS has significant experimental advan-
tages over PFBS protocols, as the probability to generate
usable photons scales exponentially better. Comparing
SBS, which uses K ¼ N2 two-mode squeezers (with
hni ≈ 1=N), with GBS, we gain a factor of e increase in
the probability to generate N photons. Still, an additional
advantage of GBS is that we only require a low number of
squeezers K ≈ N ≪ N2 ¼ M to saturate the complexity of
an N-photon experiment. Summarizing, we gain a quad-
ratic reduction in the number of required resources com-
pared to SBS and an exponential increase in the generation
probability compared to PFBS. In both cases, we gain an
additional factor of 2 in the number of generated photons
since we do not herald.
Because of the structure of A, the number of independent

entries for the Hafnian is half of the entries in the permanent
of AABS or SBS. In terms of computation time (not
complexity, as complexity only considers scaling argu-
ments), this means that the calculation of a permanent of
an N × N matrix is OðN2NÞ, while the Hafnian can be
computed inOð2N=2Þ time. In order to achieve a comparable
runtime for AABS (or SBS) and our GBS, this means that
GBS has to consider 2N photons. This however is not a
problem, as we already obtain this factor of 2 by eliminating
the heralding. The only requirements that we additionally
have to fulfil are the size of the network, which now scales
as 4N2, a constant increase to SBS, and the number of
squeezers 2N to saturate the complexity of the matrix, still a
quadratic saving in resources, compared to SBS.
Conclusions.—We introduced Gaussian Boson sampling,

which uses the easy-to-achieve experimental resource of
squeezed states to implement a Boson sampling problem.
We derived a new expression for the output probabilities
from a general Gaussian state and showed that they are
related to a matrix function called the Hafnian. Calculating
the Hafnian is a computationally hard problem, in complex-
ity class #P, and we provided evidence that even approxi-
mating a GBS problem is difficult. Our result answers
questions in previous work as to the complexity of Boson
sampling with Gaussian states [1,12,14] and we provide a
detailed discussion of the ideas in this Letter in Ref. [18].
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Because of the symmetry of quantum mechanics, we can
reverse the problemofGBSand use the same result to classify
the problem of a Fock state input to an interferometer with
Gaussian-basis measurements [this open problem (4) in
Ref. [1] has now been investigated independently by
Refs. [35,36] ]. Within experimental quantum optics, starting
with a squeezed state, using linear optical transformations and
postselected measurement outcomes is a very common
method to create different families of photonic states. This
means that GBS includes other photonic boson sampling
protocols as special cases, which can be most readily seen
from SBS, as we show in Ref. [18], but also includes
other boson sampling problems such as those involving
Schrödinger cat states and photon-added (or -subtracted)
states [37–39]. Our formalism also allows us to handle the
main sources of noise in photonic systems, photon loss and
dark counts, in a very natural way as both are Gaussian
operations. It is not clear howmuch losswe can tolerate in our
Gaussian Boson sampling protocol to retain the #P complex-
ity of the scheme (as opposed to the BPPNP complexity of
thermal states [14]).With this,we believe that GBSwill prove
to be a powerful tool to study the interplay between losses and
complexity in boson sampling protocols.
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