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We devise an all-optical scheme for the generation of entangled multimode photonic states encoded in
temporal modes of light. The scheme employs a nonlinear down-conversion process in an optical loop to
generate one- and higher-dimensional tensor network states of light. We illustrate the principle with the
generation of two different classes of entangled tensor network states and report on a variational algorithm
to simulate the ground-state physics of many-body systems. We demonstrate that state-of-the-art optical
devices are capable of determining the ground-state properties of the spin-1=2 Heisenberg model. Finally,
implementations of the scheme are demonstrated to be robust against realistic losses and mode mismatch.
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General quantum states possess a complex entanglement
structure that makes their description on a classical computer
inefficient in the sense that, generally, the computational
effort grows exponentially with the number of subsystems.
However, in ground and thermal states of local
Hamiltonians, the entanglement and correlations are typi-
cally more limited as they satisfy area laws [1–3]. Such
states can be approximated well in terms of matrix product
states (MPSs) or, more generally, tensor network (TN) states
parametrization, in which only a polynomial (in the number
of subsystems) number of parameters is required to describe
the state [4,5]. This class includes not only the ground states
of a wide variety of quantum many-body Hamiltonians [2,6]
but also eponymous examples of entangled states such as
the Greenberger-Horne-Zeilinger (GHZ) state and W state.
The generation of MPSs is important because they include
important resource states for quantum communication,
teleportation, and metrology [7–10]. Furthermore, TNs
can efficiently parametrize important quantum states, includ-
ing universal states for quantum computation (e.g., cluster
and Affleck-Kennedy-Lieb-Tasaki states [11,12]), states
important in high-Tc superconductivity (e.g., resonating
valence bond state [13]), and topologically ordered states
of matter [14,15]. Although matrix product states can be
efficiently manipulated on a classical computer [16], the
treatment of TN states in higher spatial dimensions remains
challenging because the computational effort, while poly-
nomial, grows with a high power in the number of
subsystems and bond dimension. Therefore, the experimen-
tal generation of TN states and their use for quantum
simulation is of considerable interest.
Current experimental implementations for the generation

and processing of TN states focus on spatial modes of light,
but these implementations require experimental resources
that typically increase quickly with the required size of the

TN state [17–21]. This limitation can be overcome by using
the temporal modes of light or time bins, which provide an
infinite-dimensional Hilbert space that can be controlled
with constant experimental resources through time multi-
plexing. The potential of this approach has already been
successfully demonstrated in the context of quantum walks
and boson sampling [22–25]. Existing proposals for gen-
erating photonic TN states in the temporal modes of light
rely on the strong coupling of light to a single atom trapped
inside a cavity [26–28]. The strength of these methods is
that they allow the generation of arbitrary 1D TN states
whose entanglement is limited only by the number of
accessible atomic states. However, the experimental imple-
mentation of these schemes requires two challenging
conditions to be met, namely, the cooling and localizing
of the atom and strong coupling between the atom and the
light emitted from the cavity. Moreover, the requirement of
complete control over multiple atomic states restricts the
amount of entanglement in the generated TN states.
In this Letter, we devise an all-optical scheme for the

generation of TN states in one and higher dimensions that
overcomes these challenges. Our scheme does not suffer from
the stringent requirement of strong atom-photon coupling and
instead exploits well established parametric down-conversion
(PDC) methods to build entanglement in the generated state
[29]. Furthermore, our method overcomes the restriction on
entanglement (as quantified by bond dimension) to accessible
atomic levels by using the photon-number degree of freedom
to share entanglement between components of the generated
state. Finally, our all-optical scheme also promises robustness
against loss and mode mismatch and can be realized with
current optical technology.
Scheme to generate TN states.—Our proposed scheme to

generate entangled multimode states of light is depicted in
Fig. 1. The experimental setup relies on placing a type-II
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PDCnonlinearity into an optical loop and optically pumping
the nonlinearity. This nonlinearity performs two-mode
squeezing U ¼ expðηâ†hâ†v − η�âhâvÞ on the horizontal
and vertical modes of light, where the PDC parameter η
depends on the strength of the optical pumping. Here â†i and
âi are the creation and annihilation operators for mode
i ∈ fh; vg. The light in one of the two polarization modes
(say, vertical) is coupled out of the loop via a polarizing
beam splitter (PBS), while the other (say, horizontal) cycles
the loop. An electro-optic modulator (EOM) in the loop
dynamicallymixes the two polarizationmodes, of which the
vertical mode is in vacuum, via arbitrary linear transforma-
tions â†j →

P
2
i¼1 Vijâ

†
i for 2 × 2 special unitary matrix V ∈

SUð2Þ [30]. Section A of the Supplemental Material [31]
details themodeling of the setup. The time it takes for light to
cycle the loop is set equal to the delay between subsequent
pump pulses. Thus, the cycling light arrives synchronous to
the next pump pulse and effects two-mode squeezing
interaction between the two polarization modes [49]. In
other words, the PDC and the EOM together give rise to an
interaction between the horizontally polarized cycling light
and the vertically polarized optical vacuum.
The quantum circuit representing this repeated interac-

tion is presented in Fig. 2. We consider the temporal modes
(represented by fb̂j; b̂†jg) of the light coupled out from
the loop over many cycles, where each temporal mode is
the vertically polarized mode that was coupled out from the
PBS at a different time. We show the establishment of
multiparticle entanglement between subsequent temporal
modes mediated by the light cycling in the loop as depicted
by the dashed line of Fig. 2. Specifically, we show that the
emitted temporal modes of light permit a 1D TN repre-
sentation and include entangled states such as W and GHZ

states. The proof for this result and the general form of the
resultant TN state is in the Supplemental Material, Sec. B
[31]. The intuition for the proof is that the cycling mode
mediates entanglement between subsequently emitted light
modes. Entanglement between one emitted mode and the
next is limited by the entanglement between the first mode
and the cycling mode, and this maximum entanglement is
constant, irrespective of the number of cycles. Because
subsequent temporal modes of light are entangled, albeit
with limited entanglement, it follows that the state of the
emitted light can be represented as a TN state of limited
bond dimension.
Although the properties of 1D TN states can be efficiently

obtained on a classical computer, those of TN states in two
and higher dimensions require classical algorithms that scale
badly, i.e., exponentially in the system size and as high-
degree polynomials in the bond dimension. In other words,
two- and higher-dimensional TN states can be exploited for
obtaining nontrivial quantum-computational speed up. It is
possible to modify our scheme to generate higher-dimen-
sional TN states by connecting additional optical loops into
the existing loop, as depicted in Fig. 3. The effect of one
additional loop is to convert different polarizationmodes into
temporal modes, an approach already used in 2D quantum
walks [22,50]. Optionally, additional nonlinearities and
EOMs can be added to the loop to ensure that the entangle-
ment structure is identical in the twodimensions of the lattice.
The additional optical loop is designed to provide a time
delay of τ=n, which is smaller than the cycling time τ of the
main loopby a factorn for some large integern. Owing to this
additional time delay, the difference between the emission
times of two temporal modes is either τ or multiples τ=n,
2τ=n, 3τ=n;… of the interval τ=n. Modes with time differ-
ence τ are interpreted as neighbors along one axis of the TN
lattice,whereas thosewith time difference τ=n are interpreted
as neighbors along a different axis. Depending on the
required number ñ of lattice sites along the second TN
dimension, we can choose any n > ñ so that the sites in the
2D lattice are uniquely defined. Thus, the emitted light

FIG. 1. Setup to generate 1D TN states: the setup includes a
PDC nonlinearity placed inside an optical loop. Laser pulses
(red) from a source S placed outside of the loop are fed into it,
where they pump the nonlinearity to effect PDC on the two
polarization modes of light. One polarization mode (blue) is
coupled out of the loop using a PBS. The cycling time τ of the
signal (green) mode equals the time separation of the pump
pulses. Dichroic mirrors D1 and D2 couple the pump out. The
circles represent superpositions over low-photon-number Fock
states. The light modes coupled out from the loop via the PBS
contain the desired 1D TN state.

FIG. 2. Quantum circuit of 1D experiment for four cycles. UðiÞ
represents the two-mode PDC process and VðiÞ represents the
EOM transformation in the ith cycle. The dotted box represents
one cycle. The action of the PBS is represented by the mode
swapping after each UðiÞ operation and a subsequent emission of
one of the polarization modes. The red dashed line represents the
cycling mode. The rounded box on the right encloses subsequently
emitted temporal modes fb̂jg that contain the state of interest.
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possesses an entanglement structure that is captured by a 2D
TN state with a triangular structure (see Supplemental
Material, Sec. B [31]). Similarly, additional loops can be
connected to theoptical setup to generate higher-dimensional
TN states. We estimate that current optical technology can
enable the generation of five-mode 1D TN states and 15-
mode 2D TN states at the rates of 1200 and 85 Hz,
respectively (Supplemental Material, Sec. E [31]).
State generation.—Here we detail how the setup can be

used to generate two inequivalent classes of entangled
states, namely, the W and GHZ states. First, we consider
the m-qubit W state jψiW ¼ j0…01i þ j0…10i þ � � � þ
j1…00i, which has one excitation j1i that is delocalized
uniformly over all the qubits. Our proposed setup can
generate a heralded W state, which is defined as

jψiHW ¼ j0…00i ⊗ j0i þ ηðj0…01i
þ j0…10i þ � � � þ j1…00iÞ ⊗ j1i ð1Þ

on a total of mþ 1 qubits for some complex η with η < 1
and the normalization factor is emitted for simplicity. In this
state, a j1i in the last qubit heralds the presence of aW state
in the remaining qubits, whereas a j0i in the last qubit
implies a vacuum state in the remaining qubits.
The heralded W state can be generated by our proposed

setup in the single-rail basis [51], wherein the absence of a
photon in a temporal mode encodes the state j0i and a
single photon in the mode encodes j1i. Cases where more
than a single photon is present in the mode are discarded.
Even after accounting for this postselection, high rates of
state generation on the order of kilohertz can be obtained
(Supplemental Material, Sec. E [31]).
Next we describe the generation of the 4-qubit GHZ state

[52], which is usually defined as an equal superposition
j0000i þ j1111i over each qubit that is in state j0i and each
qubit in state j1i. An alternative description of the GHZ

state j1100i þ j0011i is obtained by redefining the qubit
labels in the last two qubits. Our proposed setup can be
used to generate the diluted GHZ state

jψiGHZ ¼ j0000i þ ηðj0011i þ j1100iÞ; ð2Þ

where the normalization factor is omitted. Supplemental
Material Sec. C details the optical circuit parameters for
generating these states [31].
In both cases of heralded W- and diluted GHZ-state

generation, we can obtain experimental results for W and
GHZ states by postselecting only those experimental out-
comes in which the expected numbers of photons were
observed. Simulations provide evidence that our state
generation procedure is robust against the usual experi-
mental imperfections of loss and mode mismatch from the
PDC. Consider reasonable experimental losses, which are
typically upward of 10% loss in each cycle; these losses
can lead to higher than 90% fidelity with respect to target
state, as seen in the red and black dots of Fig. 4.
Quantum-variational algorithm.—Other than state

preparation, the proposed setup can be exploited for
performing a mixed quantum-classical algorithm for the
determination of ground-state properties of many-body
systems via a quantum-variational approach, which we
now describe. We consider the task of determining the
properties, such as the energy or correlations, of the ground
state of a given Hamiltonian operator that acts on qubits.
The generated TN states comprise the set of variational
states; their energy with respect to the given Hamiltonian is
obtained by performing Glauber correlation measurements
on the output light following the procedure of [53] in
single-rail representation [54,55]. A classical minimization
algorithm can then be used to obtain circuit parameters
corresponding to the generated state that has the lowest
energy with respect to the given Hamiltonian. If the circuit
parameters, including the pump strength and EOM

FIG. 4. Simulations: effect of loss on the fidelity of the
generated 4-qubit state with respect to target W and GHZ states.
The red and black dots represent the fidelity between the
respective generated and target state as a function of the loss
incurred by the light in each cycle. The blue and green crosses
represent the same quantity under self-correction, i.e., when
variational algorithms are used to find circuit parameters that
optimize the fidelity against the target state in the lossy case.

FIG. 3. Setup to generate 2D TN states: to generate 2D TN
states, an additional fiber loop (corresponding to a time delay τ=n
for chosen integer n) is connected into the existing 1D loop via
PBSs. Pumping of the additional optional PDC is omitted from
the figure for simplicity. TN states in more than two dimensions
can be generated by introducing additional fiber loops into the
optical setup.
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parameters, are sufficiently expressive, i.e., if the ground
state is close to the class of variational states generated by
the setup, then an accurate approximation of the given
Hamiltonian’s ground state can be obtained. The procedure
is expected to work well for a wide variety of Hamiltonians
because the ground state of most 1D local Hamiltonians is
close to a low-dimension TN state [2]. The properties of the
ground state can be determined by usual measurements on
the output light. Our mixed quantum-classical variational
approach encompasses the variational problem that can be
solved using the so-called Ising machines because it
exploits the polarization and photon-number degrees of
freedom in addition to temporal modes used in Ising
machines [56,57].

To illustrate the performance of this approach, we
simulate the procedure to find the ground state of the
isotropic XY model [58,59]. The ground state of the XY
Hamiltonian HXY ¼ J

P
iXiXiþ1 þ YiYiþ1 þ ðB=4ÞPiZi

is the W state for a certain range of B [60]. We simulate
Glauber correlation measurements on the output light to
obtain the energy of the generated state for a specific value
of circuit parameters [53]. Starting with random circuit
parameters, we use a constrained minimization algorithm to
find those circuit parameters that minimize the energy. The
variational minimization returns a state that is close to the
expected ground state, as depicted in Fig. 5. Simulations
provide evidence that this approach is robust against
statistical noise [Fig. 5(b)] and loss [Fig. 5(c)].
A similar variational approach can also be used to

enhance the quality of state generation, as described above,
against possible experimental imperfections. For instance,
consider the task of improving the fidelity F ¼ hψ tjρlabjψ ti
of the generated state ρlab with respect to a given target state
jψ ti, such as the W state, under the presence of imperfec-
tions such as loss and phase drift. We can leverage from
a measurement-based feedback control scheme [61] to
find the circuit parameters that maximize fidelity against
a desired state and thereby compensate for experimental
imperfections. Direct fidelity estimation procedures [62,63]
can be used to efficiently estimate the fidelity with respect
to the desired state and classical optimization can be
performed to maximize this fidelity. Simulations show that
our W and GHZ state generation procedures can be made
further resilient to loss via such feedback control by 2–3
orders of magnitude (see blue and green crosses in Fig. 4).
Discussion.—In summary, we propose a scheme for the

all-optical generation of one- and higher-dimensional TN
states in temporal modes of light. The free parameters
describing the TN state and its bond dimension can be
improved by using additional degrees of freedom of light,
such as spatial modes, time-frequency Schmidt modes, and
orbital angular momentum modes of light [64–67], or by
adding another EOM to the loop between the PDC and the
PBS. Finally, states such as coherent states can be impinged
into the PDC instead of starting with the optical vacuum,
thereby leading to the generation of high-photon-number
Gaussian matrix product states [68,69], which could
potentially be used as a resource for Gaussian boson
sampling [70,71]. Efficient TN-based procedures can be
employed to perform tomography of the states [72–75].
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FIG. 5. (a) Scheme of quantum-variational algorithm and
simulated performance under (b) finite numbers of measurements
and (c) losses. (a) Depiction of quantum-variational algorithm.
The output from the setup (parameters set to fηg, fVg) is fed into
detection setup that encodes the given Hamiltonian H. The
detector output is analyzed by a classical optimization routine
to choose the set of variational parameters fη0g, fV 0g for the next
step. (b) The simulated number of measurements performed for
each observable versus the fidelity F between the expected
ground state (W state) and the state obtained from the quan-
tum-variational algorithm, without including the effect of losses.
(c) The fidelity between the expected ground state and the state
obtained from the quantum-variational algorithms as a function
of simulated loss in each loop. The variational algorithm chooses
a different pumping value for each cycle. See Supplemental
Material, Sec. D for simulation details and Sec. E for exper-
imental considerations [31].
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